Large-scale stationary hydrogen storage via liquid organic hydrogen carriers
Large-scale stationary hydrogen storage is critical if hydrogen is to fulfill its promise as a global energy carrier. While densified storage via compressed gas and liquid hydrogen is currently the dominant approach, liquid organic molecules have emerged as a favorable storage medium because of thei...
Saved in:
| Published in: | iScience Vol. 24; no. 9; p. 102966 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
24.09.2021
Elsevier |
| Subjects: | |
| ISSN: | 2589-0042, 2589-0042 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Large-scale stationary hydrogen storage is critical if hydrogen is to fulfill its promise as a global energy carrier. While densified storage via compressed gas and liquid hydrogen is currently the dominant approach, liquid organic molecules have emerged as a favorable storage medium because of their desirable properties, such as low cost and compatibility with existing fuel transport infrastructure. This perspective article analytically investigates hydrogenation systems' technical and economic prospects using liquid organic hydrogen carriers (LOHCs) to store hydrogen at a large scale compared to densified storage technologies and circular hydrogen carriers (mainly ammonia and methanol). Our analysis of major system components indicates that the capital cost for liquid hydrogen storage is more than two times that for the gaseous approach and four times that for the LOHC approach. Ammonia and methanol could be attractive options as hydrogen carriers at a large scale because of their compatibility with existing liquid fuel infrastructure. However, their synthesis and decomposition are energy and capital intensive compared to LOHCs. Together with other properties such as safety, these factors make LOHCs a possible option for large-scale stationary hydrogen storage. In addition, hydrogen transportation via various approaches is briefly discussed. We end our discussions by identifying important directions for future research on LOHCs.
[Display omitted]
Chemistry; Energy flexibility; Energy Resources; Energy sustainability |
|---|---|
| AbstractList | Large-scale stationary hydrogen storage is critical if hydrogen is to fulfill its promise as a global energy carrier. While densified storage via compressed gas and liquid hydrogen is currently the dominant approach, liquid organic molecules have emerged as a favorable storage medium because of their desirable properties, such as low cost and compatibility with existing fuel transport infrastructure. This perspective article analytically investigates hydrogenation systems' technical and economic prospects using liquid organic hydrogen carriers (LOHCs) to store hydrogen at a large scale compared to densified storage technologies and circular hydrogen carriers (mainly ammonia and methanol). Our analysis of major system components indicates that the capital cost for liquid hydrogen storage is more than two times that for the gaseous approach and four times that for the LOHC approach. Ammonia and methanol could be attractive options as hydrogen carriers at a large scale because of their compatibility with existing liquid fuel infrastructure. However, their synthesis and decomposition are energy and capital intensive compared to LOHCs. Together with other properties such as safety, these factors make LOHCs a possible option for large-scale stationary hydrogen storage. In addition, hydrogen transportation via various approaches is briefly discussed. We end our discussions by identifying important directions for future research on LOHCs.Large-scale stationary hydrogen storage is critical if hydrogen is to fulfill its promise as a global energy carrier. While densified storage via compressed gas and liquid hydrogen is currently the dominant approach, liquid organic molecules have emerged as a favorable storage medium because of their desirable properties, such as low cost and compatibility with existing fuel transport infrastructure. This perspective article analytically investigates hydrogenation systems' technical and economic prospects using liquid organic hydrogen carriers (LOHCs) to store hydrogen at a large scale compared to densified storage technologies and circular hydrogen carriers (mainly ammonia and methanol). Our analysis of major system components indicates that the capital cost for liquid hydrogen storage is more than two times that for the gaseous approach and four times that for the LOHC approach. Ammonia and methanol could be attractive options as hydrogen carriers at a large scale because of their compatibility with existing liquid fuel infrastructure. However, their synthesis and decomposition are energy and capital intensive compared to LOHCs. Together with other properties such as safety, these factors make LOHCs a possible option for large-scale stationary hydrogen storage. In addition, hydrogen transportation via various approaches is briefly discussed. We end our discussions by identifying important directions for future research on LOHCs. Large-scale stationary hydrogen storage is critical if hydrogen is to fulfill its promise as a global energy carrier. While densified storage via compressed gas and liquid hydrogen is currently the dominant approach, liquid organic molecules have emerged as a favorable storage medium because of their desirable properties, such as low cost and compatibility with existing fuel transport infrastructure. This perspective article analytically investigates hydrogenation systems' technical and economic prospects using liquid organic hydrogen carriers (LOHCs) to store hydrogen at a large scale compared to densified storage technologies and circular hydrogen carriers (mainly ammonia and methanol). Our analysis of major system components indicates that the capital cost for liquid hydrogen storage is more than two times that for the gaseous approach and four times that for the LOHC approach. Ammonia and methanol could be attractive options as hydrogen carriers at a large scale because of their compatibility with existing liquid fuel infrastructure. However, their synthesis and decomposition are energy and capital intensive compared to LOHCs. Together with other properties such as safety, these factors make LOHCs a possible option for large-scale stationary hydrogen storage. In addition, hydrogen transportation via various approaches is briefly discussed. We end our discussions by identifying important directions for future research on LOHCs. Chemistry; Energy flexibility; Energy Resources; Energy sustainability Large-scale stationary hydrogen storage is critical if hydrogen is to fulfill its promise as a global energy carrier. While densified storage via compressed gas and liquid hydrogen is currently the dominant approach, liquid organic molecules have emerged as a favorable storage medium because of their desirable properties, such as low cost and compatibility with existing fuel transport infrastructure. This perspective article analytically investigates hydrogenation systems' technical and economic prospects using liquid organic hydrogen carriers (LOHCs) to store hydrogen at a large scale compared to densified storage technologies and circular hydrogen carriers (mainly ammonia and methanol). Our analysis of major system components indicates that the capital cost for liquid hydrogen storage is more than two times that for the gaseous approach and four times that for the LOHC approach. Ammonia and methanol could be attractive options as hydrogen carriers at a large scale because of their compatibility with existing liquid fuel infrastructure. However, their synthesis and decomposition are energy and capital intensive compared to LOHCs. Together with other properties such as safety, these factors make LOHCs a possible option for large-scale stationary hydrogen storage. In addition, hydrogen transportation via various approaches is briefly discussed. We end our discussions by identifying important directions for future research on LOHCs. Large-scale stationary hydrogen storage is critical if hydrogen is to fulfill its promise as a global energy carrier. While densified storage via compressed gas and liquid hydrogen is currently the dominant approach, liquid organic molecules have emerged as a favorable storage medium because of their desirable properties, such as low cost and compatibility with existing fuel transport infrastructure. This perspective article analytically investigates hydrogenation systems' technical and economic prospects using liquid organic hydrogen carriers (LOHCs) to store hydrogen at a large scale compared to densified storage technologies and circular hydrogen carriers (mainly ammonia and methanol). Our analysis of major system components indicates that the capital cost for liquid hydrogen storage is more than two times that for the gaseous approach and four times that for the LOHC approach. Ammonia and methanol could be attractive options as hydrogen carriers at a large scale because of their compatibility with existing liquid fuel infrastructure. However, their synthesis and decomposition are energy and capital intensive compared to LOHCs. Together with other properties such as safety, these factors make LOHCs a possible option for large-scale stationary hydrogen storage. In addition, hydrogen transportation via various approaches is briefly discussed. We end our discussions by identifying important directions for future research on LOHCs. [Display omitted] Chemistry; Energy flexibility; Energy Resources; Energy sustainability |
