Large-scale stationary hydrogen storage via liquid organic hydrogen carriers

Large-scale stationary hydrogen storage is critical if hydrogen is to fulfill its promise as a global energy carrier. While densified storage via compressed gas and liquid hydrogen is currently the dominant approach, liquid organic molecules have emerged as a favorable storage medium because of thei...

Full description

Saved in:
Bibliographic Details
Published in:iScience Vol. 24; no. 9; p. 102966
Main Authors: Abdin, Zainul, Tang, Chunguang, Liu, Yun, Catchpole, Kylie
Format: Journal Article
Language:English
Published: Elsevier Inc 24.09.2021
Elsevier
Subjects:
ISSN:2589-0042, 2589-0042
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Large-scale stationary hydrogen storage is critical if hydrogen is to fulfill its promise as a global energy carrier. While densified storage via compressed gas and liquid hydrogen is currently the dominant approach, liquid organic molecules have emerged as a favorable storage medium because of their desirable properties, such as low cost and compatibility with existing fuel transport infrastructure. This perspective article analytically investigates hydrogenation systems' technical and economic prospects using liquid organic hydrogen carriers (LOHCs) to store hydrogen at a large scale compared to densified storage technologies and circular hydrogen carriers (mainly ammonia and methanol). Our analysis of major system components indicates that the capital cost for liquid hydrogen storage is more than two times that for the gaseous approach and four times that for the LOHC approach. Ammonia and methanol could be attractive options as hydrogen carriers at a large scale because of their compatibility with existing liquid fuel infrastructure. However, their synthesis and decomposition are energy and capital intensive compared to LOHCs. Together with other properties such as safety, these factors make LOHCs a possible option for large-scale stationary hydrogen storage. In addition, hydrogen transportation via various approaches is briefly discussed. We end our discussions by identifying important directions for future research on LOHCs. [Display omitted] Chemistry; Energy flexibility; Energy Resources; Energy sustainability
AbstractList Large-scale stationary hydrogen storage is critical if hydrogen is to fulfill its promise as a global energy carrier. While densified storage via compressed gas and liquid hydrogen is currently the dominant approach, liquid organic molecules have emerged as a favorable storage medium because of their desirable properties, such as low cost and compatibility with existing fuel transport infrastructure. This perspective article analytically investigates hydrogenation systems' technical and economic prospects using liquid organic hydrogen carriers (LOHCs) to store hydrogen at a large scale compared to densified storage technologies and circular hydrogen carriers (mainly ammonia and methanol). Our analysis of major system components indicates that the capital cost for liquid hydrogen storage is more than two times that for the gaseous approach and four times that for the LOHC approach. Ammonia and methanol could be attractive options as hydrogen carriers at a large scale because of their compatibility with existing liquid fuel infrastructure. However, their synthesis and decomposition are energy and capital intensive compared to LOHCs. Together with other properties such as safety, these factors make LOHCs a possible option for large-scale stationary hydrogen storage. In addition, hydrogen transportation via various approaches is briefly discussed. We end our discussions by identifying important directions for future research on LOHCs.Large-scale stationary hydrogen storage is critical if hydrogen is to fulfill its promise as a global energy carrier. While densified storage via compressed gas and liquid hydrogen is currently the dominant approach, liquid organic molecules have emerged as a favorable storage medium because of their desirable properties, such as low cost and compatibility with existing fuel transport infrastructure. This perspective article analytically investigates hydrogenation systems' technical and economic prospects using liquid organic hydrogen carriers (LOHCs) to store hydrogen at a large scale compared to densified storage technologies and circular hydrogen carriers (mainly ammonia and methanol). Our analysis of major system components indicates that the capital cost for liquid hydrogen storage is more than two times that for the gaseous approach and four times that for the LOHC approach. Ammonia and methanol could be attractive options as hydrogen carriers at a large scale because of their compatibility with existing liquid fuel infrastructure. However, their synthesis and decomposition are energy and capital intensive compared to LOHCs. Together with other properties such as safety, these factors make LOHCs a possible option for large-scale stationary hydrogen storage. In addition, hydrogen transportation via various approaches is briefly discussed. We end our discussions by identifying important directions for future research on LOHCs.
Large-scale stationary hydrogen storage is critical if hydrogen is to fulfill its promise as a global energy carrier. While densified storage via compressed gas and liquid hydrogen is currently the dominant approach, liquid organic molecules have emerged as a favorable storage medium because of their desirable properties, such as low cost and compatibility with existing fuel transport infrastructure. This perspective article analytically investigates hydrogenation systems' technical and economic prospects using liquid organic hydrogen carriers (LOHCs) to store hydrogen at a large scale compared to densified storage technologies and circular hydrogen carriers (mainly ammonia and methanol). Our analysis of major system components indicates that the capital cost for liquid hydrogen storage is more than two times that for the gaseous approach and four times that for the LOHC approach. Ammonia and methanol could be attractive options as hydrogen carriers at a large scale because of their compatibility with existing liquid fuel infrastructure. However, their synthesis and decomposition are energy and capital intensive compared to LOHCs. Together with other properties such as safety, these factors make LOHCs a possible option for large-scale stationary hydrogen storage. In addition, hydrogen transportation via various approaches is briefly discussed. We end our discussions by identifying important directions for future research on LOHCs. Chemistry; Energy flexibility; Energy Resources; Energy sustainability
Large-scale stationary hydrogen storage is critical if hydrogen is to fulfill its promise as a global energy carrier. While densified storage via compressed gas and liquid hydrogen is currently the dominant approach, liquid organic molecules have emerged as a favorable storage medium because of their desirable properties, such as low cost and compatibility with existing fuel transport infrastructure. This perspective article analytically investigates hydrogenation systems' technical and economic prospects using liquid organic hydrogen carriers (LOHCs) to store hydrogen at a large scale compared to densified storage technologies and circular hydrogen carriers (mainly ammonia and methanol). Our analysis of major system components indicates that the capital cost for liquid hydrogen storage is more than two times that for the gaseous approach and four times that for the LOHC approach. Ammonia and methanol could be attractive options as hydrogen carriers at a large scale because of their compatibility with existing liquid fuel infrastructure. However, their synthesis and decomposition are energy and capital intensive compared to LOHCs. Together with other properties such as safety, these factors make LOHCs a possible option for large-scale stationary hydrogen storage. In addition, hydrogen transportation via various approaches is briefly discussed. We end our discussions by identifying important directions for future research on LOHCs.
Large-scale stationary hydrogen storage is critical if hydrogen is to fulfill its promise as a global energy carrier. While densified storage via compressed gas and liquid hydrogen is currently the dominant approach, liquid organic molecules have emerged as a favorable storage medium because of their desirable properties, such as low cost and compatibility with existing fuel transport infrastructure. This perspective article analytically investigates hydrogenation systems' technical and economic prospects using liquid organic hydrogen carriers (LOHCs) to store hydrogen at a large scale compared to densified storage technologies and circular hydrogen carriers (mainly ammonia and methanol). Our analysis of major system components indicates that the capital cost for liquid hydrogen storage is more than two times that for the gaseous approach and four times that for the LOHC approach. Ammonia and methanol could be attractive options as hydrogen carriers at a large scale because of their compatibility with existing liquid fuel infrastructure. However, their synthesis and decomposition are energy and capital intensive compared to LOHCs. Together with other properties such as safety, these factors make LOHCs a possible option for large-scale stationary hydrogen storage. In addition, hydrogen transportation via various approaches is briefly discussed. We end our discussions by identifying important directions for future research on LOHCs. [Display omitted] Chemistry; Energy flexibility; Energy Resources; Energy sustainability
ArticleNumber 102966
Author Tang, Chunguang
Catchpole, Kylie
Liu, Yun
Abdin, Zainul
Author_xml – sequence: 1
  givenname: Zainul
  surname: Abdin
  fullname: Abdin, Zainul
  email: zainul.abdin@anu.edu.au
  organization: School of Engineering, the Australian National University, Canberra, Australia
– sequence: 2
  givenname: Chunguang
  orcidid: 0000-0002-1048-9087
  surname: Tang
  fullname: Tang, Chunguang
  email: chunguang.tang@anu.edu.au
  organization: Research School of Chemistry, the Australian National University, Canberra, Australia
– sequence: 3
  givenname: Yun
  surname: Liu
  fullname: Liu, Yun
  organization: Research School of Chemistry, the Australian National University, Canberra, Australia
– sequence: 4
  givenname: Kylie
  surname: Catchpole
  fullname: Catchpole, Kylie
  organization: School of Engineering, the Australian National University, Canberra, Australia
BookMark eNp9kUtr3DAUhUVJadI0f6ArL7vx9ErWE0qhhD4CA920ayFL144Gj5VInoH8-2rqlDZdBAQSV-d8HO55Tc7mNCMhbylsKFD5freJxccNA0brgBkpX5ALJrRpATg7--d9Tq5K2QEAq4cb-Yqcd5xLqbS5INutyyO2xbsJm7K4JabZ5Yfm9iHkNOJcZym7EZtjdM0U7w8xNCmPbo7-r8a7nCPm8oa8HNxU8OrxviQ_v3z-cf2t3X7_enP9adt6bvTSKmDSB2963femN4DABxdQIPTAOxEMQqe0HtBrRbmiXQ0NUjkYmFGaY3dJblZuSG5n73Lc18g2uWh_D2o-6_IS_YRWD5wGL6iWTnBPK0n3oJTzHAQFwSvr48q6O_R7DB7nJbvpCfTpzxxv7ZiOVneaGaMr4N0jIKf7A5bF7mszOE1uxnQolgmpmQBNuyrVq9TnVErGwfq4rryS42Qp2FO3dmdP3dpTt3bttlrZf9Y_CZ81fVhNWMs41oZsVeDsMcSMfqnbis_ZfwFXvL3v
CitedBy_id crossref_primary_10_1016_j_envres_2024_119606
crossref_primary_10_1016_j_jclepro_2024_140724
crossref_primary_10_3390_inorganics12120313
crossref_primary_10_1007_s13437_025_00365_w
crossref_primary_10_3390_ma16103735
crossref_primary_10_1007_s10311_022_01480_3
crossref_primary_10_1016_j_ijhydene_2024_06_240
crossref_primary_10_1016_j_renene_2025_122417
crossref_primary_10_3390_en17235820
crossref_primary_10_1016_j_matchemphys_2025_131252
crossref_primary_10_1016_j_ijhydene_2022_08_131
crossref_primary_10_1016_j_ijhydene_2024_03_310
crossref_primary_10_1002_ente_202401297
crossref_primary_10_1016_j_ijhydene_2023_12_114
crossref_primary_10_1016_j_rineng_2025_106031
crossref_primary_10_1016_j_cej_2023_145661
crossref_primary_10_1007_s12274_024_6876_y
crossref_primary_10_1016_j_ijhydene_2024_03_316
crossref_primary_10_1016_j_egyr_2023_08_072
crossref_primary_10_1016_j_ijhydene_2024_11_434
crossref_primary_10_1016_j_enconman_2024_118660
crossref_primary_10_1039_D3EE02695G
crossref_primary_10_1016_j_ijhydene_2023_03_312
crossref_primary_10_1016_j_energy_2024_132186
crossref_primary_10_1016_j_enconman_2022_116241
crossref_primary_10_3390_molecules29204938
crossref_primary_10_1016_j_ijhydene_2025_02_472
crossref_primary_10_1016_j_cej_2023_146629
crossref_primary_10_1039_D5CY00333D
crossref_primary_10_3390_en15155379
crossref_primary_10_1016_j_ijhydene_2024_11_278
crossref_primary_10_1016_j_rser_2025_116237
crossref_primary_10_1016_j_ijhydene_2023_04_103
crossref_primary_10_1016_j_fuel_2022_126301
crossref_primary_10_1016_j_ijhydene_2024_04_007
crossref_primary_10_1016_j_fuel_2022_124004
crossref_primary_10_3390_pr13061853
crossref_primary_10_1016_j_jclepro_2022_131339
crossref_primary_10_1016_j_ijhydene_2023_07_204
crossref_primary_10_1002_bse_3482
crossref_primary_10_1002_aic_18149
crossref_primary_10_1016_j_ijhydene_2024_11_205
crossref_primary_10_1016_j_ecmx_2025_101251
crossref_primary_10_1016_j_ijhydene_2022_11_085
crossref_primary_10_3390_en18092204
crossref_primary_10_1016_j_jgsce_2025_205759
crossref_primary_10_1016_j_ijhydene_2022_11_126
crossref_primary_10_1016_j_rser_2022_112764
crossref_primary_10_1007_s10669_023_09932_z
crossref_primary_10_3390_su16208839
crossref_primary_10_1016_j_energy_2023_128501
crossref_primary_10_1016_j_cogsc_2023_100836
crossref_primary_10_1016_j_apcatb_2023_122482
crossref_primary_10_1016_j_fuel_2024_132045
crossref_primary_10_1016_j_ijhydene_2024_02_151
crossref_primary_10_3390_pr12102182
crossref_primary_10_1080_15567036_2023_2175938
crossref_primary_10_1016_j_gce_2025_05_001
crossref_primary_10_1016_j_mtcomm_2025_112753
crossref_primary_10_1016_j_rser_2024_114572
crossref_primary_10_1016_j_ijhydene_2024_05_182
crossref_primary_10_1016_j_compchemeng_2025_109120
crossref_primary_10_1016_j_enconman_2023_117856
crossref_primary_10_1016_j_est_2025_116710
crossref_primary_10_1016_j_ijhydene_2023_09_021
crossref_primary_10_1016_j_segan_2025_101868
crossref_primary_10_1016_j_renene_2025_123562
crossref_primary_10_1016_j_apenergy_2024_124015
crossref_primary_10_1016_j_ijhydene_2022_09_078
crossref_primary_10_1016_j_jclepro_2022_134347
crossref_primary_10_1016_j_jclepro_2024_143492
crossref_primary_10_1016_j_energy_2022_123660
crossref_primary_10_1002_er_7604
crossref_primary_10_1016_j_ijhydene_2024_09_319
crossref_primary_10_1016_j_commatsci_2023_112373
crossref_primary_10_1016_j_est_2023_107604
crossref_primary_10_1016_j_crsus_2023_100007
crossref_primary_10_1186_s10033_024_01133_2
crossref_primary_10_32604_cmes_2023_026035
crossref_primary_10_3390_catal13020334
crossref_primary_10_3390_fire7070233
crossref_primary_10_1016_j_apcatb_2022_121802
crossref_primary_10_1021_acs_energyfuels_4c06109
crossref_primary_10_1016_j_ijhydene_2022_06_038
crossref_primary_10_1016_j_rser_2025_115451
crossref_primary_10_1016_j_renene_2024_122223
crossref_primary_10_1039_D3CY01568H
crossref_primary_10_3390_en16083321
crossref_primary_10_1016_j_ijhydene_2023_05_072
crossref_primary_10_3390_en18051231
crossref_primary_10_1016_j_ijhydene_2025_01_067
crossref_primary_10_1016_j_jpowsour_2022_232397
crossref_primary_10_3390_hydrogen4010004
crossref_primary_10_1016_j_ijhydene_2024_12_155
crossref_primary_10_1016_j_ijhydene_2025_01_344
crossref_primary_10_3390_en17164070
crossref_primary_10_1007_s10098_024_03015_6
crossref_primary_10_1016_j_apenergy_2024_124009
crossref_primary_10_1016_j_ijhydene_2022_04_275
crossref_primary_10_1016_j_ijhydene_2023_01_346
crossref_primary_10_1016_j_oreoa_2025_100087
crossref_primary_10_1016_j_jece_2025_118197
crossref_primary_10_1109_ACCESS_2024_3471912
crossref_primary_10_1016_j_ijhydene_2024_12_038
crossref_primary_10_3390_polym17162178
crossref_primary_10_1016_j_jallcom_2022_168618
crossref_primary_10_3390_molecules29081767
crossref_primary_10_1039_D3SE00099K
crossref_primary_10_1016_j_ijhydene_2024_11_197
crossref_primary_10_1016_j_ijhydene_2022_03_051
crossref_primary_10_3390_reactions5010008
crossref_primary_10_1016_j_enconman_2022_116326
crossref_primary_10_1016_j_ijhydene_2025_150558
crossref_primary_10_1002_adfm_202107672
crossref_primary_10_1016_j_fuel_2024_131899
crossref_primary_10_1016_j_ijhydene_2025_01_196
crossref_primary_10_1016_j_uncres_2025_100235
crossref_primary_10_1016_j_jpowsour_2022_232304
crossref_primary_10_1007_s11814_025_00507_z
crossref_primary_10_1007_s12274_022_4265_y
crossref_primary_10_1016_j_ijhydene_2022_12_305
crossref_primary_10_1016_j_est_2023_108404
crossref_primary_10_1088_1755_1315_1011_1_012001
crossref_primary_10_1016_j_energ_2025_100028
crossref_primary_10_1016_j_cattod_2024_114828
crossref_primary_10_1016_j_nanoen_2023_108373
crossref_primary_10_1016_j_ijhydene_2025_05_216
crossref_primary_10_3390_en15031054
crossref_primary_10_1002_cctc_202300947
crossref_primary_10_1016_j_enconman_2024_118873
crossref_primary_10_1016_j_isci_2023_108512
crossref_primary_10_1016_j_ijhydene_2024_05_096
crossref_primary_10_1016_j_enconman_2025_120070
crossref_primary_10_1039_D4SE00449C
crossref_primary_10_1063_5_0259105
crossref_primary_10_1039_D3CY00881A
crossref_primary_10_1016_j_ijhydene_2023_04_214
crossref_primary_10_1016_j_jpowsour_2024_234797
crossref_primary_10_1134_S0965544123060257
crossref_primary_10_3390_en16041743
crossref_primary_10_1016_j_ijhydene_2024_01_206
crossref_primary_10_1016_j_ijhydene_2025_04_371
crossref_primary_10_1016_j_ijhydene_2022_05_209
crossref_primary_10_1016_j_ijhydene_2024_10_045
crossref_primary_10_1016_j_biortech_2024_130753
crossref_primary_10_1016_j_cep_2022_109187
crossref_primary_10_1016_j_ijhydene_2023_11_232
crossref_primary_10_3390_ma15228239
crossref_primary_10_1016_j_cej_2025_168218
crossref_primary_10_1016_j_jece_2023_109992
crossref_primary_10_1016_j_rser_2024_114536
crossref_primary_10_1007_s43937_025_00082_8
crossref_primary_10_1016_j_rser_2022_112556
crossref_primary_10_1021_acssuschemeng_4c08647
crossref_primary_10_1016_j_ijhydene_2024_03_140
crossref_primary_10_1016_j_jclepro_2023_139616
crossref_primary_10_1016_j_est_2023_108787
crossref_primary_10_1016_j_ijhydene_2024_03_146
crossref_primary_10_3390_catal12101260
crossref_primary_10_3390_en15072507
crossref_primary_10_1016_j_jechem_2024_05_022
crossref_primary_10_1002_aesr_202400132
Cites_doi 10.1016/S1381-1169(03)00025-6
10.1016/j.fuel.2012.12.025
10.1016/j.ijhydene.2018.09.083
10.1016/j.apcata.2005.01.010
10.1039/C8EE02700E
10.1016/j.electacta.2013.10.190
10.3389/fenrg.2014.00001
10.1016/j.scitotenv.2020.143203
10.1002/cssc.201600435
10.1021/acs.jced.5b00679
10.1063/1.4985090
10.1016/j.jclepro.2019.03.086
10.1016/j.ijhydene.2020.12.213
10.1016/S0360-3199(02)00250-1
10.1016/j.ijhydene.2012.12.010
10.1002/cssc.201300263
10.1016/S1369-7021(03)00922-2
10.1016/j.rser.2019.109629
10.1016/j.ijhydene.2016.05.244
10.1016/j.jcat.2004.12.013
10.1016/j.egypro.2017.03.1155
10.1016/j.jpowsour.2018.04.011
10.1021/acs.energyfuels.9b00296
10.1016/j.rser.2014.11.093
10.1016/j.apenergy.2014.09.081
10.1016/j.apenergy.2015.07.067
10.1002/ente.201700446
10.1002/ente.201800499
10.1038/315311a0
10.1016/j.ijhydene.2021.02.080
10.1016/j.ijhydene.2020.08.143
10.1016/j.ijhydene.2017.03.167
10.1038/nenergy.2017.110
10.1016/j.ijhydene.2018.12.024
10.1016/j.apenergy.2016.10.068
10.1016/j.apenergy.2017.05.050
10.1016/j.rser.2014.07.093
10.1016/j.egypro.2012.09.076
10.1016/j.joule.2020.04.004
10.1016/j.ijhydene.2019.01.199
10.1002/cssc.201300426
10.1021/jp212249g
10.1016/j.ijhydene.2012.08.066
10.1002/2017WR021402
10.1016/j.ijhydene.2020.04.181
10.1146/annurev-chembioeng-060816-101334
10.1021/acssuschemeng.8b06065
10.1016/j.rser.2015.08.011
10.1039/C7EE00476A
10.1002/cctc.201800960
10.1016/S0920-5861(02)00024-X
10.1039/b810104n
10.1039/c2ee22937d
10.1021/acssuschemeng.7b02219
10.1093/ce/zkz033
10.1016/j.ijhydene.2019.03.063
10.1016/j.ijhydene.2010.03.068
10.1007/s12613-020-2021-4
10.1016/j.joule.2018.05.006
10.1016/j.ijhydene.2016.08.003
10.1002/ceat.201600180
10.1016/j.jclepro.2013.06.008
10.1016/j.ijhydene.2019.03.041
10.1016/j.rser.2019.109620
10.1016/j.jallcom.2010.09.012
10.1021/acs.accounts.6b00474
ContentType Journal Article
Copyright 2021 The Author(s)
2021 The Author(s).
2021 The Author(s) 2021
Copyright_xml – notice: 2021 The Author(s)
– notice: 2021 The Author(s).
– notice: 2021 The Author(s) 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.isci.2021.102966
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2589-0042
ExternalDocumentID oai_doaj_org_article_8f41dc5186a54c14968b077ac4051054
PMC8382998
10_1016_j_isci_2021_102966
S2589004221009342
GroupedDBID 0SF
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
7X8
5PM
ID FETCH-LOGICAL-c498t-7026cdc9b8bb9b90e04fade5e0b0435d9e03788fec8714713496067a0f29784e3
IEDL.DBID DOA
ISICitedReferencesCount 187
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000698069100032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2589-0042
IngestDate Fri Oct 03 12:52:03 EDT 2025
Tue Sep 30 15:24:58 EDT 2025
Fri Jul 11 10:13:53 EDT 2025
Wed Nov 12 18:35:32 EST 2025
Tue Nov 18 22:42:16 EST 2025
Tue Jul 25 21:02:43 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Chemistry
Energy flexibility
Energy sustainability
Energy Resources
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-7026cdc9b8bb9b90e04fade5e0b0435d9e03788fec8714713496067a0f29784e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1048-9087
OpenAccessLink https://doaj.org/article/8f41dc5186a54c14968b077ac4051054
PMID 34466789
PQID 2568250813
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_8f41dc5186a54c14968b077ac4051054
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8382998
proquest_miscellaneous_2568250813
crossref_citationtrail_10_1016_j_isci_2021_102966
crossref_primary_10_1016_j_isci_2021_102966
elsevier_sciencedirect_doi_10_1016_j_isci_2021_102966
PublicationCentury 2000
PublicationDate 2021-09-24
PublicationDateYYYYMMDD 2021-09-24
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-24
  day: 24
PublicationDecade 2020
PublicationTitle iScience
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References MacFarlane, Cherepanov, Choi, Suryanto, Hodgetts, Bakker, Ferrero Vallana, Simonov (bib56) 2020; 4
Moradi, Groth (bib59) 2019; 44
Langmi, Ren, North, Mathe, Bessarabov (bib51) 2014; 128
Yadav, Xu (bib98) 2012; 5
Giddey, Badwal, Munnings, Dolan (bib32) 2017; 5
(bib24) 2020
(bib31) 2020
Park, Yim, Ihm (bib65) 2002; 74
Gahleitner (bib28) 2013; 38
Caldera, Breyer (bib13) 2017; 53
Boisen, Dahl, Nørskov, Christensen (bib11) 2005; 230
Stark, Keil, Schug, Müller, Wasserscheid, Arlt (bib81) 2016; 61
Kan, Shibata (bib47) 2018
Pérez-Fortes, Schöneberger, Boulamanti, Tzimas (bib66) 2016; 161
(bib41) 2019
Okada, Shimura (bib64) 2013
Rusman, Dahari (bib76) 2016; 41
Abdin, Webb, Gray (bib4) 2015; 52
Alibaba (bib8) 2021
Krieger, Müller, Arlt (bib49) 2016; 39
Hurskainen (bib37) 2019
Pez, Scott, Cooper, Cheng (bib67) 2006
Preuster, Alekseev, Wasserscheid (bib69) 2017; 8
(bib19) 2021
Abdin, Zafaranloo, Rafiee, Mérida, Lipiński, Khalilpour (bib5) 2020; 120
Modisha, Ouma, Garidzirai, Wasserscheid, Bessarabov (bib58) 2019; 33
Eypasch, Schimpe, Kanwar, Hartmann, Herzog, Frank, Hamacher (bib25) 2017; 185
(bib92) 2021
John (bib43) 2020
Sartbaeva, Kuznetsov, Wells, Edwards (bib77) 2008; 1
Gardiner (bib30) 2009
Jorschick, Bösmann, Preuster, Wasserscheid (bib44) 2018; 10
Tengborg, Johansson, Durup (bib85) 2014
Teichmann, Arlt, Wasserscheid (bib84) 2012; 37
Gleichweit, Amende, Schernich, Zhao, Lorenz, Höfert, Brückner, Wasserscheid, Libuda, Steinrück, Papp (bib33) 2013; 6
Schmidt, Hawkes, Gambhir, Staffell (bib78) 2017; 2
Niermann, Beckendorff, Kaltschmitt, Bonhoff (bib61) 2019; 44
Züttel (bib101) 2003; 6
Brückner, Obesser, Bösmann, Bösmann, Teichmann, Arlt, Dungs, Wasserscheid (bib12) 2014; 7
Ulrich (bib89) 1984
Albertazzi, Ganzerla, Gobbi, Lenarda, Mandreoli, Salatelli, Savini, Storaro, Vaccari (bib7) 2003; 200
Li, Allen, Stager, Ku (bib53) 2020; 4
Fasihi, Efimova, Breyer (bib26) 2019; 224
Wilberforce, Olabi, Sayed, Elsaid, Abdelkareem (bib97) 2020; 761
Eblagon, Rentsch, Friedrichs, Remhof, Zuettel, Ramirez-Cuesta, Tsang (bib21) 2010; 35
Tang, Fei, Lin, Liu (bib82) 2020; 45
Ye, An, Xu (bib99) 2011; 509
Sharma, Ghoshal (bib79) 2015; 43
M Walas (bib55) 1990
Rosa, Sanchez, Realmonte, Baldocchi, D’Odorico (bib74) 2020
Van-Dal, Bouallou (bib94) 2013; 57
Garagounis, Kyriakou, Skodra, Vasileiou, Stoukides (bib29) 2014; 2
Morgan (bib60) 2013
Rüde, Bösmann, Preuster, Wasserscheid, Arlt, Müller (bib75) 2018; 6
Wang, Zhou, Ouyang (bib95) 2016; 41
Abdin (bib2) 2017
Cardella, Decker, Sundberg, Klein (bib14) 2017; 42
(bib40) 2019
Collodi (bib17) 2010; 19
Luo, Wang, Dooner, Clarke (bib54) 2015; 137
(bib90) 2014
Appl (bib10) 1999
Thomas, Parks (bib87) 2006
Zhang, Liguori, Fuerst, Way, Wolden (bib100) 2019; 7
Abdin, Khalilpour (bib3) 2019
Collodi, Azzaro, Ferrari, Santos (bib18) 2017; 114
(bib38) 2021
(bib86) 2021
Lamb, Dolan, Kennedy (bib50) 2019; 44
Jorschick, Dürr, Preuster, Bösmann, Wasserscheid (bib45) 2019; 7
(bib16) 2019
Nyári (bib63) 2018
Hodoshima, Arai, Takaiwa, Saito (bib35) 2003; 28
Hodoshima, Takaiwa, Shono, Satoh, Saito (bib36) 2005; 283
Niermann, Drünert, Kaltschmitt, Bonhoff (bib62) 2019; 12
(bib15) 2021
Shi, Qi, Qu, Che, Yi, Yang (bib80) 2019; 44
(bib91) 2014
Pfromm (bib68) 2017; 9
Elberry, Thakur, Santasalo-Aarnio, Larmi (bib23) 2021; 46
Wang, Kowal, Leuthold, Sauer (bib96) 2012; 29
Van-Dal, Bouallou (bib93) 2012; 29
Al-Breiki, Bicer (bib6) 2020; 45
He, Wang, Miao, Li, Wu, Fang (bib34) 2013; 106
Gabrielli, Poluzzi, Kramer, Spiers, Mazzotti, Gazzani (bib27) 2020; 121
Raab, Maier, Dietrich (bib71) 2021; 46
(bib39) 2021
Leung, Caramanna, Maroto-Valer (bib52) 2014; 39
Andersson, Grönkvist (bib9) 2019; 44
Rayment, Schlögl, Thomas, Ertl (bib72) 1985; 315
Aakko-Saksa, Cook, Kiviaho, Repo (bib1) 2018; 396
Preuster, Papp, Wasserscheid (bib70) 2017; 50
(bib57) 2013
Jackson, Fothergill, Gray, Haroon, Davenne, Greenwood, Huddart, Makepeace, Wood, David (bib42) 2020
Eblagon, Tam, Yu, Tsang (bib22) 2012; 116
Jorschick, Preuster, Dürr, Seidel, Müller, Bösmann, Wasserscheid (bib46) 2017; 10
Reuß, Grube, Robinius, Preuster, Wasserscheid, Stolten (bib73) 2017; 200
Towler, Sinnott (bib88) 2012
Tang, Chu, Li, Feng, Liu, Zhou (bib83) 2020; 27
Keith, Holmes, Angelo, Heidel (bib48) 2018; 2
Dürr, Müller, Jorschick, Helmin, Bösmann, Palkovits, Wasserscheid (bib20) 2017; 10
Wilberforce (10.1016/j.isci.2021.102966_bib97) 2020; 761
Van-Dal (10.1016/j.isci.2021.102966_bib94) 2013; 57
(10.1016/j.isci.2021.102966_bib91) 2014
(10.1016/j.isci.2021.102966_bib19) 2021
Niermann (10.1016/j.isci.2021.102966_bib61) 2019; 44
Nyári (10.1016/j.isci.2021.102966_bib63) 2018
Abdin (10.1016/j.isci.2021.102966_bib5) 2020; 120
M Walas (10.1016/j.isci.2021.102966_bib55) 1990
(10.1016/j.isci.2021.102966_bib41) 2019
Collodi (10.1016/j.isci.2021.102966_bib18) 2017; 114
Tang (10.1016/j.isci.2021.102966_bib83) 2020; 27
Aakko-Saksa (10.1016/j.isci.2021.102966_bib1) 2018; 396
Stark (10.1016/j.isci.2021.102966_bib81) 2016; 61
Preuster (10.1016/j.isci.2021.102966_bib69) 2017; 8
Dürr (10.1016/j.isci.2021.102966_bib20) 2017; 10
Gardiner (10.1016/j.isci.2021.102966_bib30) 2009
Thomas (10.1016/j.isci.2021.102966_bib87) 2006
Jorschick (10.1016/j.isci.2021.102966_bib44) 2018; 10
Okada (10.1016/j.isci.2021.102966_bib64) 2013
Hodoshima (10.1016/j.isci.2021.102966_bib35) 2003; 28
MacFarlane (10.1016/j.isci.2021.102966_bib56) 2020; 4
Eypasch (10.1016/j.isci.2021.102966_bib25) 2017; 185
Collodi (10.1016/j.isci.2021.102966_bib17) 2010; 19
Rayment (10.1016/j.isci.2021.102966_bib72) 1985; 315
Albertazzi (10.1016/j.isci.2021.102966_bib7) 2003; 200
(10.1016/j.isci.2021.102966_bib57) 2013
(10.1016/j.isci.2021.102966_bib24) 2020
Schmidt (10.1016/j.isci.2021.102966_bib78) 2017; 2
(10.1016/j.isci.2021.102966_bib40) 2019
Langmi (10.1016/j.isci.2021.102966_bib51) 2014; 128
Pérez-Fortes (10.1016/j.isci.2021.102966_bib66) 2016; 161
Towler (10.1016/j.isci.2021.102966_bib88) 2012
Jackson (10.1016/j.isci.2021.102966_bib42) 2020
Van-Dal (10.1016/j.isci.2021.102966_bib93) 2012; 29
Park (10.1016/j.isci.2021.102966_bib65) 2002; 74
Jorschick (10.1016/j.isci.2021.102966_bib45) 2019; 7
Abdin (10.1016/j.isci.2021.102966_bib4) 2015; 52
Raab (10.1016/j.isci.2021.102966_bib71) 2021; 46
He (10.1016/j.isci.2021.102966_bib34) 2013; 106
Niermann (10.1016/j.isci.2021.102966_bib62) 2019; 12
Boisen (10.1016/j.isci.2021.102966_bib11) 2005; 230
Moradi (10.1016/j.isci.2021.102966_bib59) 2019; 44
Abdin (10.1016/j.isci.2021.102966_bib3) 2019
Yadav (10.1016/j.isci.2021.102966_bib98) 2012; 5
Hurskainen (10.1016/j.isci.2021.102966_bib37) 2019
Ulrich (10.1016/j.isci.2021.102966_bib89) 1984
Abdin (10.1016/j.isci.2021.102966_bib2) 2017
Pez (10.1016/j.isci.2021.102966_bib67) 2006
Reuß (10.1016/j.isci.2021.102966_bib73) 2017; 200
(10.1016/j.isci.2021.102966_bib92) 2021
John (10.1016/j.isci.2021.102966_bib43) 2020
Ye (10.1016/j.isci.2021.102966_bib99) 2011; 509
Sharma (10.1016/j.isci.2021.102966_bib79) 2015; 43
Wang (10.1016/j.isci.2021.102966_bib96) 2012; 29
Rosa (10.1016/j.isci.2021.102966_bib74) 2020
Caldera (10.1016/j.isci.2021.102966_bib13) 2017; 53
Li (10.1016/j.isci.2021.102966_bib53) 2020; 4
Gahleitner (10.1016/j.isci.2021.102966_bib28) 2013; 38
Luo (10.1016/j.isci.2021.102966_bib54) 2015; 137
Cardella (10.1016/j.isci.2021.102966_bib14) 2017; 42
Leung (10.1016/j.isci.2021.102966_bib52) 2014; 39
Züttel (10.1016/j.isci.2021.102966_bib101) 2003; 6
Al-Breiki (10.1016/j.isci.2021.102966_bib6) 2020; 45
Elberry (10.1016/j.isci.2021.102966_bib23) 2021; 46
Alibaba (10.1016/j.isci.2021.102966_bib8) 2021
Giddey (10.1016/j.isci.2021.102966_bib32) 2017; 5
(10.1016/j.isci.2021.102966_bib90) 2014
Pfromm (10.1016/j.isci.2021.102966_bib68) 2017; 9
Andersson (10.1016/j.isci.2021.102966_bib9) 2019; 44
Appl (10.1016/j.isci.2021.102966_bib10) 1999
Tang (10.1016/j.isci.2021.102966_bib82) 2020; 45
Gabrielli (10.1016/j.isci.2021.102966_bib27) 2020; 121
Krieger (10.1016/j.isci.2021.102966_bib49) 2016; 39
Wang (10.1016/j.isci.2021.102966_bib95) 2016; 41
Tengborg (10.1016/j.isci.2021.102966_bib85) 2014
Modisha (10.1016/j.isci.2021.102966_bib58) 2019; 33
Teichmann (10.1016/j.isci.2021.102966_bib84) 2012; 37
Brückner (10.1016/j.isci.2021.102966_bib12) 2014; 7
Kan (10.1016/j.isci.2021.102966_bib47) 2018
Fasihi (10.1016/j.isci.2021.102966_bib26) 2019; 224
Eblagon (10.1016/j.isci.2021.102966_bib21) 2010; 35
Preuster (10.1016/j.isci.2021.102966_bib70) 2017; 50
Garagounis (10.1016/j.isci.2021.102966_bib29) 2014; 2
Zhang (10.1016/j.isci.2021.102966_bib100) 2019; 7
Sartbaeva (10.1016/j.isci.2021.102966_bib77) 2008; 1
Morgan (10.1016/j.isci.2021.102966_bib60) 2013
(10.1016/j.isci.2021.102966_bib16) 2019
Hodoshima (10.1016/j.isci.2021.102966_bib36) 2005; 283
Lamb (10.1016/j.isci.2021.102966_bib50) 2019; 44
Keith (10.1016/j.isci.2021.102966_bib48) 2018; 2
Jorschick (10.1016/j.isci.2021.102966_bib46) 2017; 10
(10.1016/j.isci.2021.102966_bib15) 2021
Eblagon (10.1016/j.isci.2021.102966_bib22) 2012; 116
(10.1016/j.isci.2021.102966_bib31) 2020
Rüde (10.1016/j.isci.2021.102966_bib75) 2018; 6
Gleichweit (10.1016/j.isci.2021.102966_bib33) 2013; 6
(10.1016/j.isci.2021.102966_bib38) 2021
Rusman (10.1016/j.isci.2021.102966_bib76) 2016; 41
Shi (10.1016/j.isci.2021.102966_bib80) 2019; 44
References_xml – volume: 315
  start-page: 311
  year: 1985
  end-page: 313
  ident: bib72
  article-title: Structure of the ammonia synthesis catalyst
  publication-title: Nature
– volume: 5
  start-page: 9698
  year: 2012
  end-page: 9725
  ident: bib98
  article-title: Liquid-phase chemical hydrogen storage materials
  publication-title: Energ. Environ. Sci.
– year: 2021
  ident: bib92
  article-title: Strategic Petroleum Reserve
– volume: 230
  start-page: 309
  year: 2005
  end-page: 312
  ident: bib11
  article-title: Why the optimal ammonia synthesis catalyst is not the optimal ammonia decomposition catalyst
  publication-title: J. Catal.
– volume: 509
  start-page: 152
  year: 2011
  end-page: 156
  ident: bib99
  article-title: Kinetics of 9-ethylcarbazole hydrogenation over Raney-Ni catalyst for hydrogen storage
  publication-title: J. Alloys Compd.
– start-page: 1
  year: 2009
  end-page: 6
  ident: bib30
  article-title: DOE hydrogen and fuel cells program record
  publication-title: Energy Requirements for Hydrogen Gas Compression and Liquefaction as Related to Vehicle Storage Needs
– year: 2021
  ident: bib86
  article-title: Low cost renewable energy for local and export markets
– volume: 27
  start-page: 713
  year: 2020
  end-page: 723
  ident: bib83
  article-title: Development and progress on hydrogen metallurgy
  publication-title: Int. J. Miner. Metall. Mater.
– volume: 2
  start-page: 1
  year: 2014
  ident: bib29
  article-title: Electrochemical synthesis of ammonia in solid electrolyte cells
  publication-title: Front. Energ. Res.
– volume: 28
  start-page: 1255
  year: 2003
  end-page: 1262
  ident: bib35
  article-title: Catalytic decalin dehydrogenation/naphthalene hydrogenation pair as a hydrogen source for fuel-cell vehicle
  publication-title: Int. J. Hydrogen Energ.
– volume: 200
  start-page: 290
  year: 2017
  end-page: 302
  ident: bib73
  article-title: Seasonal storage and alternative carriers: a flexible hydrogen supply chain model
  publication-title: Appl. Energ.
– volume: 120
  start-page: 109620
  year: 2020
  ident: bib5
  article-title: Hydrogen as an energy vector
  publication-title: Renew. Sustain. Energ. Rev.
– volume: 37
  start-page: 18118
  year: 2012
  end-page: 18132
  ident: bib84
  article-title: Liquid Organic Hydrogen Carriers as an efficient vector for the transport and storage of renewable energy
  publication-title: Int. J. Hydrogen Energ.
– volume: 8
  start-page: 445
  year: 2017
  end-page: 471
  ident: bib69
  article-title: Hydrogen storage technologies for future energy systems
  publication-title: Annu. Rev. Chem. Biomol. Eng.
– volume: 61
  start-page: 1441
  year: 2016
  end-page: 1448
  ident: bib81
  article-title: Melting points of potential liquid organic hydrogen carrier systems consisting of N-alkylcarbazoles
  publication-title: J. Chem. Eng. Data
– volume: 50
  start-page: 74
  year: 2017
  end-page: 85
  ident: bib70
  article-title: Liquid organic hydrogen carriers (LOHCs): toward a hydrogen-free hydrogen economy
  publication-title: Acc. Chem. Res.
– volume: 44
  start-page: 5345
  year: 2019
  end-page: 5354
  ident: bib80
  article-title: Integration of hydrogenation and dehydrogenation based on dibenzyltoluene as liquid organic hydrogen energy carrier
  publication-title: Int. J. Hydrogen Energ.
– volume: 761
  start-page: 143203
  year: 2020
  ident: bib97
  article-title: Progress in carbon capture technologies
  publication-title: Sci. Total Environ.
– year: 1984
  ident: bib89
  article-title: A Guide to Chemical Engineering Process Design and Economics
– year: 2020
  ident: bib43
  article-title: World’s Largest Green Hydrogen Project Unveiled in saudi arabia
– volume: 57
  start-page: 38
  year: 2013
  end-page: 45
  ident: bib94
  article-title: Design and simulation of a methanol production plant from CO2 hydrogenation
  publication-title: J. Clean. Prod.
– start-page: 1
  year: 2014
  end-page: 29
  ident: bib90
  article-title: Fuel Cell Technologies Office Multi-Year Research
  publication-title: Development, and Demonstration Plan | 3.2 Hydrogen Delivery, 2015
– volume: 4
  start-page: 26
  year: 2020
  end-page: 47
  ident: bib53
  article-title: Paths to low-cost hydrogen energy at a scale for transportation applications in the USA and China via liquid-hydrogen distribution networks
  publication-title: Clean. Energ.
– volume: 52
  start-page: 1791
  year: 2015
  end-page: 1808
  ident: bib4
  article-title: Solar hydrogen hybrid energy systems for off-grid electricity supply: a critical review
  publication-title: Renew. Sustain. Energ. Rev.
– start-page: 1
  year: 2006
  end-page: 32
  ident: bib67
  article-title: Hydrogen storage by reversible hydrogenation of pi-conjugated substrates
  publication-title: United States Patent
– year: 2013
  ident: bib64
  article-title: Development of Large-Scale H2 Storage and Transportation Technology with Liquid Organic Hydrogen Carrier (LOHC)
– volume: 12
  start-page: 290
  year: 2019
  end-page: 307
  ident: bib62
  article-title: Liquid organic hydrogen carriers (LOHCs)–techno-economic analysis of LOHCs in a defined process chain
  publication-title: Energ. Environ. Sci.
– volume: 106
  start-page: 365
  year: 2013
  end-page: 371
  ident: bib34
  article-title: Hydrogenation of naphthalene over noble metal supported on mesoporous zeolite in the absence and presence of sulfur
  publication-title: Fuel
– volume: 41
  start-page: 12108
  year: 2016
  end-page: 12126
  ident: bib76
  article-title: A review on the current progress of metal hydrides material for solid-state hydrogen storage applications
  publication-title: Int. J. Hydrogen Energ.
– year: 2012
  ident: bib88
  article-title: Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design
– volume: 2
  start-page: 1573
  year: 2018
  end-page: 1594
  ident: bib48
  article-title: A process for capturing CO2 from the atmosphere
  publication-title: Joule
– volume: 200
  start-page: 261
  year: 2003
  end-page: 270
  ident: bib7
  article-title: Hydrogenation of naphthalene on noble-metal-containing mesoporous MCM-41 aluminosilicates
  publication-title: J. Mol. Catal. A Chem.
– volume: 39
  start-page: 426
  year: 2014
  end-page: 443
  ident: bib52
  article-title: An overview of current status of carbon dioxide capture and storage technologies
  publication-title: Renew. Sustain. Energ. Rev.
– year: 1999
  ident: bib10
  article-title: Ammonia: Principles and Industrial Practice
– year: 2019
  ident: bib41
  article-title: LOHC Production Cost Estimation Study
– year: 2019
  ident: bib16
  article-title: Australia’s National Hydrogen Strategy
– year: 2021
  ident: bib38
  article-title: Advanced Clean Energy Storage Project
– volume: 283
  start-page: 235
  year: 2005
  end-page: 242
  ident: bib36
  article-title: Hydrogen storage by decalin/naphthalene pair and hydrogen supply to fuel cells by use of superheated liquid-film-type catalysis
  publication-title: Appl. Catal. A Gen.
– volume: 6
  start-page: 529
  year: 2018
  end-page: 539
  ident: bib75
  article-title: Resilience of liquid organic hydrogen carrier based energy-storage systems
  publication-title: Energ. Technol.
– volume: 185
  start-page: 320
  year: 2017
  end-page: 330
  ident: bib25
  article-title: Model-based techno-economic evaluation of an electricity storage system based on Liquid Organic Hydrogen Carriers
  publication-title: Appl. Energ.
– year: 2020
  ident: bib31
  article-title: The National Hydrogen Strategy
– volume: 35
  start-page: 11609
  year: 2010
  end-page: 11621
  ident: bib21
  article-title: Hydrogenation of 9-ethylcarbazole as a prototype of a liquid hydrogen carrier
  publication-title: Int. J. Hydrogen Energ.
– year: 2019
  ident: bib40
  article-title: Hydrogen Supply and Transportation Using Liquid Organic Hydrogen Carriers: A Preliminary Feasibility Study
– volume: 42
  start-page: 12339
  year: 2017
  end-page: 12354
  ident: bib14
  article-title: Process optimization for large-scale hydrogen liquefaction
  publication-title: Int. J. Hydrogen Energ.
– year: 2021
  ident: bib15
  article-title: What Is “SPERA HYDROGEN” System?
– volume: 43
  start-page: 1151
  year: 2015
  end-page: 1158
  ident: bib79
  article-title: Hydrogen the future transportation fuel: from production to applications
  publication-title: Renew. Sustain. Energ. Rev.
– volume: 29
  start-page: 657
  year: 2012
  end-page: 667
  ident: bib96
  article-title: Storage system of renewable energy generated hydrogen for chemical industry
  publication-title: Energ. Proced.
– volume: 44
  start-page: 3580
  year: 2019
  end-page: 3593
  ident: bib50
  article-title: Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification
  publication-title: Int. J. Hydrogen Energ.
– volume: 46
  start-page: 11956
  year: 2021
  end-page: 11968
  ident: bib71
  article-title: Comparative techno-economic assessment of a large-scale hydrogen transport via liquid transport media
  publication-title: Int. J. Hydrogen Energy
– volume: 4
  start-page: 1186
  year: 2020
  end-page: 1205
  ident: bib56
  article-title: A roadmap to the ammonia economy
  publication-title: Joule
– volume: 128
  start-page: 368
  year: 2014
  end-page: 392
  ident: bib51
  article-title: Hydrogen storage in metal-organic frameworks: a review
  publication-title: Electrochimica Acta
– volume: 121
  start-page: 109629
  year: 2020
  ident: bib27
  article-title: Seasonal energy storage for zero-emissions multi-energy systems via underground hydrogen storage
  publication-title: Renew. Sustain. Energ. Rev.
– start-page: 1
  year: 2014
  end-page: 7
  ident: bib85
  article-title: Storage of highly compressed gases in underground Lined Rock Caverns–More than 10 years of experience
  publication-title: Proceedings of the World Tunnel Congress 2014 – Tunnels for a Better Life
– volume: 6
  start-page: 24
  year: 2003
  end-page: 33
  ident: bib101
  article-title: Materials for hydrogen storage
  publication-title: Mater. Today
– volume: 114
  start-page: 122
  year: 2017
  end-page: 138
  ident: bib18
  article-title: Demonstrating large scale industrial CCS through CCU–a case study for methanol production
  publication-title: Energ. Proced.
– volume: 7
  start-page: 146
  year: 2019
  end-page: 152
  ident: bib45
  article-title: Operational stability of a LOHC-based hot pressure swing reactor for hydrogen storage
  publication-title: Energ. Technol.
– volume: 41
  start-page: 18062
  year: 2016
  end-page: 18071
  ident: bib95
  article-title: Efficiency analysis of novel Liquid Organic Hydrogen Carrier technology and comparison with high pressure storage pathway
  publication-title: Int. J. Hydrogen Energ.
– volume: 137
  start-page: 511
  year: 2015
  end-page: 536
  ident: bib54
  article-title: Overview of current development in electrical energy storage technologies and the application potential in power system operation
  publication-title: Appl. Energ.
– volume: 10
  start-page: 1652
  year: 2017
  end-page: 1659
  ident: bib46
  article-title: Hydrogen storage using a hot pressure swing reactor
  publication-title: Energ. Environ. Sci.
– volume: 74
  start-page: 281
  year: 2002
  end-page: 290
  ident: bib65
  article-title: Characteristics of Al-MCM-41 supported Pt catalysts: effect of Al distribution in Al-MCM-41 on its catalytic activity in naphthalene hydrogenation
  publication-title: Catal. Today
– volume: 9
  start-page: 034702
  year: 2017
  ident: bib68
  article-title: Towards sustainable agriculture: fossil-free ammonia
  publication-title: J. Renew. Sustain. Energ.
– volume: 29
  start-page: 463
  year: 2012
  end-page: 468
  ident: bib93
  article-title: CO2 abatement through a methanol production process
  publication-title: Chem. Eng.
– volume: 116
  start-page: 7421
  year: 2012
  end-page: 7429
  ident: bib22
  article-title: Comparative study of catalytic hydrogenation of 9-ethylcarbazole for hydrogen storage over noble metal surfaces
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 229
  year: 2014
  end-page: 235
  ident: bib12
  article-title: Evaluation of industrially applied heat-transfer fluids as liquid organic hydrogen carrier systems
  publication-title: ChemSusChem
– volume: 44
  start-page: 12254
  year: 2019
  end-page: 12269
  ident: bib59
  article-title: Hydrogen storage and delivery: review of the state of the art technologies and risk and reliability analysis
  publication-title: Int. J. Hydrogen Energ.
– volume: 10
  start-page: 42
  year: 2017
  end-page: 47
  ident: bib20
  article-title: Carbon dioxide-free hydrogen production with integrated hydrogen separation and storage
  publication-title: ChemSusChem
– start-page: 1
  year: 2020
  end-page: 70
  ident: bib42
  article-title: Ammonia to green hydrogen project
  publication-title: Feasibilty Study
– volume: 5
  start-page: 10231
  year: 2017
  end-page: 10239
  ident: bib32
  article-title: Ammonia as a renewable energy transportation media
  publication-title: ACS Sustain. Chem. Eng.
– start-page: 1
  year: 2006
  end-page: 23
  ident: bib87
  article-title: Potential Roles of Ammonia in a Hydrogen Economy
  publication-title: A Study of Issues Related to the Use Ammonia for On-Board Vehicular Hydrogen Storage
– year: 1990
  ident: bib55
  article-title: Chemical Process Equipmen Selection and Design
– volume: 10
  start-page: 4329
  year: 2018
  end-page: 4337
  ident: bib44
  article-title: Charging a liquid organic hydrogen carrier system with H2/CO2 gas mixtures
  publication-title: ChemCatChem
– volume: 44
  start-page: 6631
  year: 2019
  end-page: 6654
  ident: bib61
  article-title: Liquid organic hydrogen carrier (LOHC)–Assessment based on chemical and economic properties
  publication-title: Int. J. Hydrogen Energ.
– volume: 7
  start-page: 5975
  year: 2019
  end-page: 5985
  ident: bib100
  article-title: Efficient ammonia decomposition in a catalytic membrane reactor to enable hydrogen storage and utilization
  publication-title: ACS Sustain. Chem. Eng.
– year: 2021
  ident: bib19
  article-title: Hydrogen's Key Role in Decarbonising the Mining Industry
– volume: 39
  start-page: 1570
  year: 2016
  end-page: 1574
  ident: bib49
  article-title: Coupling of a liquid organic hydrogen carrier system with industrial heat
  publication-title: Chem. Eng. Technol.
– year: 2013
  ident: bib57
  article-title: Propulsion Trends in Container Vessels Two-Stroke Engines
– year: 2014
  ident: bib91
  article-title: Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications
– start-page: 110511
  year: 2020
  ident: bib74
  article-title: The water footprint of carbon capture and storage technologies
  publication-title: Renew. Sustain. Energ. Rev.
– volume: 1
  start-page: 79
  year: 2008
  end-page: 85
  ident: bib77
  article-title: Hydrogen nexus in a sustainable energy future
  publication-title: Energ. Environ. Sci.
– volume: 2
  start-page: 1
  year: 2017
  end-page: 8
  ident: bib78
  article-title: The future cost of electrical energy storage based on experience rates
  publication-title: Nat. Energ.
– year: 2021
  ident: bib8
  article-title: Manufacturer Supply Pt Alumina Supported Platinum Hydrogenation Catalyst
– volume: 19
  start-page: 37
  year: 2010
  end-page: 42
  ident: bib17
  article-title: Hydrogen production via steam reforming with CO2 capture
  publication-title: Chem. Eng. Trans.
– year: 2017
  ident: bib2
  article-title: Component Models for Solar Hydrogen Hybrid Energy Systems Based on Metal Hydride Energy Storage
– volume: 45
  start-page: 34927
  year: 2020
  end-page: 34937
  ident: bib6
  article-title: Technical assessment of liquefied natural gas, ammonia and methanol for overseas energy transport based on energy and exergy analyses
  publication-title: Int. J. Hydrogen Energ.
– volume: 44
  start-page: 11901
  year: 2019
  end-page: 11919
  ident: bib9
  article-title: Large-scale storage of hydrogen
  publication-title: Int. J. Hydrogen Energ.
– year: 2013
  ident: bib60
  article-title: Techno-economic Feasibility Study of Ammonia Plants Powered by Offshore Wind
– volume: 38
  start-page: 2039
  year: 2013
  end-page: 2061
  ident: bib28
  article-title: Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications
  publication-title: Int. J. Hydrogen Energ.
– volume: 33
  start-page: 2778
  year: 2019
  end-page: 2796
  ident: bib58
  article-title: The prospect of hydrogen storage using liquid organic hydrogen carriers
  publication-title: Energ. Fuels
– volume: 46
  start-page: 15671
  year: 2021
  end-page: 15690
  ident: bib23
  article-title: Large-scale compressed hydrogen storage as part of renewable electricity storage systems
  publication-title: Int. J. Hydrogen Energ.
– volume: 161
  start-page: 718
  year: 2016
  end-page: 732
  ident: bib66
  article-title: Methanol synthesis using captured CO2 as raw material: techno-economic and environmental assessment
  publication-title: Appl. Energ.
– volume: 6
  start-page: 974
  year: 2013
  end-page: 977
  ident: bib33
  article-title: Dehydrogenation of dodecahydro-N-ethylcarbazole on Pt(111)
  publication-title: ChemSusChem
– start-page: 77
  year: 2019
  end-page: 131
  ident: bib3
  article-title: Single and polystorage technologies for renewable-based hybrid energy systems
  publication-title: Polygeneration with Polystorage for Chemical and Energy Hubs
– volume: 396
  start-page: 803
  year: 2018
  end-page: 823
  ident: bib1
  article-title: Liquid organic hydrogen carriers for transportation and storing of renewable energy–Review and discussion
  publication-title: J. Power Sourc.
– year: 2021
  ident: bib39
  article-title: Kick-off for construction and operation of the world’s largest project plant for storing green hydrogen in Liquid Organic Hydrogen Carrier in Germany/Dormagen
– year: 2018
  ident: bib63
  article-title: Techno-economic Feasibility Study of a Methanol Plant Using Carbon Dioxide and Hydrogen
– volume: 224
  start-page: 957
  year: 2019
  end-page: 980
  ident: bib26
  article-title: Techno-economic assessment of CO2 direct air capture plants
  publication-title: J. Clean. Prod.
– volume: 53
  start-page: 10523
  year: 2017
  end-page: 10538
  ident: bib13
  article-title: Learning curve for seawater reverse osmosis desalination plants: capital cost trend of the past, present, and future
  publication-title: Water Resour. Res.
– year: 2019
  ident: bib37
  article-title: Liquid organic hydrogen carriers (LOHC)
  publication-title: Concept Evaluation and Techno-Economics
– year: 2020
  ident: bib24
  article-title: A Hydrogen Strategy for a Climate Neutral Europe
– volume: 45
  start-page: 32089
  year: 2020
  end-page: 32097
  ident: bib82
  article-title: Natural liquid organic hydrogen carrier with low dehydrogenation energy: a first principles study
  publication-title: Int. J. Hydrogen Energ.
– year: 2018
  ident: bib47
  article-title: Evaluation of the Economics of Renewable Hydrogen Supply in the APEC Region. 34th Conference on Energy, Economy, and Environment
– volume: 200
  start-page: 261
  year: 2003
  ident: 10.1016/j.isci.2021.102966_bib7
  article-title: Hydrogenation of naphthalene on noble-metal-containing mesoporous MCM-41 aluminosilicates
  publication-title: J. Mol. Catal. A Chem.
  doi: 10.1016/S1381-1169(03)00025-6
– year: 2019
  ident: 10.1016/j.isci.2021.102966_bib37
  article-title: Liquid organic hydrogen carriers (LOHC)
– year: 2019
  ident: 10.1016/j.isci.2021.102966_bib16
– volume: 106
  start-page: 365
  year: 2013
  ident: 10.1016/j.isci.2021.102966_bib34
  article-title: Hydrogenation of naphthalene over noble metal supported on mesoporous zeolite in the absence and presence of sulfur
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.12.025
– volume: 44
  start-page: 5345
  year: 2019
  ident: 10.1016/j.isci.2021.102966_bib80
  article-title: Integration of hydrogenation and dehydrogenation based on dibenzyltoluene as liquid organic hydrogen energy carrier
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2018.09.083
– volume: 283
  start-page: 235
  year: 2005
  ident: 10.1016/j.isci.2021.102966_bib36
  article-title: Hydrogen storage by decalin/naphthalene pair and hydrogen supply to fuel cells by use of superheated liquid-film-type catalysis
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2005.01.010
– volume: 19
  start-page: 37
  year: 2010
  ident: 10.1016/j.isci.2021.102966_bib17
  article-title: Hydrogen production via steam reforming with CO2 capture
  publication-title: Chem. Eng. Trans.
– volume: 12
  start-page: 290
  year: 2019
  ident: 10.1016/j.isci.2021.102966_bib62
  article-title: Liquid organic hydrogen carriers (LOHCs)–techno-economic analysis of LOHCs in a defined process chain
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C8EE02700E
– volume: 128
  start-page: 368
  year: 2014
  ident: 10.1016/j.isci.2021.102966_bib51
  article-title: Hydrogen storage in metal-organic frameworks: a review
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2013.10.190
– year: 2018
  ident: 10.1016/j.isci.2021.102966_bib63
– volume: 2
  start-page: 1
  year: 2014
  ident: 10.1016/j.isci.2021.102966_bib29
  article-title: Electrochemical synthesis of ammonia in solid electrolyte cells
  publication-title: Front. Energ. Res.
  doi: 10.3389/fenrg.2014.00001
– volume: 761
  start-page: 143203
  year: 2020
  ident: 10.1016/j.isci.2021.102966_bib97
  article-title: Progress in carbon capture technologies
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.143203
– volume: 10
  start-page: 42
  year: 2017
  ident: 10.1016/j.isci.2021.102966_bib20
  article-title: Carbon dioxide-free hydrogen production with integrated hydrogen separation and storage
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201600435
– volume: 61
  start-page: 1441
  year: 2016
  ident: 10.1016/j.isci.2021.102966_bib81
  article-title: Melting points of potential liquid organic hydrogen carrier systems consisting of N-alkylcarbazoles
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/acs.jced.5b00679
– volume: 9
  start-page: 034702
  year: 2017
  ident: 10.1016/j.isci.2021.102966_bib68
  article-title: Towards sustainable agriculture: fossil-free ammonia
  publication-title: J. Renew. Sustain. Energ.
  doi: 10.1063/1.4985090
– volume: 224
  start-page: 957
  year: 2019
  ident: 10.1016/j.isci.2021.102966_bib26
  article-title: Techno-economic assessment of CO2 direct air capture plants
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.03.086
– volume: 46
  start-page: 11956
  year: 2021
  ident: 10.1016/j.isci.2021.102966_bib71
  article-title: Comparative techno-economic assessment of a large-scale hydrogen transport via liquid transport media
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.12.213
– volume: 28
  start-page: 1255
  year: 2003
  ident: 10.1016/j.isci.2021.102966_bib35
  article-title: Catalytic decalin dehydrogenation/naphthalene hydrogenation pair as a hydrogen source for fuel-cell vehicle
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/S0360-3199(02)00250-1
– year: 2020
  ident: 10.1016/j.isci.2021.102966_bib24
– volume: 38
  start-page: 2039
  year: 2013
  ident: 10.1016/j.isci.2021.102966_bib28
  article-title: Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2012.12.010
– volume: 6
  start-page: 974
  year: 2013
  ident: 10.1016/j.isci.2021.102966_bib33
  article-title: Dehydrogenation of dodecahydro-N-ethylcarbazole on Pt(111)
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201300263
– start-page: 1
  year: 2006
  ident: 10.1016/j.isci.2021.102966_bib87
  article-title: Potential Roles of Ammonia in a Hydrogen Economy
– volume: 6
  start-page: 24
  year: 2003
  ident: 10.1016/j.isci.2021.102966_bib101
  article-title: Materials for hydrogen storage
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(03)00922-2
– year: 2013
  ident: 10.1016/j.isci.2021.102966_bib60
– volume: 29
  start-page: 463
  year: 2012
  ident: 10.1016/j.isci.2021.102966_bib93
  article-title: CO2 abatement through a methanol production process
  publication-title: Chem. Eng.
– volume: 121
  start-page: 109629
  year: 2020
  ident: 10.1016/j.isci.2021.102966_bib27
  article-title: Seasonal energy storage for zero-emissions multi-energy systems via underground hydrogen storage
  publication-title: Renew. Sustain. Energ. Rev.
  doi: 10.1016/j.rser.2019.109629
– volume: 41
  start-page: 12108
  year: 2016
  ident: 10.1016/j.isci.2021.102966_bib76
  article-title: A review on the current progress of metal hydrides material for solid-state hydrogen storage applications
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2016.05.244
– volume: 230
  start-page: 309
  year: 2005
  ident: 10.1016/j.isci.2021.102966_bib11
  article-title: Why the optimal ammonia synthesis catalyst is not the optimal ammonia decomposition catalyst
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2004.12.013
– volume: 114
  start-page: 122
  year: 2017
  ident: 10.1016/j.isci.2021.102966_bib18
  article-title: Demonstrating large scale industrial CCS through CCU–a case study for methanol production
  publication-title: Energ. Proced.
  doi: 10.1016/j.egypro.2017.03.1155
– volume: 396
  start-page: 803
  year: 2018
  ident: 10.1016/j.isci.2021.102966_bib1
  article-title: Liquid organic hydrogen carriers for transportation and storing of renewable energy–Review and discussion
  publication-title: J. Power Sourc.
  doi: 10.1016/j.jpowsour.2018.04.011
– volume: 33
  start-page: 2778
  year: 2019
  ident: 10.1016/j.isci.2021.102966_bib58
  article-title: The prospect of hydrogen storage using liquid organic hydrogen carriers
  publication-title: Energ. Fuels
  doi: 10.1021/acs.energyfuels.9b00296
– volume: 43
  start-page: 1151
  year: 2015
  ident: 10.1016/j.isci.2021.102966_bib79
  article-title: Hydrogen the future transportation fuel: from production to applications
  publication-title: Renew. Sustain. Energ. Rev.
  doi: 10.1016/j.rser.2014.11.093
– year: 2019
  ident: 10.1016/j.isci.2021.102966_bib40
– volume: 137
  start-page: 511
  year: 2015
  ident: 10.1016/j.isci.2021.102966_bib54
  article-title: Overview of current development in electrical energy storage technologies and the application potential in power system operation
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2014.09.081
– volume: 161
  start-page: 718
  year: 2016
  ident: 10.1016/j.isci.2021.102966_bib66
  article-title: Methanol synthesis using captured CO2 as raw material: techno-economic and environmental assessment
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2015.07.067
– year: 2020
  ident: 10.1016/j.isci.2021.102966_bib31
– volume: 6
  start-page: 529
  year: 2018
  ident: 10.1016/j.isci.2021.102966_bib75
  article-title: Resilience of liquid organic hydrogen carrier based energy-storage systems
  publication-title: Energ. Technol.
  doi: 10.1002/ente.201700446
– volume: 7
  start-page: 146
  year: 2019
  ident: 10.1016/j.isci.2021.102966_bib45
  article-title: Operational stability of a LOHC-based hot pressure swing reactor for hydrogen storage
  publication-title: Energ. Technol.
  doi: 10.1002/ente.201800499
– volume: 315
  start-page: 311
  year: 1985
  ident: 10.1016/j.isci.2021.102966_bib72
  article-title: Structure of the ammonia synthesis catalyst
  publication-title: Nature
  doi: 10.1038/315311a0
– volume: 46
  start-page: 15671
  year: 2021
  ident: 10.1016/j.isci.2021.102966_bib23
  article-title: Large-scale compressed hydrogen storage as part of renewable electricity storage systems
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2021.02.080
– year: 2014
  ident: 10.1016/j.isci.2021.102966_bib91
– year: 2017
  ident: 10.1016/j.isci.2021.102966_bib2
– volume: 45
  start-page: 32089
  year: 2020
  ident: 10.1016/j.isci.2021.102966_bib82
  article-title: Natural liquid organic hydrogen carrier with low dehydrogenation energy: a first principles study
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2020.08.143
– volume: 42
  start-page: 12339
  year: 2017
  ident: 10.1016/j.isci.2021.102966_bib14
  article-title: Process optimization for large-scale hydrogen liquefaction
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2017.03.167
– volume: 2
  start-page: 1
  year: 2017
  ident: 10.1016/j.isci.2021.102966_bib78
  article-title: The future cost of electrical energy storage based on experience rates
  publication-title: Nat. Energ.
  doi: 10.1038/nenergy.2017.110
– year: 2018
  ident: 10.1016/j.isci.2021.102966_bib47
– volume: 44
  start-page: 3580
  year: 2019
  ident: 10.1016/j.isci.2021.102966_bib50
  article-title: Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2018.12.024
– start-page: 110511
  year: 2020
  ident: 10.1016/j.isci.2021.102966_bib74
  article-title: The water footprint of carbon capture and storage technologies
  publication-title: Renew. Sustain. Energ. Rev.
– start-page: 1
  year: 2006
  ident: 10.1016/j.isci.2021.102966_bib67
  article-title: Hydrogen storage by reversible hydrogenation of pi-conjugated substrates
  publication-title: United States Patent
– volume: 185
  start-page: 320
  year: 2017
  ident: 10.1016/j.isci.2021.102966_bib25
  article-title: Model-based techno-economic evaluation of an electricity storage system based on Liquid Organic Hydrogen Carriers
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2016.10.068
– year: 2021
  ident: 10.1016/j.isci.2021.102966_bib15
– volume: 200
  start-page: 290
  year: 2017
  ident: 10.1016/j.isci.2021.102966_bib73
  article-title: Seasonal storage and alternative carriers: a flexible hydrogen supply chain model
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2017.05.050
– volume: 39
  start-page: 426
  year: 2014
  ident: 10.1016/j.isci.2021.102966_bib52
  article-title: An overview of current status of carbon dioxide capture and storage technologies
  publication-title: Renew. Sustain. Energ. Rev.
  doi: 10.1016/j.rser.2014.07.093
– year: 2021
  ident: 10.1016/j.isci.2021.102966_bib92
– year: 2012
  ident: 10.1016/j.isci.2021.102966_bib88
– volume: 29
  start-page: 657
  year: 2012
  ident: 10.1016/j.isci.2021.102966_bib96
  article-title: Storage system of renewable energy generated hydrogen for chemical industry
  publication-title: Energ. Proced.
  doi: 10.1016/j.egypro.2012.09.076
– volume: 4
  start-page: 1186
  year: 2020
  ident: 10.1016/j.isci.2021.102966_bib56
  article-title: A roadmap to the ammonia economy
  publication-title: Joule
  doi: 10.1016/j.joule.2020.04.004
– volume: 44
  start-page: 6631
  year: 2019
  ident: 10.1016/j.isci.2021.102966_bib61
  article-title: Liquid organic hydrogen carrier (LOHC)–Assessment based on chemical and economic properties
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2019.01.199
– year: 2019
  ident: 10.1016/j.isci.2021.102966_bib41
– volume: 7
  start-page: 229
  year: 2014
  ident: 10.1016/j.isci.2021.102966_bib12
  article-title: Evaluation of industrially applied heat-transfer fluids as liquid organic hydrogen carrier systems
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201300426
– volume: 116
  start-page: 7421
  year: 2012
  ident: 10.1016/j.isci.2021.102966_bib22
  article-title: Comparative study of catalytic hydrogenation of 9-ethylcarbazole for hydrogen storage over noble metal surfaces
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp212249g
– year: 2020
  ident: 10.1016/j.isci.2021.102966_bib43
– volume: 37
  start-page: 18118
  year: 2012
  ident: 10.1016/j.isci.2021.102966_bib84
  article-title: Liquid Organic Hydrogen Carriers as an efficient vector for the transport and storage of renewable energy
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2012.08.066
– start-page: 1
  year: 2020
  ident: 10.1016/j.isci.2021.102966_bib42
  article-title: Ammonia to green hydrogen project
  publication-title: Feasibilty Study
– year: 2013
  ident: 10.1016/j.isci.2021.102966_bib64
– volume: 53
  start-page: 10523
  year: 2017
  ident: 10.1016/j.isci.2021.102966_bib13
  article-title: Learning curve for seawater reverse osmosis desalination plants: capital cost trend of the past, present, and future
  publication-title: Water Resour. Res.
  doi: 10.1002/2017WR021402
– volume: 45
  start-page: 34927
  year: 2020
  ident: 10.1016/j.isci.2021.102966_bib6
  article-title: Technical assessment of liquefied natural gas, ammonia and methanol for overseas energy transport based on energy and exergy analyses
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2020.04.181
– volume: 8
  start-page: 445
  year: 2017
  ident: 10.1016/j.isci.2021.102966_bib69
  article-title: Hydrogen storage technologies for future energy systems
  publication-title: Annu. Rev. Chem. Biomol. Eng.
  doi: 10.1146/annurev-chembioeng-060816-101334
– volume: 7
  start-page: 5975
  year: 2019
  ident: 10.1016/j.isci.2021.102966_bib100
  article-title: Efficient ammonia decomposition in a catalytic membrane reactor to enable hydrogen storage and utilization
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b06065
– start-page: 1
  year: 2009
  ident: 10.1016/j.isci.2021.102966_bib30
  article-title: DOE hydrogen and fuel cells program record
– volume: 52
  start-page: 1791
  year: 2015
  ident: 10.1016/j.isci.2021.102966_bib4
  article-title: Solar hydrogen hybrid energy systems for off-grid electricity supply: a critical review
  publication-title: Renew. Sustain. Energ. Rev.
  doi: 10.1016/j.rser.2015.08.011
– volume: 10
  start-page: 1652
  year: 2017
  ident: 10.1016/j.isci.2021.102966_bib46
  article-title: Hydrogen storage using a hot pressure swing reactor
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C7EE00476A
– year: 2013
  ident: 10.1016/j.isci.2021.102966_bib57
– volume: 10
  start-page: 4329
  year: 2018
  ident: 10.1016/j.isci.2021.102966_bib44
  article-title: Charging a liquid organic hydrogen carrier system with H2/CO2 gas mixtures
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201800960
– start-page: 1
  year: 2014
  ident: 10.1016/j.isci.2021.102966_bib85
  article-title: Storage of highly compressed gases in underground Lined Rock Caverns–More than 10 years of experience
– year: 2021
  ident: 10.1016/j.isci.2021.102966_bib19
– year: 2021
  ident: 10.1016/j.isci.2021.102966_bib8
– volume: 74
  start-page: 281
  year: 2002
  ident: 10.1016/j.isci.2021.102966_bib65
  article-title: Characteristics of Al-MCM-41 supported Pt catalysts: effect of Al distribution in Al-MCM-41 on its catalytic activity in naphthalene hydrogenation
  publication-title: Catal. Today
  doi: 10.1016/S0920-5861(02)00024-X
– start-page: 77
  year: 2019
  ident: 10.1016/j.isci.2021.102966_bib3
  article-title: Single and polystorage technologies for renewable-based hybrid energy systems
– volume: 1
  start-page: 79
  year: 2008
  ident: 10.1016/j.isci.2021.102966_bib77
  article-title: Hydrogen nexus in a sustainable energy future
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/b810104n
– volume: 5
  start-page: 9698
  year: 2012
  ident: 10.1016/j.isci.2021.102966_bib98
  article-title: Liquid-phase chemical hydrogen storage materials
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/c2ee22937d
– volume: 5
  start-page: 10231
  year: 2017
  ident: 10.1016/j.isci.2021.102966_bib32
  article-title: Ammonia as a renewable energy transportation media
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02219
– year: 2021
  ident: 10.1016/j.isci.2021.102966_bib38
– volume: 4
  start-page: 26
  year: 2020
  ident: 10.1016/j.isci.2021.102966_bib53
  article-title: Paths to low-cost hydrogen energy at a scale for transportation applications in the USA and China via liquid-hydrogen distribution networks
  publication-title: Clean. Energ.
  doi: 10.1093/ce/zkz033
– year: 1990
  ident: 10.1016/j.isci.2021.102966_bib55
– volume: 44
  start-page: 11901
  year: 2019
  ident: 10.1016/j.isci.2021.102966_bib9
  article-title: Large-scale storage of hydrogen
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2019.03.063
– start-page: 1
  year: 2014
  ident: 10.1016/j.isci.2021.102966_bib90
  article-title: Fuel Cell Technologies Office Multi-Year Research
– volume: 35
  start-page: 11609
  year: 2010
  ident: 10.1016/j.isci.2021.102966_bib21
  article-title: Hydrogenation of 9-ethylcarbazole as a prototype of a liquid hydrogen carrier
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2010.03.068
– volume: 27
  start-page: 713
  year: 2020
  ident: 10.1016/j.isci.2021.102966_bib83
  article-title: Development and progress on hydrogen metallurgy
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-020-2021-4
– volume: 2
  start-page: 1573
  year: 2018
  ident: 10.1016/j.isci.2021.102966_bib48
  article-title: A process for capturing CO2 from the atmosphere
  publication-title: Joule
  doi: 10.1016/j.joule.2018.05.006
– year: 1984
  ident: 10.1016/j.isci.2021.102966_bib89
– volume: 41
  start-page: 18062
  year: 2016
  ident: 10.1016/j.isci.2021.102966_bib95
  article-title: Efficiency analysis of novel Liquid Organic Hydrogen Carrier technology and comparison with high pressure storage pathway
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2016.08.003
– volume: 39
  start-page: 1570
  year: 2016
  ident: 10.1016/j.isci.2021.102966_bib49
  article-title: Coupling of a liquid organic hydrogen carrier system with industrial heat
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.201600180
– volume: 57
  start-page: 38
  year: 2013
  ident: 10.1016/j.isci.2021.102966_bib94
  article-title: Design and simulation of a methanol production plant from CO2 hydrogenation
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2013.06.008
– volume: 44
  start-page: 12254
  year: 2019
  ident: 10.1016/j.isci.2021.102966_bib59
  article-title: Hydrogen storage and delivery: review of the state of the art technologies and risk and reliability analysis
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2019.03.041
– volume: 120
  start-page: 109620
  year: 2020
  ident: 10.1016/j.isci.2021.102966_bib5
  article-title: Hydrogen as an energy vector
  publication-title: Renew. Sustain. Energ. Rev.
  doi: 10.1016/j.rser.2019.109620
– volume: 509
  start-page: 152
  year: 2011
  ident: 10.1016/j.isci.2021.102966_bib99
  article-title: Kinetics of 9-ethylcarbazole hydrogenation over Raney-Ni catalyst for hydrogen storage
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2010.09.012
– year: 1999
  ident: 10.1016/j.isci.2021.102966_bib10
– volume: 50
  start-page: 74
  year: 2017
  ident: 10.1016/j.isci.2021.102966_bib70
  article-title: Liquid organic hydrogen carriers (LOHCs): toward a hydrogen-free hydrogen economy
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00474
SSID ssj0002002496
Score 2.5833206
SecondaryResourceType review_article
Snippet Large-scale stationary hydrogen storage is critical if hydrogen is to fulfill its promise as a global energy carrier. While densified storage via compressed...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102966
SubjectTerms Chemistry
Energy flexibility
Energy Resources
Energy sustainability
Title Large-scale stationary hydrogen storage via liquid organic hydrogen carriers
URI https://dx.doi.org/10.1016/j.isci.2021.102966
https://www.proquest.com/docview/2568250813
https://pubmed.ncbi.nlm.nih.gov/PMC8382998
https://doaj.org/article/8f41dc5186a54c14968b077ac4051054
Volume 24
WOSCitedRecordID wos000698069100032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2589-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002002496
  issn: 2589-0042
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1RVIleKlqoui2gVOqtinASe20fWwTisEI9FGlvluMPEYSyJdlF4t93bCewudAL18RJ7JlJ_J5m8gbgu668qeqqyL2f6xx3qDKXJdfIWm1FdEk19VFdf8GvrsRyKX9vtfoKNWFJHjgZ7lR4WljDCjHXjBrE83NRE861oSGcWFQCRdSzRaZuY3otSOHFznIs1ARhaA5_zKTirvDHK5LDsgjSBTJKJD7vSlG8f7I5bYHPaenk1l50sQ_vBxCZ_UyT_wA7rv0Ie2dj77YDWCxCgXfeowNc1qdsu-4es5tH260wZLJQE4lfkuyh0dldc79pbJb6O5nnMUZ3oZ1dfwjXF-d_zi7zoW9CbqgU65wjrzLWyFrUtawlcYR6bR1zpCaIjqx0JKjIe2eQLdEoUIg0hmviS-SU1FWfYLddte4zZMw4rhm3rDBIVGqirahw7XNPPJelpzMoRrspM4iKh94Wd2qsHrtVwdYq2FolW8_gx9M1f5OkxoujfwV3PI0MctjxAFpFDUGi_hckM2CjM9WALBJiwFs1Lz782-h5hR4MuRTdutWmV4gUkVsjnqpmwCchMZnp9Ezb3EQBb1EJRAHiy2ss7Su8CxPOY6LsCHbX3cYdw1vzsG767gTe8KU4ie_GP-T0EH4
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-scale+stationary+hydrogen+storage+via+liquid+organic+hydrogen+carriers&rft.jtitle=iScience&rft.au=Abdin%2C+Zainul&rft.au=Tang%2C+Chunguang&rft.au=Liu%2C+Yun&rft.au=Catchpole%2C+Kylie&rft.date=2021-09-24&rft.pub=Elsevier+Inc&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=24&rft.issue=9&rft_id=info:doi/10.1016%2Fj.isci.2021.102966&rft.externalDocID=S2589004221009342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon