Applied biocatalysis beyond just buffers - from aqueous to unconventional media. Options and guidelines

In nature, enzymes conventionally operate under aqueous conditions. Because of this, aqueous buffers are often the choice for reaction media when enzymes are applied in chemical synthesis. However, to meet the demands of an industrial application, due to the poor water solubility of many industriall...

Full description

Saved in:
Bibliographic Details
Published in:Green chemistry : an international journal and green chemistry resource : GC Vol. 23; no. 9; p. 3191
Main Authors: van Schie, Morten M C H, Spöring, Jan-Dirk, Bocola, Marco, Domínguez de María, Pablo, Rother, Dörte
Format: Journal Article
Language:English
Published: England 11.05.2021
ISSN:1463-9262
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In nature, enzymes conventionally operate under aqueous conditions. Because of this, aqueous buffers are often the choice for reaction media when enzymes are applied in chemical synthesis. However, to meet the demands of an industrial application, due to the poor water solubility of many industrially relevant compounds, an aqueous reaction system will often not be able to provide sufficient substrate loadings. A switch to a non-aqueous solvent system can provide a solution, which is already common for lipases, but more challenging for biocatalysts from other enzyme classes. The choices in solvent types and systems, however, can be overwhelming. Furthermore, some engineering of the protein structure of biocatalyst formulation is required. In this review, a guide for those working with biocatalysts, who look for a way to increase their reaction productivity, is presented. Examples reported clearly show that bulk water is not necessarily required for biocatalytic reactions and that clever solvent systems design can support increased product concentrations thereby decreasing waste formation. Additionally, under these conditions, enzymes can also be combined in cascades with other, water-sensitive, chemical catalysts. Finally, we show that the application of non-aqueous solvents in biocatalysis can actually lead to more sustainable processes. At the hand of flowcharts, following simple questions, one can quickly find what solvent systems are viable.
AbstractList In nature, enzymes conventionally operate under aqueous conditions. Because of this, aqueous buffers are often the choice for reaction media when enzymes are applied in chemical synthesis. However, to meet the demands of an industrial application, due to the poor water solubility of many industrially relevant compounds, an aqueous reaction system will often not be able to provide sufficient substrate loadings. A switch to a non-aqueous solvent system can provide a solution, which is already common for lipases, but more challenging for biocatalysts from other enzyme classes. The choices in solvent types and systems, however, can be overwhelming. Furthermore, some engineering of the protein structure of biocatalyst formulation is required. In this review, a guide for those working with biocatalysts, who look for a way to increase their reaction productivity, is presented. Examples reported clearly show that bulk water is not necessarily required for biocatalytic reactions and that clever solvent systems design can support increased product concentrations thereby decreasing waste formation. Additionally, under these conditions, enzymes can also be combined in cascades with other, water-sensitive, chemical catalysts. Finally, we show that the application of non-aqueous solvents in biocatalysis can actually lead to more sustainable processes. At the hand of flowcharts, following simple questions, one can quickly find what solvent systems are viable.In nature, enzymes conventionally operate under aqueous conditions. Because of this, aqueous buffers are often the choice for reaction media when enzymes are applied in chemical synthesis. However, to meet the demands of an industrial application, due to the poor water solubility of many industrially relevant compounds, an aqueous reaction system will often not be able to provide sufficient substrate loadings. A switch to a non-aqueous solvent system can provide a solution, which is already common for lipases, but more challenging for biocatalysts from other enzyme classes. The choices in solvent types and systems, however, can be overwhelming. Furthermore, some engineering of the protein structure of biocatalyst formulation is required. In this review, a guide for those working with biocatalysts, who look for a way to increase their reaction productivity, is presented. Examples reported clearly show that bulk water is not necessarily required for biocatalytic reactions and that clever solvent systems design can support increased product concentrations thereby decreasing waste formation. Additionally, under these conditions, enzymes can also be combined in cascades with other, water-sensitive, chemical catalysts. Finally, we show that the application of non-aqueous solvents in biocatalysis can actually lead to more sustainable processes. At the hand of flowcharts, following simple questions, one can quickly find what solvent systems are viable.
In nature, enzymes conventionally operate under aqueous conditions. Because of this, aqueous buffers are often the choice for reaction media when enzymes are applied in chemical synthesis. However, to meet the demands of an industrial application, due to the poor water solubility of many industrially relevant compounds, an aqueous reaction system will often not be able to provide sufficient substrate loadings. A switch to a non-aqueous solvent system can provide a solution, which is already common for lipases, but more challenging for biocatalysts from other enzyme classes. The choices in solvent types and systems, however, can be overwhelming. Furthermore, some engineering of the protein structure of biocatalyst formulation is required. In this review, a guide for those working with biocatalysts, who look for a way to increase their reaction productivity, is presented. Examples reported clearly show that bulk water is not necessarily required for biocatalytic reactions and that clever solvent systems design can support increased product concentrations thereby decreasing waste formation. Additionally, under these conditions, enzymes can also be combined in cascades with other, water-sensitive, chemical catalysts. Finally, we show that the application of non-aqueous solvents in biocatalysis can actually lead to more sustainable processes. At the hand of flowcharts, following simple questions, one can quickly find what solvent systems are viable.
Author Bocola, Marco
Domínguez de María, Pablo
van Schie, Morten M C H
Spöring, Jan-Dirk
Rother, Dörte
Author_xml – sequence: 1
  givenname: Morten M C H
  surname: van Schie
  fullname: van Schie, Morten M C H
  email: do.rother@fz-juelich.de
  organization: Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH 52425 Jülich Germany do.rother@fz-juelich.de
– sequence: 2
  givenname: Jan-Dirk
  orcidid: 0000-0002-5656-3537
  surname: Spöring
  fullname: Spöring, Jan-Dirk
  email: do.rother@fz-juelich.de
  organization: Aachen Biology and Biotechnology, RWTH Aachen University 52056 Aachen Germany
– sequence: 3
  givenname: Marco
  surname: Bocola
  fullname: Bocola, Marco
  organization: Enzymaster Deutschland GmbH Neusser Str. 39 40219 Düsseldorf Germany
– sequence: 4
  givenname: Pablo
  surname: Domínguez de María
  fullname: Domínguez de María, Pablo
  organization: Sustainable Momentum SL. Av. Ansite 3 4-6. 35011 Las Palmas de Gran Canaria Canary Is. Spain
– sequence: 5
  givenname: Dörte
  orcidid: 0000-0002-2339-4431
  surname: Rother
  fullname: Rother, Dörte
  email: do.rother@fz-juelich.de
  organization: Aachen Biology and Biotechnology, RWTH Aachen University 52056 Aachen Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34093084$$D View this record in MEDLINE/PubMed
BookMark eNo1kL1qwzAYRTWkNGnapQ9QNHZxKsmSLY0h9A8CWdrZyNKnVMGWXMsq5O2b0HS6XLgcDvcGzUIMgNA9JStKSvVk6d4QIir6NUMLyquyUKxic3ST0oEQSuuKX6N5yYkqieQLtF8PQ-fB4tZHoyfdHZNPuIVjDBYfcppwm52DMeECuzH2WH9niDnhKeIcTAw_ECYfg-5wD9brFd4N556wPgH22VvofIB0i66c7hLcXXKJPl-ePzZvxXb3-r5ZbwvDlZyK2jgjqKwIKM4J10oaXguhqQAJVrbKOdUyZWrHDFG2EsIBK7VUVFdWK86W6PGPO4zxZJqmpvfJQNfpcNZumCgl4bxk5-nDZZrbk3szjL7X47H5P4f9Apk_Zwk
CitedBy_id crossref_primary_10_1002_smll_202402208
crossref_primary_10_1038_s42004_023_01052_8
crossref_primary_10_1515_hsz_2021_0393
crossref_primary_10_1016_j_copbio_2022_102835
crossref_primary_10_1002_adsc_9603
crossref_primary_10_1002_anie_202302844
crossref_primary_10_1016_j_copbio_2023_103058
crossref_primary_10_1002_biot_202100712
crossref_primary_10_1016_j_ijbiomac_2025_146401
crossref_primary_10_3390_catal15040375
crossref_primary_10_1002_anie_202203823
crossref_primary_10_1002_anie_202416556
crossref_primary_10_1002_cssc_202201981
crossref_primary_10_1080_17460441_2022_2114453
crossref_primary_10_1007_s12010_023_04641_4
crossref_primary_10_1039_D2CP02636H
crossref_primary_10_1038_s41929_022_00842_y
crossref_primary_10_1016_j_apcata_2024_119737
crossref_primary_10_1002_adsc_202500060
crossref_primary_10_1002_cctc_202401893
crossref_primary_10_1039_D5CY00498E
crossref_primary_10_1021_acsorginorgau_4c00001
crossref_primary_10_1016_j_ijbiomac_2024_134056
crossref_primary_10_1002_ange_202302844
crossref_primary_10_1002_adsc_202401143
crossref_primary_10_1016_j_cclet_2023_108701
crossref_primary_10_1039_D4RE00349G
crossref_primary_10_1038_s41598_025_04490_7
crossref_primary_10_1039_D5GC02816G
crossref_primary_10_1002_cssc_202400073
crossref_primary_10_1021_acs_oprd_4c00474
crossref_primary_10_1002_elsc_202100087
crossref_primary_10_1016_j_ijbiomac_2025_147823
crossref_primary_10_1002_cbic_202100468
crossref_primary_10_1016_j_cogsc_2022_100745
crossref_primary_10_1038_s44286_024_00171_w
crossref_primary_10_1039_D2CS00083K
crossref_primary_10_1039_D2SC03483B
crossref_primary_10_1007_s41981_023_00286_w
crossref_primary_10_3390_catal11101183
crossref_primary_10_3389_fchem_2024_1467810
crossref_primary_10_1007_s00449_023_02921_1
crossref_primary_10_1016_j_bej_2024_109264
crossref_primary_10_1016_j_mcat_2021_112035
crossref_primary_10_3390_molecules26154466
crossref_primary_10_1039_D3CY00541K
crossref_primary_10_1021_acsmeasuresciau_5c00036
crossref_primary_10_1038_s42004_023_01013_1
crossref_primary_10_1002_ange_202203823
crossref_primary_10_1039_D3RE00058C
crossref_primary_10_1007_s00253_023_12450_2
crossref_primary_10_1080_10242422_2025_2544723
crossref_primary_10_1016_j_bioorg_2022_105967
crossref_primary_10_1016_j_cogsc_2025_101003
crossref_primary_10_1016_j_cogsc_2021_100514
crossref_primary_10_1016_j_cogsc_2022_100637
crossref_primary_10_1016_j_cherd_2023_02_050
crossref_primary_10_3389_fbioe_2021_798594
crossref_primary_10_1002_chem_202201923
crossref_primary_10_1002_cssc_202102704
crossref_primary_10_1039_D2RE00461E
crossref_primary_10_1002_cctc_202401792
crossref_primary_10_1002_chem_202304364
crossref_primary_10_1002_cite_202200178
crossref_primary_10_3390_microorganisms10050966
crossref_primary_10_3390_molecules28186452
crossref_primary_10_3390_nu17152416
crossref_primary_10_3390_polym15112514
crossref_primary_10_1039_D4SU00535J
crossref_primary_10_1002_cssc_202402075
crossref_primary_10_1016_j_mcat_2022_112707
crossref_primary_10_1016_j_greenca_2023_10_004
crossref_primary_10_1002_cctc_202401836
crossref_primary_10_1007_s00253_023_12386_7
crossref_primary_10_1002_chem_202402207
crossref_primary_10_1002_ange_202416556
crossref_primary_10_1002_cctc_202300411
crossref_primary_10_1002_cctc_202500088
crossref_primary_10_1515_psr_2022_0101
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
DBID NPM
7X8
DOI 10.1039/d1gc00561h
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
ExternalDocumentID 34093084
Genre Journal Article
Review
GroupedDBID 0-7
0R~
29I
4.4
5GY
705
70~
7~J
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
NPM
O9-
P2P
R7B
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
7X8
AKMSF
R56
ID FETCH-LOGICAL-c498t-7cfc51860e94404a98c4755a15e8ed8b9ff9b29c7f2c09d655fe23a891a6da942
IEDL.DBID 7X8
ISICitedReferencesCount 109
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000641283600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1463-9262
IngestDate Fri Jul 11 07:20:28 EDT 2025
Thu Apr 03 06:57:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-7cfc51860e94404a98c4755a15e8ed8b9ff9b29c7f2c09d655fe23a891a6da942
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5656-3537
0000-0002-2339-4431
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2021/gc/d1gc00561h
PMID 34093084
PQID 2538044324
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2538044324
pubmed_primary_34093084
PublicationCentury 2000
PublicationDate 20210511
PublicationDateYYYYMMDD 2021-05-11
PublicationDate_xml – month: 5
  year: 2021
  text: 20210511
  day: 11
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Green chemistry : an international journal and green chemistry resource : GC
PublicationTitleAlternate Green Chem
PublicationYear 2021
SSID ssj0011764
Score 2.6377888
SecondaryResourceType review_article
Snippet In nature, enzymes conventionally operate under aqueous conditions. Because of this, aqueous buffers are often the choice for reaction media when enzymes are...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 3191
Title Applied biocatalysis beyond just buffers - from aqueous to unconventional media. Options and guidelines
URI https://www.ncbi.nlm.nih.gov/pubmed/34093084
https://www.proquest.com/docview/2538044324
Volume 23
WOSCitedRecordID wos000641283600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7xkoCBR6FQXjISqyHO054QqkAsFAaQulW24xQYGiAtv587J1G7ICGxZIkcOed7-R7fAVxomRWhiAhPWzkex0XONVp6LlKdWeQZlC_th01kg4EcDtVTE3CrmrLKVid6RZ2XlmLkVyFKZhATftz1xyenqVGUXW1GaCzDaoSuDJV0ZcN5FkFkHj4KlUHECRevhSeN1FUuxtbDYL7-7lp6E3O3_d_N7cBW41yym5obdmHJTTqw3m9nunVgcwF-sAPd23mXGy5rxLzag3HjmzLzVvr4DsGWMOObXdj7rJoyM6O5KhXjjPpTmMbNlrOKTUuGdnKhkJ35zpRL9ljXzjCNHxjPCFqLyu334eXu9rl_z5uJDNzGSk55ZgubCJkGThGuoFbSxlmSaJE46XJpVFEoEyqL528DladJUrgw0lIJneZaxWEXViblxB0Cy22kHL4xAnmiUHhPU2lmwsBYQ05V0IPzltQjJBKlMfSEfmU0J3YPDurzGn3U0ByjCK-rUSDjoz-sPoaNkApUCIpVnMBqgfLuTmHNfk_fqq8zz0r4HDw9_AC3bNUm
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applied+biocatalysis+beyond+just+buffers+-+from+aqueous+to+unconventional+media.+Options+and+guidelines&rft.jtitle=Green+chemistry+%3A+an+international+journal+and+green+chemistry+resource+%3A+GC&rft.au=van+Schie%2C+Morten+M+C+H&rft.au=Sp%C3%B6ring%2C+Jan-Dirk&rft.au=Bocola%2C+Marco&rft.au=Dom%C3%ADnguez+de+Mar%C3%ADa%2C+Pablo&rft.date=2021-05-11&rft.issn=1463-9262&rft.volume=23&rft.issue=9&rft.spage=3191&rft_id=info:doi/10.1039%2Fd1gc00561h&rft_id=info%3Apmid%2F34093084&rft_id=info%3Apmid%2F34093084&rft.externalDocID=34093084
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9262&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9262&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9262&client=summon