| ArticleNumber | 102966 |
| Author | Tang, Chunguang Catchpole, Kylie Liu, Yun Abdin, Zainul |
| Author_xml | – sequence: 1 givenname: Zainul surname: Abdin fullname: Abdin, Zainul email: zainul.abdin@anu.edu.au organization: School of Engineering, the Australian National University, Canberra, Australia – sequence: 2 givenname: Chunguang orcidid: 0000-0002-1048-9087 surname: Tang fullname: Tang, Chunguang email: chunguang.tang@anu.edu.au organization: Research School of Chemistry, the Australian National University, Canberra, Australia – sequence: 3 givenname: Yun surname: Liu fullname: Liu, Yun organization: Research School of Chemistry, the Australian National University, Canberra, Australia – sequence: 4 givenname: Kylie surname: Catchpole fullname: Catchpole, Kylie organization: School of Engineering, the Australian National University, Canberra, Australia |
| BookMark | eNp9kUtr3DAUhUVJadI0f6ArL7vx9ErWE0qhhD4CA920ayFL144Gj5VInoH8-2rqlDZdBAQSV-d8HO55Tc7mNCMhbylsKFD5freJxccNA0brgBkpX5ALJrRpATg7--d9Tq5K2QEAq4cb-Yqcd5xLqbS5INutyyO2xbsJm7K4JabZ5Yfm9iHkNOJcZym7EZtjdM0U7w8xNCmPbo7-r8a7nCPm8oa8HNxU8OrxviQ_v3z-cf2t3X7_enP9adt6bvTSKmDSB2963femN4DABxdQIPTAOxEMQqe0HtBrRbmiXQ0NUjkYmFGaY3dJblZuSG5n73Lc18g2uWh_D2o-6_IS_YRWD5wGL6iWTnBPK0n3oJTzHAQFwSvr48q6O_R7DB7nJbvpCfTpzxxv7ZiOVneaGaMr4N0jIKf7A5bF7mszOE1uxnQolgmpmQBNuyrVq9TnVErGwfq4rryS42Qp2FO3dmdP3dpTt3bttlrZf9Y_CZ81fVhNWMs41oZsVeDsMcSMfqnbis_ZfwFXvL3v |
| CitedBy_id | crossref_primary_10_1016_j_envres_2024_119606 crossref_primary_10_1016_j_jclepro_2024_140724 crossref_primary_10_3390_inorganics12120313 crossref_primary_10_1007_s13437_025_00365_w crossref_primary_10_3390_ma16103735 crossref_primary_10_1007_s10311_022_01480_3 crossref_primary_10_1016_j_ijhydene_2024_06_240 crossref_primary_10_1016_j_renene_2025_122417 crossref_primary_10_3390_en17235820 crossref_primary_10_1016_j_matchemphys_2025_131252 crossref_primary_10_1016_j_ijhydene_2022_08_131 crossref_primary_10_1016_j_ijhydene_2024_03_310 crossref_primary_10_1002_ente_202401297 crossref_primary_10_1016_j_ijhydene_2023_12_114 crossref_primary_10_1016_j_rineng_2025_106031 crossref_primary_10_1016_j_cej_2023_145661 crossref_primary_10_1007_s12274_024_6876_y crossref_primary_10_1016_j_ijhydene_2024_03_316 crossref_primary_10_1016_j_egyr_2023_08_072 crossref_primary_10_1016_j_ijhydene_2024_11_434 crossref_primary_10_1016_j_enconman_2024_118660 crossref_primary_10_1039_D3EE02695G crossref_primary_10_1016_j_ijhydene_2023_03_312 crossref_primary_10_1016_j_energy_2024_132186 crossref_primary_10_1016_j_enconman_2022_116241 crossref_primary_10_3390_molecules29204938 crossref_primary_10_1016_j_ijhydene_2025_02_472 crossref_primary_10_1016_j_cej_2023_146629 crossref_primary_10_1039_D5CY00333D crossref_primary_10_3390_en15155379 crossref_primary_10_1016_j_ijhydene_2024_11_278 crossref_primary_10_1016_j_rser_2025_116237 crossref_primary_10_1016_j_ijhydene_2023_04_103 crossref_primary_10_1016_j_fuel_2022_126301 crossref_primary_10_1016_j_ijhydene_2024_04_007 crossref_primary_10_1016_j_fuel_2022_124004 crossref_primary_10_3390_pr13061853 crossref_primary_10_1016_j_jclepro_2022_131339 crossref_primary_10_1016_j_ijhydene_2023_07_204 crossref_primary_10_1002_bse_3482 crossref_primary_10_1002_aic_18149 crossref_primary_10_1016_j_ijhydene_2024_11_205 crossref_primary_10_1016_j_ecmx_2025_101251 crossref_primary_10_1016_j_ijhydene_2022_11_085 crossref_primary_10_3390_en18092204 crossref_primary_10_1016_j_jgsce_2025_205759 crossref_primary_10_1016_j_ijhydene_2022_11_126 crossref_primary_10_1016_j_rser_2022_112764 crossref_primary_10_1007_s10669_023_09932_z crossref_primary_10_3390_su16208839 crossref_primary_10_1016_j_energy_2023_128501 crossref_primary_10_1016_j_cogsc_2023_100836 crossref_primary_10_1016_j_apcatb_2023_122482 crossref_primary_10_1016_j_fuel_2024_132045 crossref_primary_10_1016_j_ijhydene_2024_02_151 crossref_primary_10_3390_pr12102182 crossref_primary_10_1080_15567036_2023_2175938 crossref_primary_10_1016_j_gce_2025_05_001 crossref_primary_10_1016_j_mtcomm_2025_112753 crossref_primary_10_1016_j_rser_2024_114572 crossref_primary_10_1016_j_ijhydene_2024_05_182 crossref_primary_10_1016_j_compchemeng_2025_109120 crossref_primary_10_1016_j_enconman_2023_117856 crossref_primary_10_1016_j_est_2025_116710 crossref_primary_10_1016_j_ijhydene_2023_09_021 crossref_primary_10_1016_j_segan_2025_101868 crossref_primary_10_1016_j_renene_2025_123562 crossref_primary_10_1016_j_apenergy_2024_124015 crossref_primary_10_1016_j_ijhydene_2022_09_078 crossref_primary_10_1016_j_jclepro_2022_134347 crossref_primary_10_1016_j_jclepro_2024_143492 crossref_primary_10_1016_j_energy_2022_123660 crossref_primary_10_1002_er_7604 crossref_primary_10_1016_j_ijhydene_2024_09_319 crossref_primary_10_1016_j_commatsci_2023_112373 crossref_primary_10_1016_j_est_2023_107604 crossref_primary_10_1016_j_crsus_2023_100007 crossref_primary_10_1186_s10033_024_01133_2 crossref_primary_10_32604_cmes_2023_026035 crossref_primary_10_3390_catal13020334 crossref_primary_10_3390_fire7070233 crossref_primary_10_1016_j_apcatb_2022_121802 crossref_primary_10_1021_acs_energyfuels_4c06109 crossref_primary_10_1016_j_ijhydene_2022_06_038 crossref_primary_10_1016_j_rser_2025_115451 crossref_primary_10_1016_j_renene_2024_122223 crossref_primary_10_1039_D3CY01568H crossref_primary_10_3390_en16083321 crossref_primary_10_1016_j_ijhydene_2023_05_072 crossref_primary_10_3390_en18051231 crossref_primary_10_1016_j_ijhydene_2025_01_067 crossref_primary_10_1016_j_jpowsour_2022_232397 crossref_primary_10_3390_hydrogen4010004 crossref_primary_10_1016_j_ijhydene_2024_12_155 crossref_primary_10_1016_j_ijhydene_2025_01_344 crossref_primary_10_3390_en17164070 crossref_primary_10_1007_s10098_024_03015_6 crossref_primary_10_1016_j_apenergy_2024_124009 crossref_primary_10_1016_j_ijhydene_2022_04_275 crossref_primary_10_1016_j_ijhydene_2023_01_346 crossref_primary_10_1016_j_oreoa_2025_100087 crossref_primary_10_1016_j_jece_2025_118197 crossref_primary_10_1109_ACCESS_2024_3471912 crossref_primary_10_1016_j_ijhydene_2024_12_038 crossref_primary_10_3390_polym17162178 crossref_primary_10_1016_j_jallcom_2022_168618 crossref_primary_10_3390_molecules29081767 crossref_primary_10_1039_D3SE00099K crossref_primary_10_1016_j_ijhydene_2024_11_197 crossref_primary_10_1016_j_ijhydene_2022_03_051 crossref_primary_10_3390_reactions5010008 crossref_primary_10_1016_j_enconman_2022_116326 crossref_primary_10_1016_j_ijhydene_2025_150558 crossref_primary_10_1002_adfm_202107672 crossref_primary_10_1016_j_fuel_2024_131899 crossref_primary_10_1016_j_ijhydene_2025_01_196 crossref_primary_10_1016_j_uncres_2025_100235 crossref_primary_10_1016_j_jpowsour_2022_232304 crossref_primary_10_1007_s11814_025_00507_z crossref_primary_10_1007_s12274_022_4265_y crossref_primary_10_1016_j_ijhydene_2022_12_305 crossref_primary_10_1016_j_est_2023_108404 crossref_primary_10_1088_1755_1315_1011_1_012001 crossref_primary_10_1016_j_energ_2025_100028 crossref_primary_10_1016_j_cattod_2024_114828 crossref_primary_10_1016_j_nanoen_2023_108373 crossref_primary_10_1016_j_ijhydene_2025_05_216 crossref_primary_10_3390_en15031054 crossref_primary_10_1002_cctc_202300947 crossref_primary_10_1016_j_enconman_2024_118873 crossref_primary_10_1016_j_isci_2023_108512 crossref_primary_10_1016_j_ijhydene_2024_05_096 crossref_primary_10_1016_j_enconman_2025_120070 crossref_primary_10_1039_D4SE00449C crossref_primary_10_1063_5_0259105 crossref_primary_10_1039_D3CY00881A crossref_primary_10_1016_j_ijhydene_2023_04_214 crossref_primary_10_1016_j_jpowsour_2024_234797 crossref_primary_10_1134_S0965544123060257 crossref_primary_10_3390_en16041743 crossref_primary_10_1016_j_ijhydene_2024_01_206 crossref_primary_10_1016_j_ijhydene_2025_04_371 crossref_primary_10_1016_j_ijhydene_2022_05_209 crossref_primary_10_1016_j_ijhydene_2024_10_045 crossref_primary_10_1016_j_biortech_2024_130753 crossref_primary_10_1016_j_cep_2022_109187 crossref_primary_10_1016_j_ijhydene_2023_11_232 crossref_primary_10_3390_ma15228239 crossref_primary_10_1016_j_cej_2025_168218 crossref_primary_10_1016_j_jece_2023_109992 crossref_primary_10_1016_j_rser_2024_114536 crossref_primary_10_1007_s43937_025_00082_8 crossref_primary_10_1016_j_rser_2022_112556 crossref_primary_10_1021_acssuschemeng_4c08647 crossref_primary_10_1016_j_ijhydene_2024_03_140 crossref_primary_10_1016_j_jclepro_2023_139616 crossref_primary_10_1016_j_est_2023_108787 crossref_primary_10_1016_j_ijhydene_2024_03_146 crossref_primary_10_3390_catal12101260 crossref_primary_10_3390_en15072507 crossref_primary_10_1016_j_jechem_2024_05_022 crossref_primary_10_1002_aesr_202400132 |
| Cites_doi | 10.1016/S1381-1169(03)00025-6 10.1016/j.fuel.2012.12.025 10.1016/j.ijhydene.2018.09.083 10.1016/j.apcata.2005.01.010 10.1039/C8EE02700E 10.1016/j.electacta.2013.10.190 10.3389/fenrg.2014.00001 10.1016/j.scitotenv.2020.143203 10.1002/cssc.201600435 10.1021/acs.jced.5b00679 10.1063/1.4985090 10.1016/j.jclepro.2019.03.086 10.1016/j.ijhydene.2020.12.213 10.1016/S0360-3199(02)00250-1 10.1016/j.ijhydene.2012.12.010 10.1002/cssc.201300263 10.1016/S1369-7021(03)00922-2 10.1016/j.rser.2019.109629 10.1016/j.ijhydene.2016.05.244 10.1016/j.jcat.2004.12.013 10.1016/j.egypro.2017.03.1155 10.1016/j.jpowsour.2018.04.011 10.1021/acs.energyfuels.9b00296 10.1016/j.rser.2014.11.093 10.1016/j.apenergy.2014.09.081 10.1016/j.apenergy.2015.07.067 10.1002/ente.201700446 10.1002/ente.201800499 10.1038/315311a0 10.1016/j.ijhydene.2021.02.080 10.1016/j.ijhydene.2020.08.143 10.1016/j.ijhydene.2017.03.167 10.1038/nenergy.2017.110 10.1016/j.ijhydene.2018.12.024 10.1016/j.apenergy.2016.10.068 10.1016/j.apenergy.2017.05.050 10.1016/j.rser.2014.07.093 10.1016/j.egypro.2012.09.076 10.1016/j.joule.2020.04.004 10.1016/j.ijhydene.2019.01.199 10.1002/cssc.201300426 10.1021/jp212249g 10.1016/j.ijhydene.2012.08.066 10.1002/2017WR021402 10.1016/j.ijhydene.2020.04.181 10.1146/annurev-chembioeng-060816-101334 10.1021/acssuschemeng.8b06065 10.1016/j.rser.2015.08.011 10.1039/C7EE00476A 10.1002/cctc.201800960 10.1016/S0920-5861(02)00024-X 10.1039/b810104n 10.1039/c2ee22937d 10.1021/acssuschemeng.7b02219 10.1093/ce/zkz033 10.1016/j.ijhydene.2019.03.063 10.1016/j.ijhydene.2010.03.068 10.1007/s12613-020-2021-4 10.1016/j.joule.2018.05.006 10.1016/j.ijhydene.2016.08.003 10.1002/ceat.201600180 10.1016/j.jclepro.2013.06.008 10.1016/j.ijhydene.2019.03.041 10.1016/j.rser.2019.109620 10.1016/j.jallcom.2010.09.012 10.1021/acs.accounts.6b00474 |
| ContentType | Journal Article |
| Copyright | 2021 The Author(s) 2021 The Author(s). 2021 The Author(s) 2021 |
| Copyright_xml | – notice: 2021 The Author(s) – notice: 2021 The Author(s). – notice: 2021 The Author(s) 2021 |
| DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM DOA |
| DOI | 10.1016/j.isci.2021.102966 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2589-0042 |
| ExternalDocumentID | oai_doaj_org_article_8f41dc5186a54c14968b077ac4051054 PMC8382998 10_1016_j_isci_2021_102966 S2589004221009342 |
| GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION EJD 7X8 5PM |
| ID | FETCH-LOGICAL-c498t-7026cdc9b8bb9b90e04fade5e0b0435d9e03788fec8714713496067a0f29784e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 187 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000698069100032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2589-0042 |
| IngestDate | Fri Oct 03 12:52:03 EDT 2025 Tue Sep 30 15:24:58 EDT 2025 Fri Jul 11 10:13:53 EDT 2025 Wed Nov 12 18:35:32 EST 2025 Tue Nov 18 22:42:16 EST 2025 Tue Jul 25 21:02:43 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Chemistry Energy flexibility Energy sustainability Energy Resources |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c498t-7026cdc9b8bb9b90e04fade5e0b0435d9e03788fec8714713496067a0f29784e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-1048-9087 |
| OpenAccessLink | https://doaj.org/article/8f41dc5186a54c14968b077ac4051054 |
| PMID | 34466789 |
| PQID | 2568250813 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8f41dc5186a54c14968b077ac4051054 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8382998 proquest_miscellaneous_2568250813 crossref_citationtrail_10_1016_j_isci_2021_102966 crossref_primary_10_1016_j_isci_2021_102966 elsevier_sciencedirect_doi_10_1016_j_isci_2021_102966 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-24 |
| PublicationDateYYYYMMDD | 2021-09-24 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationTitle | iScience |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | MacFarlane, Cherepanov, Choi, Suryanto, Hodgetts, Bakker, Ferrero Vallana, Simonov (bib56) 2020; 4 Moradi, Groth (bib59) 2019; 44 Langmi, Ren, North, Mathe, Bessarabov (bib51) 2014; 128 Yadav, Xu (bib98) 2012; 5 Giddey, Badwal, Munnings, Dolan (bib32) 2017; 5 (bib24) 2020 (bib31) 2020 Park, Yim, Ihm (bib65) 2002; 74 Gahleitner (bib28) 2013; 38 Caldera, Breyer (bib13) 2017; 53 Boisen, Dahl, Nørskov, Christensen (bib11) 2005; 230 Stark, Keil, Schug, Müller, Wasserscheid, Arlt (bib81) 2016; 61 Kan, Shibata (bib47) 2018 Pérez-Fortes, Schöneberger, Boulamanti, Tzimas (bib66) 2016; 161 (bib41) 2019 Okada, Shimura (bib64) 2013 Rusman, Dahari (bib76) 2016; 41 Abdin, Webb, Gray (bib4) 2015; 52 Alibaba (bib8) 2021 Krieger, Müller, Arlt (bib49) 2016; 39 Hurskainen (bib37) 2019 Pez, Scott, Cooper, Cheng (bib67) 2006 Preuster, Alekseev, Wasserscheid (bib69) 2017; 8 (bib19) 2021 Abdin, Zafaranloo, Rafiee, Mérida, Lipiński, Khalilpour (bib5) 2020; 120 Modisha, Ouma, Garidzirai, Wasserscheid, Bessarabov (bib58) 2019; 33 Eypasch, Schimpe, Kanwar, Hartmann, Herzog, Frank, Hamacher (bib25) 2017; 185 (bib92) 2021 John (bib43) 2020 Sartbaeva, Kuznetsov, Wells, Edwards (bib77) 2008; 1 Gardiner (bib30) 2009 Jorschick, Bösmann, Preuster, Wasserscheid (bib44) 2018; 10 Tengborg, Johansson, Durup (bib85) 2014 Teichmann, Arlt, Wasserscheid (bib84) 2012; 37 Gleichweit, Amende, Schernich, Zhao, Lorenz, Höfert, Brückner, Wasserscheid, Libuda, Steinrück, Papp (bib33) 2013; 6 Schmidt, Hawkes, Gambhir, Staffell (bib78) 2017; 2 Niermann, Beckendorff, Kaltschmitt, Bonhoff (bib61) 2019; 44 Züttel (bib101) 2003; 6 Brückner, Obesser, Bösmann, Bösmann, Teichmann, Arlt, Dungs, Wasserscheid (bib12) 2014; 7 Ulrich (bib89) 1984 Albertazzi, Ganzerla, Gobbi, Lenarda, Mandreoli, Salatelli, Savini, Storaro, Vaccari (bib7) 2003; 200 Li, Allen, Stager, Ku (bib53) 2020; 4 Fasihi, Efimova, Breyer (bib26) 2019; 224 Wilberforce, Olabi, Sayed, Elsaid, Abdelkareem (bib97) 2020; 761 Eblagon, Rentsch, Friedrichs, Remhof, Zuettel, Ramirez-Cuesta, Tsang (bib21) 2010; 35 Tang, Fei, Lin, Liu (bib82) 2020; 45 Ye, An, Xu (bib99) 2011; 509 Sharma, Ghoshal (bib79) 2015; 43 M Walas (bib55) 1990 Rosa, Sanchez, Realmonte, Baldocchi, D’Odorico (bib74) 2020 Van-Dal, Bouallou (bib94) 2013; 57 Garagounis, Kyriakou, Skodra, Vasileiou, Stoukides (bib29) 2014; 2 Morgan (bib60) 2013 Rüde, Bösmann, Preuster, Wasserscheid, Arlt, Müller (bib75) 2018; 6 Wang, Zhou, Ouyang (bib95) 2016; 41 Abdin (bib2) 2017 Cardella, Decker, Sundberg, Klein (bib14) 2017; 42 (bib40) 2019 Collodi (bib17) 2010; 19 Luo, Wang, Dooner, Clarke (bib54) 2015; 137 (bib90) 2014 Appl (bib10) 1999 Thomas, Parks (bib87) 2006 Zhang, Liguori, Fuerst, Way, Wolden (bib100) 2019; 7 Abdin, Khalilpour (bib3) 2019 Collodi, Azzaro, Ferrari, Santos (bib18) 2017; 114 (bib38) 2021 (bib86) 2021 Lamb, Dolan, Kennedy (bib50) 2019; 44 Jorschick, Dürr, Preuster, Bösmann, Wasserscheid (bib45) 2019; 7 (bib16) 2019 Nyári (bib63) 2018 Hodoshima, Arai, Takaiwa, Saito (bib35) 2003; 28 Hodoshima, Takaiwa, Shono, Satoh, Saito (bib36) 2005; 283 Niermann, Drünert, Kaltschmitt, Bonhoff (bib62) 2019; 12 (bib15) 2021 Shi, Qi, Qu, Che, Yi, Yang (bib80) 2019; 44 (bib91) 2014 Pfromm (bib68) 2017; 9 Elberry, Thakur, Santasalo-Aarnio, Larmi (bib23) 2021; 46 Wang, Kowal, Leuthold, Sauer (bib96) 2012; 29 Van-Dal, Bouallou (bib93) 2012; 29 Al-Breiki, Bicer (bib6) 2020; 45 He, Wang, Miao, Li, Wu, Fang (bib34) 2013; 106 Gabrielli, Poluzzi, Kramer, Spiers, Mazzotti, Gazzani (bib27) 2020; 121 Raab, Maier, Dietrich (bib71) 2021; 46 (bib39) 2021 Leung, Caramanna, Maroto-Valer (bib52) 2014; 39 Andersson, Grönkvist (bib9) 2019; 44 Rayment, Schlögl, Thomas, Ertl (bib72) 1985; 315 Aakko-Saksa, Cook, Kiviaho, Repo (bib1) 2018; 396 Preuster, Papp, Wasserscheid (bib70) 2017; 50 (bib57) 2013 Jackson, Fothergill, Gray, Haroon, Davenne, Greenwood, Huddart, Makepeace, Wood, David (bib42) 2020 Eblagon, Tam, Yu, Tsang (bib22) 2012; 116 Jorschick, Preuster, Dürr, Seidel, Müller, Bösmann, Wasserscheid (bib46) 2017; 10 Reuß, Grube, Robinius, Preuster, Wasserscheid, Stolten (bib73) 2017; 200 Towler, Sinnott (bib88) 2012 Tang, Chu, Li, Feng, Liu, Zhou (bib83) 2020; 27 Keith, Holmes, Angelo, Heidel (bib48) 2018; 2 Dürr, Müller, Jorschick, Helmin, Bösmann, Palkovits, Wasserscheid (bib20) 2017; 10 Wilberforce (10.1016/j.isci.2021.102966_bib97) 2020; 761 Van-Dal (10.1016/j.isci.2021.102966_bib94) 2013; 57 (10.1016/j.isci.2021.102966_bib91) 2014 (10.1016/j.isci.2021.102966_bib19) 2021 Niermann (10.1016/j.isci.2021.102966_bib61) 2019; 44 Nyári (10.1016/j.isci.2021.102966_bib63) 2018 Abdin (10.1016/j.isci.2021.102966_bib5) 2020; 120 M Walas (10.1016/j.isci.2021.102966_bib55) 1990 (10.1016/j.isci.2021.102966_bib41) 2019 Collodi (10.1016/j.isci.2021.102966_bib18) 2017; 114 Tang (10.1016/j.isci.2021.102966_bib83) 2020; 27 Aakko-Saksa (10.1016/j.isci.2021.102966_bib1) 2018; 396 Stark (10.1016/j.isci.2021.102966_bib81) 2016; 61 Preuster (10.1016/j.isci.2021.102966_bib69) 2017; 8 Dürr (10.1016/j.isci.2021.102966_bib20) 2017; 10 Gardiner (10.1016/j.isci.2021.102966_bib30) 2009 Thomas (10.1016/j.isci.2021.102966_bib87) 2006 Jorschick (10.1016/j.isci.2021.102966_bib44) 2018; 10 Okada (10.1016/j.isci.2021.102966_bib64) 2013 Hodoshima (10.1016/j.isci.2021.102966_bib35) 2003; 28 MacFarlane (10.1016/j.isci.2021.102966_bib56) 2020; 4 Eypasch (10.1016/j.isci.2021.102966_bib25) 2017; 185 Collodi (10.1016/j.isci.2021.102966_bib17) 2010; 19 Rayment (10.1016/j.isci.2021.102966_bib72) 1985; 315 Albertazzi (10.1016/j.isci.2021.102966_bib7) 2003; 200 (10.1016/j.isci.2021.102966_bib57) 2013 (10.1016/j.isci.2021.102966_bib24) 2020 Schmidt (10.1016/j.isci.2021.102966_bib78) 2017; 2 (10.1016/j.isci.2021.102966_bib40) 2019 Langmi (10.1016/j.isci.2021.102966_bib51) 2014; 128 Pérez-Fortes (10.1016/j.isci.2021.102966_bib66) 2016; 161 Towler (10.1016/j.isci.2021.102966_bib88) 2012 Jackson (10.1016/j.isci.2021.102966_bib42) 2020 Van-Dal (10.1016/j.isci.2021.102966_bib93) 2012; 29 Park (10.1016/j.isci.2021.102966_bib65) 2002; 74 Jorschick (10.1016/j.isci.2021.102966_bib45) 2019; 7 Abdin (10.1016/j.isci.2021.102966_bib4) 2015; 52 Raab (10.1016/j.isci.2021.102966_bib71) 2021; 46 He (10.1016/j.isci.2021.102966_bib34) 2013; 106 Niermann (10.1016/j.isci.2021.102966_bib62) 2019; 12 Boisen (10.1016/j.isci.2021.102966_bib11) 2005; 230 Moradi (10.1016/j.isci.2021.102966_bib59) 2019; 44 Abdin (10.1016/j.isci.2021.102966_bib3) 2019 Yadav (10.1016/j.isci.2021.102966_bib98) 2012; 5 Hurskainen (10.1016/j.isci.2021.102966_bib37) 2019 Ulrich (10.1016/j.isci.2021.102966_bib89) 1984 Abdin (10.1016/j.isci.2021.102966_bib2) 2017 Pez (10.1016/j.isci.2021.102966_bib67) 2006 Reuß (10.1016/j.isci.2021.102966_bib73) 2017; 200 (10.1016/j.isci.2021.102966_bib92) 2021 John (10.1016/j.isci.2021.102966_bib43) 2020 Ye (10.1016/j.isci.2021.102966_bib99) 2011; 509 Sharma (10.1016/j.isci.2021.102966_bib79) 2015; 43 Wang (10.1016/j.isci.2021.102966_bib96) 2012; 29 Rosa (10.1016/j.isci.2021.102966_bib74) 2020 Caldera (10.1016/j.isci.2021.102966_bib13) 2017; 53 Li (10.1016/j.isci.2021.102966_bib53) 2020; 4 Gahleitner (10.1016/j.isci.2021.102966_bib28) 2013; 38 Luo (10.1016/j.isci.2021.102966_bib54) 2015; 137 Cardella (10.1016/j.isci.2021.102966_bib14) 2017; 42 Leung (10.1016/j.isci.2021.102966_bib52) 2014; 39 Züttel (10.1016/j.isci.2021.102966_bib101) 2003; 6 Al-Breiki (10.1016/j.isci.2021.102966_bib6) 2020; 45 Elberry (10.1016/j.isci.2021.102966_bib23) 2021; 46 Alibaba (10.1016/j.isci.2021.102966_bib8) 2021 Giddey (10.1016/j.isci.2021.102966_bib32) 2017; 5 (10.1016/j.isci.2021.102966_bib90) 2014 Pfromm (10.1016/j.isci.2021.102966_bib68) 2017; 9 Andersson (10.1016/j.isci.2021.102966_bib9) 2019; 44 Appl (10.1016/j.isci.2021.102966_bib10) 1999 Tang (10.1016/j.isci.2021.102966_bib82) 2020; 45 Gabrielli (10.1016/j.isci.2021.102966_bib27) 2020; 121 Krieger (10.1016/j.isci.2021.102966_bib49) 2016; 39 Wang (10.1016/j.isci.2021.102966_bib95) 2016; 41 Tengborg (10.1016/j.isci.2021.102966_bib85) 2014 Modisha (10.1016/j.isci.2021.102966_bib58) 2019; 33 Teichmann (10.1016/j.isci.2021.102966_bib84) 2012; 37 Brückner (10.1016/j.isci.2021.102966_bib12) 2014; 7 Kan (10.1016/j.isci.2021.102966_bib47) 2018 Fasihi (10.1016/j.isci.2021.102966_bib26) 2019; 224 Eblagon (10.1016/j.isci.2021.102966_bib21) 2010; 35 Preuster (10.1016/j.isci.2021.102966_bib70) 2017; 50 Garagounis (10.1016/j.isci.2021.102966_bib29) 2014; 2 Zhang (10.1016/j.isci.2021.102966_bib100) 2019; 7 Sartbaeva (10.1016/j.isci.2021.102966_bib77) 2008; 1 Morgan (10.1016/j.isci.2021.102966_bib60) 2013 (10.1016/j.isci.2021.102966_bib16) 2019 Hodoshima (10.1016/j.isci.2021.102966_bib36) 2005; 283 Lamb (10.1016/j.isci.2021.102966_bib50) 2019; 44 Keith (10.1016/j.isci.2021.102966_bib48) 2018; 2 Jorschick (10.1016/j.isci.2021.102966_bib46) 2017; 10 (10.1016/j.isci.2021.102966_bib15) 2021 Eblagon (10.1016/j.isci.2021.102966_bib22) 2012; 116 (10.1016/j.isci.2021.102966_bib31) 2020 Rüde (10.1016/j.isci.2021.102966_bib75) 2018; 6 Gleichweit (10.1016/j.isci.2021.102966_bib33) 2013; 6 (10.1016/j.isci.2021.102966_bib38) 2021 Rusman (10.1016/j.isci.2021.102966_bib76) 2016; 41 Shi (10.1016/j.isci.2021.102966_bib80) 2019; 44 |
| References_xml | – volume: 315 start-page: 311 year: 1985 end-page: 313 ident: bib72 article-title: Structure of the ammonia synthesis catalyst publication-title: Nature – volume: 5 start-page: 9698 year: 2012 end-page: 9725 ident: bib98 article-title: Liquid-phase chemical hydrogen storage materials publication-title: Energ. Environ. Sci. – year: 2021 ident: bib92 article-title: Strategic Petroleum Reserve – volume: 230 start-page: 309 year: 2005 end-page: 312 ident: bib11 article-title: Why the optimal ammonia synthesis catalyst is not the optimal ammonia decomposition catalyst publication-title: J. Catal. – volume: 509 start-page: 152 year: 2011 end-page: 156 ident: bib99 article-title: Kinetics of 9-ethylcarbazole hydrogenation over Raney-Ni catalyst for hydrogen storage publication-title: J. Alloys Compd. – start-page: 1 year: 2009 end-page: 6 ident: bib30 article-title: DOE hydrogen and fuel cells program record publication-title: Energy Requirements for Hydrogen Gas Compression and Liquefaction as Related to Vehicle Storage Needs – year: 2021 ident: bib86 article-title: Low cost renewable energy for local and export markets – volume: 27 start-page: 713 year: 2020 end-page: 723 ident: bib83 article-title: Development and progress on hydrogen metallurgy publication-title: Int. J. Miner. Metall. Mater. – volume: 2 start-page: 1 year: 2014 ident: bib29 article-title: Electrochemical synthesis of ammonia in solid electrolyte cells publication-title: Front. Energ. Res. – volume: 28 start-page: 1255 year: 2003 end-page: 1262 ident: bib35 article-title: Catalytic decalin dehydrogenation/naphthalene hydrogenation pair as a hydrogen source for fuel-cell vehicle publication-title: Int. J. Hydrogen Energ. – volume: 200 start-page: 290 year: 2017 end-page: 302 ident: bib73 article-title: Seasonal storage and alternative carriers: a flexible hydrogen supply chain model publication-title: Appl. Energ. – volume: 120 start-page: 109620 year: 2020 ident: bib5 article-title: Hydrogen as an energy vector publication-title: Renew. Sustain. Energ. Rev. – volume: 37 start-page: 18118 year: 2012 end-page: 18132 ident: bib84 article-title: Liquid Organic Hydrogen Carriers as an efficient vector for the transport and storage of renewable energy publication-title: Int. J. Hydrogen Energ. – volume: 8 start-page: 445 year: 2017 end-page: 471 ident: bib69 article-title: Hydrogen storage technologies for future energy systems publication-title: Annu. Rev. Chem. Biomol. Eng. – volume: 61 start-page: 1441 year: 2016 end-page: 1448 ident: bib81 article-title: Melting points of potential liquid organic hydrogen carrier systems consisting of N-alkylcarbazoles publication-title: J. Chem. Eng. Data – volume: 50 start-page: 74 year: 2017 end-page: 85 ident: bib70 article-title: Liquid organic hydrogen carriers (LOHCs): toward a hydrogen-free hydrogen economy publication-title: Acc. Chem. Res. – volume: 44 start-page: 5345 year: 2019 end-page: 5354 ident: bib80 article-title: Integration of hydrogenation and dehydrogenation based on dibenzyltoluene as liquid organic hydrogen energy carrier publication-title: Int. J. Hydrogen Energ. – volume: 761 start-page: 143203 year: 2020 ident: bib97 article-title: Progress in carbon capture technologies publication-title: Sci. Total Environ. – year: 1984 ident: bib89 article-title: A Guide to Chemical Engineering Process Design and Economics – year: 2020 ident: bib43 article-title: World’s Largest Green Hydrogen Project Unveiled in saudi arabia – volume: 57 start-page: 38 year: 2013 end-page: 45 ident: bib94 article-title: Design and simulation of a methanol production plant from CO2 hydrogenation publication-title: J. Clean. Prod. – start-page: 1 year: 2014 end-page: 29 ident: bib90 article-title: Fuel Cell Technologies Office Multi-Year Research publication-title: Development, and Demonstration Plan | 3.2 Hydrogen Delivery, 2015 – volume: 4 start-page: 26 year: 2020 end-page: 47 ident: bib53 article-title: Paths to low-cost hydrogen energy at a scale for transportation applications in the USA and China via liquid-hydrogen distribution networks publication-title: Clean. Energ. – volume: 52 start-page: 1791 year: 2015 end-page: 1808 ident: bib4 article-title: Solar hydrogen hybrid energy systems for off-grid electricity supply: a critical review publication-title: Renew. Sustain. Energ. Rev. – start-page: 1 year: 2006 end-page: 32 ident: bib67 article-title: Hydrogen storage by reversible hydrogenation of pi-conjugated substrates publication-title: United States Patent – year: 2013 ident: bib64 article-title: Development of Large-Scale H2 Storage and Transportation Technology with Liquid Organic Hydrogen Carrier (LOHC) – volume: 12 start-page: 290 year: 2019 end-page: 307 ident: bib62 article-title: Liquid organic hydrogen carriers (LOHCs)–techno-economic analysis of LOHCs in a defined process chain publication-title: Energ. Environ. Sci. – volume: 106 start-page: 365 year: 2013 end-page: 371 ident: bib34 article-title: Hydrogenation of naphthalene over noble metal supported on mesoporous zeolite in the absence and presence of sulfur publication-title: Fuel – volume: 41 start-page: 12108 year: 2016 end-page: 12126 ident: bib76 article-title: A review on the current progress of metal hydrides material for solid-state hydrogen storage applications publication-title: Int. J. Hydrogen Energ. – year: 2012 ident: bib88 article-title: Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design – volume: 2 start-page: 1573 year: 2018 end-page: 1594 ident: bib48 article-title: A process for capturing CO2 from the atmosphere publication-title: Joule – volume: 200 start-page: 261 year: 2003 end-page: 270 ident: bib7 article-title: Hydrogenation of naphthalene on noble-metal-containing mesoporous MCM-41 aluminosilicates publication-title: J. Mol. Catal. A Chem. – volume: 39 start-page: 426 year: 2014 end-page: 443 ident: bib52 article-title: An overview of current status of carbon dioxide capture and storage technologies publication-title: Renew. Sustain. Energ. Rev. – year: 1999 ident: bib10 article-title: Ammonia: Principles and Industrial Practice – year: 2019 ident: bib41 article-title: LOHC Production Cost Estimation Study – year: 2019 ident: bib16 article-title: Australia’s National Hydrogen Strategy – year: 2021 ident: bib38 article-title: Advanced Clean Energy Storage Project – volume: 283 start-page: 235 year: 2005 end-page: 242 ident: bib36 article-title: Hydrogen storage by decalin/naphthalene pair and hydrogen supply to fuel cells by use of superheated liquid-film-type catalysis publication-title: Appl. Catal. A Gen. – volume: 6 start-page: 529 year: 2018 end-page: 539 ident: bib75 article-title: Resilience of liquid organic hydrogen carrier based energy-storage systems publication-title: Energ. Technol. – volume: 185 start-page: 320 year: 2017 end-page: 330 ident: bib25 article-title: Model-based techno-economic evaluation of an electricity storage system based on Liquid Organic Hydrogen Carriers publication-title: Appl. Energ. – year: 2020 ident: bib31 article-title: The National Hydrogen Strategy – volume: 35 start-page: 11609 year: 2010 end-page: 11621 ident: bib21 article-title: Hydrogenation of 9-ethylcarbazole as a prototype of a liquid hydrogen carrier publication-title: Int. J. Hydrogen Energ. – year: 2019 ident: bib40 article-title: Hydrogen Supply and Transportation Using Liquid Organic Hydrogen Carriers: A Preliminary Feasibility Study – volume: 42 start-page: 12339 year: 2017 end-page: 12354 ident: bib14 article-title: Process optimization for large-scale hydrogen liquefaction publication-title: Int. J. Hydrogen Energ. – year: 2021 ident: bib15 article-title: What Is “SPERA HYDROGEN” System? – volume: 43 start-page: 1151 year: 2015 end-page: 1158 ident: bib79 article-title: Hydrogen the future transportation fuel: from production to applications publication-title: Renew. Sustain. Energ. Rev. – volume: 29 start-page: 657 year: 2012 end-page: 667 ident: bib96 article-title: Storage system of renewable energy generated hydrogen for chemical industry publication-title: Energ. Proced. – volume: 44 start-page: 3580 year: 2019 end-page: 3593 ident: bib50 article-title: Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification publication-title: Int. J. Hydrogen Energ. – volume: 46 start-page: 11956 year: 2021 end-page: 11968 ident: bib71 article-title: Comparative techno-economic assessment of a large-scale hydrogen transport via liquid transport media publication-title: Int. J. Hydrogen Energy – volume: 4 start-page: 1186 year: 2020 end-page: 1205 ident: bib56 article-title: A roadmap to the ammonia economy publication-title: Joule – volume: 128 start-page: 368 year: 2014 end-page: 392 ident: bib51 article-title: Hydrogen storage in metal-organic frameworks: a review publication-title: Electrochimica Acta – volume: 121 start-page: 109629 year: 2020 ident: bib27 article-title: Seasonal energy storage for zero-emissions multi-energy systems via underground hydrogen storage publication-title: Renew. Sustain. Energ. Rev. – start-page: 1 year: 2014 end-page: 7 ident: bib85 article-title: Storage of highly compressed gases in underground Lined Rock Caverns–More than 10 years of experience publication-title: Proceedings of the World Tunnel Congress 2014 – Tunnels for a Better Life – volume: 6 start-page: 24 year: 2003 end-page: 33 ident: bib101 article-title: Materials for hydrogen storage publication-title: Mater. Today – volume: 114 start-page: 122 year: 2017 end-page: 138 ident: bib18 article-title: Demonstrating large scale industrial CCS through CCU–a case study for methanol production publication-title: Energ. Proced. – volume: 7 start-page: 146 year: 2019 end-page: 152 ident: bib45 article-title: Operational stability of a LOHC-based hot pressure swing reactor for hydrogen storage publication-title: Energ. Technol. – volume: 41 start-page: 18062 year: 2016 end-page: 18071 ident: bib95 article-title: Efficiency analysis of novel Liquid Organic Hydrogen Carrier technology and comparison with high pressure storage pathway publication-title: Int. J. Hydrogen Energ. – volume: 137 start-page: 511 year: 2015 end-page: 536 ident: bib54 article-title: Overview of current development in electrical energy storage technologies and the application potential in power system operation publication-title: Appl. Energ. – volume: 10 start-page: 1652 year: 2017 end-page: 1659 ident: bib46 article-title: Hydrogen storage using a hot pressure swing reactor publication-title: Energ. Environ. Sci. – volume: 74 start-page: 281 year: 2002 end-page: 290 ident: bib65 article-title: Characteristics of Al-MCM-41 supported Pt catalysts: effect of Al distribution in Al-MCM-41 on its catalytic activity in naphthalene hydrogenation publication-title: Catal. Today – volume: 9 start-page: 034702 year: 2017 ident: bib68 article-title: Towards sustainable agriculture: fossil-free ammonia publication-title: J. Renew. Sustain. Energ. – volume: 29 start-page: 463 year: 2012 end-page: 468 ident: bib93 article-title: CO2 abatement through a methanol production process publication-title: Chem. Eng. – volume: 116 start-page: 7421 year: 2012 end-page: 7429 ident: bib22 article-title: Comparative study of catalytic hydrogenation of 9-ethylcarbazole for hydrogen storage over noble metal surfaces publication-title: J. Phys. Chem. C – volume: 7 start-page: 229 year: 2014 end-page: 235 ident: bib12 article-title: Evaluation of industrially applied heat-transfer fluids as liquid organic hydrogen carrier systems publication-title: ChemSusChem – volume: 44 start-page: 12254 year: 2019 end-page: 12269 ident: bib59 article-title: Hydrogen storage and delivery: review of the state of the art technologies and risk and reliability analysis publication-title: Int. J. Hydrogen Energ. – volume: 10 start-page: 42 year: 2017 end-page: 47 ident: bib20 article-title: Carbon dioxide-free hydrogen production with integrated hydrogen separation and storage publication-title: ChemSusChem – start-page: 1 year: 2020 end-page: 70 ident: bib42 article-title: Ammonia to green hydrogen project publication-title: Feasibilty Study – volume: 5 start-page: 10231 year: 2017 end-page: 10239 ident: bib32 article-title: Ammonia as a renewable energy transportation media publication-title: ACS Sustain. Chem. Eng. – start-page: 1 year: 2006 end-page: 23 ident: bib87 article-title: Potential Roles of Ammonia in a Hydrogen Economy publication-title: A Study of Issues Related to the Use Ammonia for On-Board Vehicular Hydrogen Storage – year: 1990 ident: bib55 article-title: Chemical Process Equipmen Selection and Design – volume: 10 start-page: 4329 year: 2018 end-page: 4337 ident: bib44 article-title: Charging a liquid organic hydrogen carrier system with H2/CO2 gas mixtures publication-title: ChemCatChem – volume: 44 start-page: 6631 year: 2019 end-page: 6654 ident: bib61 article-title: Liquid organic hydrogen carrier (LOHC)–Assessment based on chemical and economic properties publication-title: Int. J. Hydrogen Energ. – volume: 7 start-page: 5975 year: 2019 end-page: 5985 ident: bib100 article-title: Efficient ammonia decomposition in a catalytic membrane reactor to enable hydrogen storage and utilization publication-title: ACS Sustain. Chem. Eng. – year: 2021 ident: bib19 article-title: Hydrogen's Key Role in Decarbonising the Mining Industry – volume: 39 start-page: 1570 year: 2016 end-page: 1574 ident: bib49 article-title: Coupling of a liquid organic hydrogen carrier system with industrial heat publication-title: Chem. Eng. Technol. – year: 2013 ident: bib57 article-title: Propulsion Trends in Container Vessels Two-Stroke Engines – year: 2014 ident: bib91 article-title: Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications – start-page: 110511 year: 2020 ident: bib74 article-title: The water footprint of carbon capture and storage technologies publication-title: Renew. Sustain. Energ. Rev. – volume: 1 start-page: 79 year: 2008 end-page: 85 ident: bib77 article-title: Hydrogen nexus in a sustainable energy future publication-title: Energ. Environ. Sci. – volume: 2 start-page: 1 year: 2017 end-page: 8 ident: bib78 article-title: The future cost of electrical energy storage based on experience rates publication-title: Nat. Energ. – year: 2021 ident: bib8 article-title: Manufacturer Supply Pt Alumina Supported Platinum Hydrogenation Catalyst – volume: 19 start-page: 37 year: 2010 end-page: 42 ident: bib17 article-title: Hydrogen production via steam reforming with CO2 capture publication-title: Chem. Eng. Trans. – year: 2017 ident: bib2 article-title: Component Models for Solar Hydrogen Hybrid Energy Systems Based on Metal Hydride Energy Storage – volume: 45 start-page: 34927 year: 2020 end-page: 34937 ident: bib6 article-title: Technical assessment of liquefied natural gas, ammonia and methanol for overseas energy transport based on energy and exergy analyses publication-title: Int. J. Hydrogen Energ. – volume: 44 start-page: 11901 year: 2019 end-page: 11919 ident: bib9 article-title: Large-scale storage of hydrogen publication-title: Int. J. Hydrogen Energ. – year: 2013 ident: bib60 article-title: Techno-economic Feasibility Study of Ammonia Plants Powered by Offshore Wind – volume: 38 start-page: 2039 year: 2013 end-page: 2061 ident: bib28 article-title: Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications publication-title: Int. J. Hydrogen Energ. – volume: 33 start-page: 2778 year: 2019 end-page: 2796 ident: bib58 article-title: The prospect of hydrogen storage using liquid organic hydrogen carriers publication-title: Energ. Fuels – volume: 46 start-page: 15671 year: 2021 end-page: 15690 ident: bib23 article-title: Large-scale compressed hydrogen storage as part of renewable electricity storage systems publication-title: Int. J. Hydrogen Energ. – volume: 161 start-page: 718 year: 2016 end-page: 732 ident: bib66 article-title: Methanol synthesis using captured CO2 as raw material: techno-economic and environmental assessment publication-title: Appl. Energ. – volume: 6 start-page: 974 year: 2013 end-page: 977 ident: bib33 article-title: Dehydrogenation of dodecahydro-N-ethylcarbazole on Pt(111) publication-title: ChemSusChem – start-page: 77 year: 2019 end-page: 131 ident: bib3 article-title: Single and polystorage technologies for renewable-based hybrid energy systems publication-title: Polygeneration with Polystorage for Chemical and Energy Hubs – volume: 396 start-page: 803 year: 2018 end-page: 823 ident: bib1 article-title: Liquid organic hydrogen carriers for transportation and storing of renewable energy–Review and discussion publication-title: J. Power Sourc. – year: 2021 ident: bib39 article-title: Kick-off for construction and operation of the world’s largest project plant for storing green hydrogen in Liquid Organic Hydrogen Carrier in Germany/Dormagen – year: 2018 ident: bib63 article-title: Techno-economic Feasibility Study of a Methanol Plant Using Carbon Dioxide and Hydrogen – volume: 224 start-page: 957 year: 2019 end-page: 980 ident: bib26 article-title: Techno-economic assessment of CO2 direct air capture plants publication-title: J. Clean. Prod. – volume: 53 start-page: 10523 year: 2017 end-page: 10538 ident: bib13 article-title: Learning curve for seawater reverse osmosis desalination plants: capital cost trend of the past, present, and future publication-title: Water Resour. Res. – year: 2019 ident: bib37 article-title: Liquid organic hydrogen carriers (LOHC) publication-title: Concept Evaluation and Techno-Economics – year: 2020 ident: bib24 article-title: A Hydrogen Strategy for a Climate Neutral Europe – volume: 45 start-page: 32089 year: 2020 end-page: 32097 ident: bib82 article-title: Natural liquid organic hydrogen carrier with low dehydrogenation energy: a first principles study publication-title: Int. J. Hydrogen Energ. – year: 2018 ident: bib47 article-title: Evaluation of the Economics of Renewable Hydrogen Supply in the APEC Region. 34th Conference on Energy, Economy, and Environment – volume: 200 start-page: 261 year: 2003 ident: 10.1016/j.isci.2021.102966_bib7 article-title: Hydrogenation of naphthalene on noble-metal-containing mesoporous MCM-41 aluminosilicates publication-title: J. Mol. Catal. A Chem. doi: 10.1016/S1381-1169(03)00025-6 – year: 2019 ident: 10.1016/j.isci.2021.102966_bib37 article-title: Liquid organic hydrogen carriers (LOHC) – year: 2019 ident: 10.1016/j.isci.2021.102966_bib16 – volume: 106 start-page: 365 year: 2013 ident: 10.1016/j.isci.2021.102966_bib34 article-title: Hydrogenation of naphthalene over noble metal supported on mesoporous zeolite in the absence and presence of sulfur publication-title: Fuel doi: 10.1016/j.fuel.2012.12.025 – volume: 44 start-page: 5345 year: 2019 ident: 10.1016/j.isci.2021.102966_bib80 article-title: Integration of hydrogenation and dehydrogenation based on dibenzyltoluene as liquid organic hydrogen energy carrier publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2018.09.083 – volume: 283 start-page: 235 year: 2005 ident: 10.1016/j.isci.2021.102966_bib36 article-title: Hydrogen storage by decalin/naphthalene pair and hydrogen supply to fuel cells by use of superheated liquid-film-type catalysis publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2005.01.010 – volume: 19 start-page: 37 year: 2010 ident: 10.1016/j.isci.2021.102966_bib17 article-title: Hydrogen production via steam reforming with CO2 capture publication-title: Chem. Eng. Trans. – volume: 12 start-page: 290 year: 2019 ident: 10.1016/j.isci.2021.102966_bib62 article-title: Liquid organic hydrogen carriers (LOHCs)–techno-economic analysis of LOHCs in a defined process chain publication-title: Energ. Environ. Sci. doi: 10.1039/C8EE02700E – volume: 128 start-page: 368 year: 2014 ident: 10.1016/j.isci.2021.102966_bib51 article-title: Hydrogen storage in metal-organic frameworks: a review publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2013.10.190 – year: 2018 ident: 10.1016/j.isci.2021.102966_bib63 – volume: 2 start-page: 1 year: 2014 ident: 10.1016/j.isci.2021.102966_bib29 article-title: Electrochemical synthesis of ammonia in solid electrolyte cells publication-title: Front. Energ. Res. doi: 10.3389/fenrg.2014.00001 – volume: 761 start-page: 143203 year: 2020 ident: 10.1016/j.isci.2021.102966_bib97 article-title: Progress in carbon capture technologies publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.143203 – volume: 10 start-page: 42 year: 2017 ident: 10.1016/j.isci.2021.102966_bib20 article-title: Carbon dioxide-free hydrogen production with integrated hydrogen separation and storage publication-title: ChemSusChem doi: 10.1002/cssc.201600435 – volume: 61 start-page: 1441 year: 2016 ident: 10.1016/j.isci.2021.102966_bib81 article-title: Melting points of potential liquid organic hydrogen carrier systems consisting of N-alkylcarbazoles publication-title: J. Chem. Eng. Data doi: 10.1021/acs.jced.5b00679 – volume: 9 start-page: 034702 year: 2017 ident: 10.1016/j.isci.2021.102966_bib68 article-title: Towards sustainable agriculture: fossil-free ammonia publication-title: J. Renew. Sustain. Energ. doi: 10.1063/1.4985090 – volume: 224 start-page: 957 year: 2019 ident: 10.1016/j.isci.2021.102966_bib26 article-title: Techno-economic assessment of CO2 direct air capture plants publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.03.086 – volume: 46 start-page: 11956 year: 2021 ident: 10.1016/j.isci.2021.102966_bib71 article-title: Comparative techno-economic assessment of a large-scale hydrogen transport via liquid transport media publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.12.213 – volume: 28 start-page: 1255 year: 2003 ident: 10.1016/j.isci.2021.102966_bib35 article-title: Catalytic decalin dehydrogenation/naphthalene hydrogenation pair as a hydrogen source for fuel-cell vehicle publication-title: Int. J. Hydrogen Energ. doi: 10.1016/S0360-3199(02)00250-1 – year: 2020 ident: 10.1016/j.isci.2021.102966_bib24 – volume: 38 start-page: 2039 year: 2013 ident: 10.1016/j.isci.2021.102966_bib28 article-title: Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2012.12.010 – volume: 6 start-page: 974 year: 2013 ident: 10.1016/j.isci.2021.102966_bib33 article-title: Dehydrogenation of dodecahydro-N-ethylcarbazole on Pt(111) publication-title: ChemSusChem doi: 10.1002/cssc.201300263 – start-page: 1 year: 2006 ident: 10.1016/j.isci.2021.102966_bib87 article-title: Potential Roles of Ammonia in a Hydrogen Economy – volume: 6 start-page: 24 year: 2003 ident: 10.1016/j.isci.2021.102966_bib101 article-title: Materials for hydrogen storage publication-title: Mater. Today doi: 10.1016/S1369-7021(03)00922-2 – year: 2013 ident: 10.1016/j.isci.2021.102966_bib60 – volume: 29 start-page: 463 year: 2012 ident: 10.1016/j.isci.2021.102966_bib93 article-title: CO2 abatement through a methanol production process publication-title: Chem. Eng. – volume: 121 start-page: 109629 year: 2020 ident: 10.1016/j.isci.2021.102966_bib27 article-title: Seasonal energy storage for zero-emissions multi-energy systems via underground hydrogen storage publication-title: Renew. Sustain. Energ. Rev. doi: 10.1016/j.rser.2019.109629 – volume: 41 start-page: 12108 year: 2016 ident: 10.1016/j.isci.2021.102966_bib76 article-title: A review on the current progress of metal hydrides material for solid-state hydrogen storage applications publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2016.05.244 – volume: 230 start-page: 309 year: 2005 ident: 10.1016/j.isci.2021.102966_bib11 article-title: Why the optimal ammonia synthesis catalyst is not the optimal ammonia decomposition catalyst publication-title: J. Catal. doi: 10.1016/j.jcat.2004.12.013 – volume: 114 start-page: 122 year: 2017 ident: 10.1016/j.isci.2021.102966_bib18 article-title: Demonstrating large scale industrial CCS through CCU–a case study for methanol production publication-title: Energ. Proced. doi: 10.1016/j.egypro.2017.03.1155 – volume: 396 start-page: 803 year: 2018 ident: 10.1016/j.isci.2021.102966_bib1 article-title: Liquid organic hydrogen carriers for transportation and storing of renewable energy–Review and discussion publication-title: J. Power Sourc. doi: 10.1016/j.jpowsour.2018.04.011 – volume: 33 start-page: 2778 year: 2019 ident: 10.1016/j.isci.2021.102966_bib58 article-title: The prospect of hydrogen storage using liquid organic hydrogen carriers publication-title: Energ. Fuels doi: 10.1021/acs.energyfuels.9b00296 – volume: 43 start-page: 1151 year: 2015 ident: 10.1016/j.isci.2021.102966_bib79 article-title: Hydrogen the future transportation fuel: from production to applications publication-title: Renew. Sustain. Energ. Rev. doi: 10.1016/j.rser.2014.11.093 – year: 2019 ident: 10.1016/j.isci.2021.102966_bib40 – volume: 137 start-page: 511 year: 2015 ident: 10.1016/j.isci.2021.102966_bib54 article-title: Overview of current development in electrical energy storage technologies and the application potential in power system operation publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2014.09.081 – volume: 161 start-page: 718 year: 2016 ident: 10.1016/j.isci.2021.102966_bib66 article-title: Methanol synthesis using captured CO2 as raw material: techno-economic and environmental assessment publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2015.07.067 – year: 2020 ident: 10.1016/j.isci.2021.102966_bib31 – volume: 6 start-page: 529 year: 2018 ident: 10.1016/j.isci.2021.102966_bib75 article-title: Resilience of liquid organic hydrogen carrier based energy-storage systems publication-title: Energ. Technol. doi: 10.1002/ente.201700446 – volume: 7 start-page: 146 year: 2019 ident: 10.1016/j.isci.2021.102966_bib45 article-title: Operational stability of a LOHC-based hot pressure swing reactor for hydrogen storage publication-title: Energ. Technol. doi: 10.1002/ente.201800499 – volume: 315 start-page: 311 year: 1985 ident: 10.1016/j.isci.2021.102966_bib72 article-title: Structure of the ammonia synthesis catalyst publication-title: Nature doi: 10.1038/315311a0 – volume: 46 start-page: 15671 year: 2021 ident: 10.1016/j.isci.2021.102966_bib23 article-title: Large-scale compressed hydrogen storage as part of renewable electricity storage systems publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2021.02.080 – year: 2014 ident: 10.1016/j.isci.2021.102966_bib91 – year: 2017 ident: 10.1016/j.isci.2021.102966_bib2 – volume: 45 start-page: 32089 year: 2020 ident: 10.1016/j.isci.2021.102966_bib82 article-title: Natural liquid organic hydrogen carrier with low dehydrogenation energy: a first principles study publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2020.08.143 – volume: 42 start-page: 12339 year: 2017 ident: 10.1016/j.isci.2021.102966_bib14 article-title: Process optimization for large-scale hydrogen liquefaction publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2017.03.167 – volume: 2 start-page: 1 year: 2017 ident: 10.1016/j.isci.2021.102966_bib78 article-title: The future cost of electrical energy storage based on experience rates publication-title: Nat. Energ. doi: 10.1038/nenergy.2017.110 – year: 2018 ident: 10.1016/j.isci.2021.102966_bib47 – volume: 44 start-page: 3580 year: 2019 ident: 10.1016/j.isci.2021.102966_bib50 article-title: Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2018.12.024 – start-page: 110511 year: 2020 ident: 10.1016/j.isci.2021.102966_bib74 article-title: The water footprint of carbon capture and storage technologies publication-title: Renew. Sustain. Energ. Rev. – start-page: 1 year: 2006 ident: 10.1016/j.isci.2021.102966_bib67 article-title: Hydrogen storage by reversible hydrogenation of pi-conjugated substrates publication-title: United States Patent – volume: 185 start-page: 320 year: 2017 ident: 10.1016/j.isci.2021.102966_bib25 article-title: Model-based techno-economic evaluation of an electricity storage system based on Liquid Organic Hydrogen Carriers publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2016.10.068 – year: 2021 ident: 10.1016/j.isci.2021.102966_bib15 – volume: 200 start-page: 290 year: 2017 ident: 10.1016/j.isci.2021.102966_bib73 article-title: Seasonal storage and alternative carriers: a flexible hydrogen supply chain model publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2017.05.050 – volume: 39 start-page: 426 year: 2014 ident: 10.1016/j.isci.2021.102966_bib52 article-title: An overview of current status of carbon dioxide capture and storage technologies publication-title: Renew. Sustain. Energ. Rev. doi: 10.1016/j.rser.2014.07.093 – year: 2021 ident: 10.1016/j.isci.2021.102966_bib92 – year: 2012 ident: 10.1016/j.isci.2021.102966_bib88 – volume: 29 start-page: 657 year: 2012 ident: 10.1016/j.isci.2021.102966_bib96 article-title: Storage system of renewable energy generated hydrogen for chemical industry publication-title: Energ. Proced. doi: 10.1016/j.egypro.2012.09.076 – volume: 4 start-page: 1186 year: 2020 ident: 10.1016/j.isci.2021.102966_bib56 article-title: A roadmap to the ammonia economy publication-title: Joule doi: 10.1016/j.joule.2020.04.004 – volume: 44 start-page: 6631 year: 2019 ident: 10.1016/j.isci.2021.102966_bib61 article-title: Liquid organic hydrogen carrier (LOHC)–Assessment based on chemical and economic properties publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2019.01.199 – year: 2019 ident: 10.1016/j.isci.2021.102966_bib41 – volume: 7 start-page: 229 year: 2014 ident: 10.1016/j.isci.2021.102966_bib12 article-title: Evaluation of industrially applied heat-transfer fluids as liquid organic hydrogen carrier systems publication-title: ChemSusChem doi: 10.1002/cssc.201300426 – volume: 116 start-page: 7421 year: 2012 ident: 10.1016/j.isci.2021.102966_bib22 article-title: Comparative study of catalytic hydrogenation of 9-ethylcarbazole for hydrogen storage over noble metal surfaces publication-title: J. Phys. Chem. C doi: 10.1021/jp212249g – year: 2020 ident: 10.1016/j.isci.2021.102966_bib43 – volume: 37 start-page: 18118 year: 2012 ident: 10.1016/j.isci.2021.102966_bib84 article-title: Liquid Organic Hydrogen Carriers as an efficient vector for the transport and storage of renewable energy publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2012.08.066 – start-page: 1 year: 2020 ident: 10.1016/j.isci.2021.102966_bib42 article-title: Ammonia to green hydrogen project publication-title: Feasibilty Study – year: 2013 ident: 10.1016/j.isci.2021.102966_bib64 – volume: 53 start-page: 10523 year: 2017 ident: 10.1016/j.isci.2021.102966_bib13 article-title: Learning curve for seawater reverse osmosis desalination plants: capital cost trend of the past, present, and future publication-title: Water Resour. Res. doi: 10.1002/2017WR021402 – volume: 45 start-page: 34927 year: 2020 ident: 10.1016/j.isci.2021.102966_bib6 article-title: Technical assessment of liquefied natural gas, ammonia and methanol for overseas energy transport based on energy and exergy analyses publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2020.04.181 – volume: 8 start-page: 445 year: 2017 ident: 10.1016/j.isci.2021.102966_bib69 article-title: Hydrogen storage technologies for future energy systems publication-title: Annu. Rev. Chem. Biomol. Eng. doi: 10.1146/annurev-chembioeng-060816-101334 – volume: 7 start-page: 5975 year: 2019 ident: 10.1016/j.isci.2021.102966_bib100 article-title: Efficient ammonia decomposition in a catalytic membrane reactor to enable hydrogen storage and utilization publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b06065 – start-page: 1 year: 2009 ident: 10.1016/j.isci.2021.102966_bib30 article-title: DOE hydrogen and fuel cells program record – volume: 52 start-page: 1791 year: 2015 ident: 10.1016/j.isci.2021.102966_bib4 article-title: Solar hydrogen hybrid energy systems for off-grid electricity supply: a critical review publication-title: Renew. Sustain. Energ. Rev. doi: 10.1016/j.rser.2015.08.011 – volume: 10 start-page: 1652 year: 2017 ident: 10.1016/j.isci.2021.102966_bib46 article-title: Hydrogen storage using a hot pressure swing reactor publication-title: Energ. Environ. Sci. doi: 10.1039/C7EE00476A – year: 2013 ident: 10.1016/j.isci.2021.102966_bib57 – volume: 10 start-page: 4329 year: 2018 ident: 10.1016/j.isci.2021.102966_bib44 article-title: Charging a liquid organic hydrogen carrier system with H2/CO2 gas mixtures publication-title: ChemCatChem doi: 10.1002/cctc.201800960 – start-page: 1 year: 2014 ident: 10.1016/j.isci.2021.102966_bib85 article-title: Storage of highly compressed gases in underground Lined Rock Caverns–More than 10 years of experience – year: 2021 ident: 10.1016/j.isci.2021.102966_bib19 – year: 2021 ident: 10.1016/j.isci.2021.102966_bib8 – volume: 74 start-page: 281 year: 2002 ident: 10.1016/j.isci.2021.102966_bib65 article-title: Characteristics of Al-MCM-41 supported Pt catalysts: effect of Al distribution in Al-MCM-41 on its catalytic activity in naphthalene hydrogenation publication-title: Catal. Today doi: 10.1016/S0920-5861(02)00024-X – start-page: 77 year: 2019 ident: 10.1016/j.isci.2021.102966_bib3 article-title: Single and polystorage technologies for renewable-based hybrid energy systems – volume: 1 start-page: 79 year: 2008 ident: 10.1016/j.isci.2021.102966_bib77 article-title: Hydrogen nexus in a sustainable energy future publication-title: Energ. Environ. Sci. doi: 10.1039/b810104n – volume: 5 start-page: 9698 year: 2012 ident: 10.1016/j.isci.2021.102966_bib98 article-title: Liquid-phase chemical hydrogen storage materials publication-title: Energ. Environ. Sci. doi: 10.1039/c2ee22937d – volume: 5 start-page: 10231 year: 2017 ident: 10.1016/j.isci.2021.102966_bib32 article-title: Ammonia as a renewable energy transportation media publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b02219 – year: 2021 ident: 10.1016/j.isci.2021.102966_bib38 – volume: 4 start-page: 26 year: 2020 ident: 10.1016/j.isci.2021.102966_bib53 article-title: Paths to low-cost hydrogen energy at a scale for transportation applications in the USA and China via liquid-hydrogen distribution networks publication-title: Clean. Energ. doi: 10.1093/ce/zkz033 – year: 1990 ident: 10.1016/j.isci.2021.102966_bib55 – volume: 44 start-page: 11901 year: 2019 ident: 10.1016/j.isci.2021.102966_bib9 article-title: Large-scale storage of hydrogen publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2019.03.063 – start-page: 1 year: 2014 ident: 10.1016/j.isci.2021.102966_bib90 article-title: Fuel Cell Technologies Office Multi-Year Research – volume: 35 start-page: 11609 year: 2010 ident: 10.1016/j.isci.2021.102966_bib21 article-title: Hydrogenation of 9-ethylcarbazole as a prototype of a liquid hydrogen carrier publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2010.03.068 – volume: 27 start-page: 713 year: 2020 ident: 10.1016/j.isci.2021.102966_bib83 article-title: Development and progress on hydrogen metallurgy publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-020-2021-4 – volume: 2 start-page: 1573 year: 2018 ident: 10.1016/j.isci.2021.102966_bib48 article-title: A process for capturing CO2 from the atmosphere publication-title: Joule doi: 10.1016/j.joule.2018.05.006 – year: 1984 ident: 10.1016/j.isci.2021.102966_bib89 – volume: 41 start-page: 18062 year: 2016 ident: 10.1016/j.isci.2021.102966_bib95 article-title: Efficiency analysis of novel Liquid Organic Hydrogen Carrier technology and comparison with high pressure storage pathway publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2016.08.003 – volume: 39 start-page: 1570 year: 2016 ident: 10.1016/j.isci.2021.102966_bib49 article-title: Coupling of a liquid organic hydrogen carrier system with industrial heat publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201600180 – volume: 57 start-page: 38 year: 2013 ident: 10.1016/j.isci.2021.102966_bib94 article-title: Design and simulation of a methanol production plant from CO2 hydrogenation publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2013.06.008 – volume: 44 start-page: 12254 year: 2019 ident: 10.1016/j.isci.2021.102966_bib59 article-title: Hydrogen storage and delivery: review of the state of the art technologies and risk and reliability analysis publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2019.03.041 – volume: 120 start-page: 109620 year: 2020 ident: 10.1016/j.isci.2021.102966_bib5 article-title: Hydrogen as an energy vector publication-title: Renew. Sustain. Energ. Rev. doi: 10.1016/j.rser.2019.109620 – volume: 509 start-page: 152 year: 2011 ident: 10.1016/j.isci.2021.102966_bib99 article-title: Kinetics of 9-ethylcarbazole hydrogenation over Raney-Ni catalyst for hydrogen storage publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2010.09.012 – year: 1999 ident: 10.1016/j.isci.2021.102966_bib10 – volume: 50 start-page: 74 year: 2017 ident: 10.1016/j.isci.2021.102966_bib70 article-title: Liquid organic hydrogen carriers (LOHCs): toward a hydrogen-free hydrogen economy publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00474 |
| SSID | ssj0002002496 |
| Score | 2.5833206 |
| SecondaryResourceType | review_article |
| Snippet | Large-scale stationary hydrogen storage is critical if hydrogen is to fulfill its promise as a global energy carrier. While densified storage via compressed... |
| SourceID | doaj pubmedcentral proquest crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 102966 |
| SubjectTerms | Chemistry Energy flexibility Energy Resources Energy sustainability |
| Title | Large-scale stationary hydrogen storage via liquid organic hydrogen carriers |
| URI | https://dx.doi.org/10.1016/j.isci.2021.102966 https://www.proquest.com/docview/2568250813 https://pubmed.ncbi.nlm.nih.gov/PMC8382998 https://doaj.org/article/8f41dc5186a54c14968b077ac4051054 |
| Volume | 24 |
| WOSCitedRecordID | wos000698069100032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2589-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002002496 issn: 2589-0042 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1RVIleKlqoui2gVOqtinASe20fWwTisEI9FGlvluMPEYSyJdlF4t93bCewudAL18RJ7JlJ_J5m8gbgu668qeqqyL2f6xx3qDKXJdfIWm1FdEk19VFdf8GvrsRyKX9vtfoKNWFJHjgZ7lR4WljDCjHXjBrE83NRE861oSGcWFQCRdSzRaZuY3otSOHFznIs1ARhaA5_zKTirvDHK5LDsgjSBTJKJD7vSlG8f7I5bYHPaenk1l50sQ_vBxCZ_UyT_wA7rv0Ie2dj77YDWCxCgXfeowNc1qdsu-4es5tH260wZLJQE4lfkuyh0dldc79pbJb6O5nnMUZ3oZ1dfwjXF-d_zi7zoW9CbqgU65wjrzLWyFrUtawlcYR6bR1zpCaIjqx0JKjIe2eQLdEoUIg0hmviS-SU1FWfYLddte4zZMw4rhm3rDBIVGqirahw7XNPPJelpzMoRrspM4iKh94Wd2qsHrtVwdYq2FolW8_gx9M1f5OkxoujfwV3PI0MctjxAFpFDUGi_hckM2CjM9WALBJiwFs1Lz782-h5hR4MuRTdutWmV4gUkVsjnqpmwCchMZnp9Ezb3EQBb1EJRAHiy2ss7Su8CxPOY6LsCHbX3cYdw1vzsG767gTe8KU4ie_GP-T0EH4 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-scale+stationary+hydrogen+storage+via+liquid+organic+hydrogen+carriers&rft.jtitle=iScience&rft.au=Abdin%2C+Zainul&rft.au=Tang%2C+Chunguang&rft.au=Liu%2C+Yun&rft.au=Catchpole%2C+Kylie&rft.date=2021-09-24&rft.pub=Elsevier+Inc&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=24&rft.issue=9&rft_id=info:doi/10.1016%2Fj.isci.2021.102966&rft.externalDocID=S2589004221009342 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |