Traffic flow estimation with data from a video surveillance camera
This study addresses the problem of traffic flow estimation based on the data from a video surveillance camera. Target problem here is formulated as counting and classifying vehicles by their driving direction. This subject area is in early development, and the focus of this work is only one of the...
Uloženo v:
| Vydáno v: | Journal of big data Ročník 6; číslo 1; s. 1 - 15 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
07.08.2019
Springer Nature B.V SpringerOpen |
| Témata: | |
| ISSN: | 2196-1115, 2196-1115 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This study addresses the problem of traffic flow estimation based on the data from a video surveillance camera. Target problem here is formulated as counting and classifying vehicles by their driving direction. This subject area is in early development, and the focus of this work is only one of the busiest crossroads in city Chelyabinsk, Russia. To solve the posed problem, we employed the state-of-the-art Faster R-CNN two-stage detector together with SORT tracker. A simple regions-based heuristic algorithm was used to classify vehicles movement direction. The baseline performance of the Faster R-CNN was enhanced by several modifications: focal loss, adaptive feature pooling, additional mask branch, and anchors optimization. To train and evaluate detector, we gathered 982 video frames with more than 60,000 objects presented in various conditions. The experimental results show that the proposed system can count vehicles and classify their driving direction during weekday rush hours with mean absolute percentage error that is less than 10%. The dataset presented here might be further used by other researches as a challenging test or additional training data. |
|---|---|
| AbstractList | This study addresses the problem of traffic flow estimation based on the data from a video surveillance camera. Target problem here is formulated as counting and classifying vehicles by their driving direction. This subject area is in early development, and the focus of this work is only one of the busiest crossroads in city Chelyabinsk, Russia. To solve the posed problem, we employed the state-of-the-art Faster R-CNN two-stage detector together with SORT tracker. A simple regions-based heuristic algorithm was used to classify vehicles movement direction. The baseline performance of the Faster R-CNN was enhanced by several modifications: focal loss, adaptive feature pooling, additional mask branch, and anchors optimization. To train and evaluate detector, we gathered 982 video frames with more than 60,000 objects presented in various conditions. The experimental results show that the proposed system can count vehicles and classify their driving direction during weekday rush hours with mean absolute percentage error that is less than 10%. The dataset presented here might be further used by other researches as a challenging test or additional training data. Abstract This study addresses the problem of traffic flow estimation based on the data from a video surveillance camera. Target problem here is formulated as counting and classifying vehicles by their driving direction. This subject area is in early development, and the focus of this work is only one of the busiest crossroads in city Chelyabinsk, Russia. To solve the posed problem, we employed the state-of-the-art Faster R-CNN two-stage detector together with SORT tracker. A simple regions-based heuristic algorithm was used to classify vehicles movement direction. The baseline performance of the Faster R-CNN was enhanced by several modifications: focal loss, adaptive feature pooling, additional mask branch, and anchors optimization. To train and evaluate detector, we gathered 982 video frames with more than 60,000 objects presented in various conditions. The experimental results show that the proposed system can count vehicles and classify their driving direction during weekday rush hours with mean absolute percentage error that is less than 10%. The dataset presented here might be further used by other researches as a challenging test or additional training data. |
| ArticleNumber | 73 |
| Author | Nikolskaia, Kseniia Minbaleev, Alexey Fedorov, Aleksandr Ivanov, Sergey Shepelev, Vladimir |
| Author_xml | – sequence: 1 givenname: Aleksandr orcidid: 0000-0002-8829-3447 surname: Fedorov fullname: Fedorov, Aleksandr email: canxes@mail.ru organization: South Ural State University – sequence: 2 givenname: Kseniia orcidid: 0000-0001-8335-2084 surname: Nikolskaia fullname: Nikolskaia, Kseniia organization: South Ural State University – sequence: 3 givenname: Sergey orcidid: 0000-0002-1008-6202 surname: Ivanov fullname: Ivanov, Sergey organization: South Ural State University – sequence: 4 givenname: Vladimir surname: Shepelev fullname: Shepelev, Vladimir organization: South Ural State University – sequence: 5 givenname: Alexey surname: Minbaleev fullname: Minbaleev, Alexey organization: The Institute of State and Law of The Russian Academy of Sciences |
| BookMark | eNp9kMFOHSEUhkljk1rrA3RH4nraAwwwLK1prYmJG7smZ5gzlpu5g4W5mvr0omO0aaIrCDnff36-j2xvTjMx9lnAFyE687W0oJVtQLgGpGqbu3dsXwpnGiGE3vvn_oEdlrIBAKEqYtp99u0y4zjGwMcp3XIqS9ziEtPMb-Pymw-4IB9z2nLkN3GgxMsu31CcJpwD8YBbyviJvR9xKnT4dB6wXz--X578bM4vTs9Ojs-b0LpuaTT0mrQMSGgG54KWnTQhGGuBLChANXagERwF2XWud7KtzZSx1AWjB1IH7GzNHRJu_HWuTfNfnzD6x4eUrzzmJYaJvJOWBuusCmhbQNNDLyRIaHs1itBjzTpas65z-rOr3_abtMtzre-lNE467aysU2KdCjmVkml83irAP5j3q3lfzfsH8_6uMvY_JsTlUemSMU5vknIlS90yX1F-6fQ6dA8bWpkY |
| CitedBy_id | crossref_primary_10_3390_asi5010023 crossref_primary_10_3390_s22030906 crossref_primary_10_1016_j_trpro_2020_10_029 crossref_primary_10_1142_S0218194025500159 crossref_primary_10_52468_2542_1514_2021_5_4__5_19 crossref_primary_10_3390_electronics11152290 crossref_primary_10_1155_2020_8828008 crossref_primary_10_3390_futuretransp3020041 crossref_primary_10_1111_mice_13323 crossref_primary_10_3390_sym15040779 crossref_primary_10_1016_j_envres_2022_114393 crossref_primary_10_1080_01924036_2020_1744027 crossref_primary_10_3390_en13082036 crossref_primary_10_1007_s13042_024_02190_8 crossref_primary_10_1016_j_trc_2024_104743 crossref_primary_10_1016_j_trpro_2020_10_024 crossref_primary_10_3390_electronics12173567 crossref_primary_10_1287_trsc_2023_0493 crossref_primary_10_1007_s00521_023_09049_z crossref_primary_10_1007_s42421_023_00086_7 crossref_primary_10_1007_s11071_025_11807_8 crossref_primary_10_1007_s41062_021_00718_3 crossref_primary_10_1016_j_neucom_2022_04_087 crossref_primary_10_1016_j_ijleo_2022_170418 crossref_primary_10_1109_TITS_2024_3411647 crossref_primary_10_1016_j_trpro_2023_02_074 crossref_primary_10_1109_TITS_2022_3147770 crossref_primary_10_1016_j_isprsjprs_2022_07_022 crossref_primary_10_1080_21680566_2024_2380915 crossref_primary_10_3390_en13071765 crossref_primary_10_3390_s21134564 crossref_primary_10_1155_2022_7690309 crossref_primary_10_1785_0220240222 crossref_primary_10_1016_j_trip_2025_101490 crossref_primary_10_1016_j_isprsjprs_2024_06_012 crossref_primary_10_1051_bioconf_202413802035 crossref_primary_10_3390_rs12223844 crossref_primary_10_1109_TITS_2023_3258683 crossref_primary_10_1109_ACCESS_2024_3510746 crossref_primary_10_1016_j_trd_2025_104688 crossref_primary_10_1109_TITS_2023_3264796 crossref_primary_10_1186_s40537_020_00358_x crossref_primary_10_1109_ACCESS_2024_3503368 crossref_primary_10_1145_3699731 crossref_primary_10_1186_s40537_021_00542_7 crossref_primary_10_1016_j_ejcon_2025_101291 crossref_primary_10_3390_math10020282 crossref_primary_10_1007_s00542_022_05287_8 crossref_primary_10_1155_2021_4438861 crossref_primary_10_1109_ACCESS_2025_3539713 crossref_primary_10_3390_drones9090637 crossref_primary_10_1007_s00034_025_03197_4 crossref_primary_10_3390_math10111887 crossref_primary_10_1109_ACCESS_2025_3596026 crossref_primary_10_1007_s11042_023_16629_7 crossref_primary_10_1016_j_eswa_2022_119366 crossref_primary_10_1109_JSTARS_2023_3249216 crossref_primary_10_1016_j_trpro_2023_02_059 crossref_primary_10_1051_e3sconf_202130901099 crossref_primary_10_3390_math10244829 crossref_primary_10_3390_s20247071 crossref_primary_10_1186_s40537_024_00932_7 crossref_primary_10_3390_app11125619 crossref_primary_10_1145_3744649 crossref_primary_10_3390_s21062052 crossref_primary_10_1038_s41598_022_24474_1 |
| Cites_doi | 10.1007/978-3-319-46448-0_2 10.1117/12.2502012 10.1109/CVPR.2017.690 10.1109/ICCV.2015.169 10.5194/isprs-archives-XLII-4-499-2018 10.1109/CVPR.2017.634 10.1109/CVPR.2016.350 10.1109/CVPRW.2018.00022 10.1109/CVPR.2017.106 10.1109/ICME.2017.8019461 10.1109/MTITS.2017.8005592 10.1109/TITS.2018.2838132 10.1109/TPAMI.2016.2577031 10.3390/s18124272 10.1109/ICCV.2017.324 10.1109/AVSS.2017.8078500 10.1109/CVPR.2016.91 10.1109/ISACV.2018.8354064 10.1109/ICIP.2017.8296962 10.1109/CVPR.2017.4 10.1109/CVPR.2017.351 10.1007/s00500-017-2942-7 10.1109/IST.2017.8261505 10.1007/978-3-319-10602-1_48 10.1109/ICCV.2015.349 10.1109/ICCV.2019.00627 10.1109/avss.2018.8639149 10.1109/ICIP.2016.7533003 10.1109/ICCV.2017.322 10.1109/ICCV.2015.533 10.1016/j.procs.2018.04.281 10.1109/NEUREL.2018.8587012 10.1177/0278364913491297 10.1109/UIC-ATC.2017.8397669 10.1109/CVPR.2018.00913 10.1109/CVPR.2018.00376 10.1109/CVPRW.2017.129 10.1109/ICCV.2017.396 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 Journal of Big Data is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2019 – notice: Journal of Big Data is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 0-V 3V. 7WY 7WZ 7XB 87Z 88J 8AL 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- M0C M0N M2R P5Z P62 PHGZM PHGZT PIMPY PKEHL POGQB PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA Q9U DOA |
| DOI | 10.1186/s40537-019-0234-z |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Social Sciences Premium Collection ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Social Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Global (OCUL) Computing Database Social Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China One Social Sciences ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest Sociology & Social Sciences Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Social Science Journals (Alumni Edition) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Sociology & Social Sciences Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest Social Science Journals ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2196-1115 |
| EndPage | 15 |
| ExternalDocumentID | oai_doaj_org_article_927ed7973ca740a6b0b120204b3f1cba 10_1186_s40537_019_0234_z |
| GrantInformation_xml | – fundername: Government of the Russian Federation grantid: 02.A03.21.0011 |
| GroupedDBID | 0-V 0R~ 3V. 5VS 7WY 8FE 8FG 8FL AAFWJ AAJSJ AAKKN ABEEZ ABFTD ABUWG ACACY ACGFS ACULB ADBBV ADINQ ADMLS AFGXO AFKRA AFPKN AHBYD ALMA_UNASSIGNED_HOLDINGS ALSLI AMKLP ARALO ARAPS ASPBG AZQEC BCNDV BENPR BEZIV BGLVJ BPHCQ C24 C6C CCPQU DWQXO EBLON EBS EJD FRNLG GNUQQ GROUPED_DOAJ HCIFZ IAO ISR ITC K60 K6V K6~ K7- M0C M0N M2R M~E OK1 P62 PIMPY PQBIZ PQBZA PQQKQ PROAC RSV SOJ AASML AAYXX AFFHD CITATION PHGZM PHGZT PQGLB PRQQA 7XB 8AL 8FK JQ2 L.- PKEHL POGQB PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c498t-50b5e52caea6d99c52826cc6770e7030a3f805a09ec2889b924aff367e8c65de3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 86 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000599138700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2196-1115 |
| IngestDate | Fri Oct 03 12:50:36 EDT 2025 Fri Nov 14 18:49:42 EST 2025 Tue Nov 18 20:51:55 EST 2025 Sat Nov 29 02:28:03 EST 2025 Fri Feb 21 02:36:09 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Vehicle detection Traffic analysis Traffic flow estimation Convolutional neural network Surveillance data |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c498t-50b5e52caea6d99c52826cc6770e7030a3f805a09ec2889b924aff367e8c65de3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8335-2084 0000-0002-1008-6202 0000-0002-8829-3447 |
| OpenAccessLink | https://doaj.org/article/927ed7973ca740a6b0b120204b3f1cba |
| PQID | 2269295972 |
| PQPubID | 2046140 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_927ed7973ca740a6b0b120204b3f1cba proquest_journals_2269295972 crossref_primary_10_1186_s40537_019_0234_z crossref_citationtrail_10_1186_s40537_019_0234_z springer_journals_10_1186_s40537_019_0234_z |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-07 |
| PublicationDateYYYYMMDD | 2019-08-07 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-07 day: 07 |
| PublicationDecade | 2010 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Journal of big data |
| PublicationTitleAbbrev | J Big Data |
| PublicationYear | 2019 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | Anisimov D, Khanova T. Towards lightweight convolutional neural networks for object detection. In: 2017 14th IEEE international conference on advanced video and signal based surveillance (AVSS). 2017, p. 1–8. https://doi.org/10.1109/AVSS.2017.8078500, http://ieeexplore.ieee.org/document/8078500/, arXiv:1707.01395. Chu P, Ling H. FAMNet: Joint learning of feature, affinity and multi-dimensional assignment for online multiple object tracking. 2019. arXiv:1811.07258arXiv:1904.04989. Li S. 3D-DETNet: a single stage video-based vehicle detector. 2018, arXiv:1801.01769. Jung H, Choi MK, Jung J, Lee JH, Kwon S, Jung WY. ResNet-based vehicle classification and localization in traffic surveillance systems. In: 2017 IEEE conference on computer vision and pattern recognition workshops (CVPRW). 2017, p. 934–40. IEEE. https://doi.org/10.1109/CVPRW.2017.129, http://ieeexplore.ieee.org/document/8014863/. Lin TY, Dollar P, Girshick R, He K, Hariharan B, Belongie S. Feature pyramid networks for object detection. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). vol. 2017 Jan, 2017, p. 936–44. IEEE. https://doi.org/10.1109/CVPR.2017.106, http://ieeexplore.ieee.org/document/8099589/. Zhu F, Lu Y, Ying N, Giakos G. Fast vehicle detection based on evolving convolutional neural network. In: 2017 IEEE international conference on imaging systems and techniques (IST). vol. 2018-Jan, 2017, p. 1–4. IEEE. https://doi.org/10.1109/IST.2017.8261505. Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accu- rate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2012, p. 580–7, http://arxiv.org/pdf/1311.2524v3.pdf. Wen L, Du D, Cai Z, Lei Z, Chang MC, Qi H, Lim J, Yang MH, Lyu S. UA-DETRAC: a new benchmark and protocol for multi-object detection and tracking. 2015. arXiv:1511.04136. He K, Gkioxari G, Dollar P, Girshick R. Mask R-CNN. In: 2017 IEEE international conference on computer vision (ICCV). vol. 2017 Oct, 2017, p. 2980–8. IEEE. https://doi.org/10.1109/ICCV.2017.322, http://ieeexplore.ieee.org/document/8237584/. Kim C, Li F, Ciptadi A, Rehg JM. Multiple hypothesis tracking revisited. In: 2015 IEEE international conference on computer vision (ICCV). vol. 22. 2015, p. 4696–704. IEEE. https://doi.org/10.1109/ICCV.2015.533, http://ieeexplore.ieee.org/document/7410890/. LiuWeiAnguelovDragomirErhanDumitruSzegedyChristianReedScottFuCheng-YangBergAlexander C.SSD: Single Shot MultiBox DetectorComputer Vision – ECCV 20162016ChamSpringer International Publishing213710.1007/978-3-319-46448-0_2 Sommer L, Acatay O, Schumann A, Beyerer J. Ensemble of two-stage regression based detectors for accurate vehicle detection in traffic surveillance data. 2019, p. 1–6. https://doi.org/10.1109/avss.2018.8639149. RathoreMMSonHAhmadAPaulAReal-time video processing for traffic control in smart city using Hadoop ecosystem with GPUsSoft Comput20182251533154410.1007/s00500-017-2942-7 Wang X, Cheng P, Liu X, Uzochukwu B. Focal loss dense detector for vehicle surveillance. In: 2018 international conference on intelligent systems and computer vision (ISCV). vol. 2018 May, 2018, p. 1–5. IEEE. https://doi.org/10.1109/ISACV.2018.8354064. Spanhel J, Sochor J, Makarov A. Vehicle fine-grained recognition based on convolutional neural networks for real-world applications. In: 2018 14th symposium on neural networks and applications (NEUREL). 2018, p. 1–5. IEEE. https://doi.org/10.1109/NEUREL.2018.8587012. Zhang S, Wu G, Costeira JP, Moura JM. FCN-rLSTM: Deep spatio-temporal neural networks for vehicle counting in city cameras. In: Proceedings of the IEEE international conference on computer vision 2017-Oct, 2017, p. 3687–96. https://doi.org/10.1109/ICCV.2017.396. Girshick R. Fast R-CNN. In: Proceedings of the IEEE international conference on computer vision 2015 Inter, 2015, p. 1440–8. https://doi.org/10.1109/ICCV.2015.169. Li C, Dobler G, Feng X, Wang Y. TrackNet: simultaneous object detection and tracking and its application in traffic video analysis. 2019, p. 1–10, arXiv:1902.01466. Lin TY, Goyal P, Girshick R, He K, Dollar P. Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision. 2017 Oct, p. 2999–3007. https://doi.org/10.1109/ICCV.2017.324. GeigerALenzPStillerCUrtasunRVision meets robotics: the KITTI datasetInt J Rob Res201332111231123710.1177/0278364913491297 Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z, Song Y, Guadarrama S, Murphy K. Speed/accuracy trade-offs for modern convolutional object detectors. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). 2017, p. 3296–7. IEEE. https://doi.org/10.1109/CVPR.2017.351, arXiv:1611.10012http://ieeexplore.ieee.org/document/8099834/. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time object detection. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). 2016, p. 779–88. IEEE. https://doi.org/10.1109/CVPR.2016.91, arXiv:1506.02640http://ieeexplore.ieee.org/document/7780460/. Xie S, Girshick R, Dollár P, Tu Z, He K. Aggregated residual transformations for deep neural networks. In: Proceedings—30th IEEE conference on computer vision and pattern recognition, CVPR 2017. 2017-Jan, 2016, p. 5987–95. https://doi.org/10.1109/CVPR.2017.634, arXiv:1611.05431. Luo W, Yang B, Urtasun R. Fast and furious: real time end-to-end 3D detection, tracking and motion forecasting with a single convolutional net. In: 2018 IEEE/CVF conference on computer vision and pattern recognition. 2018, p. 3569–77. IEEE. https://doi.org/10.1109/CVPR.2018.00376, https://www.scopus.com/inward/record.uri?eid=2-s2.0-84956766303&partnerID=40&md5=123d54008fbf65570432b00879599f56https://ieeexplore.ieee.org/document/8578474/. Massa F, Girshick R. maskrcnn-benchmark: Fast, modular reference implementation of instance segmentation and object detection algorithms in PyTorch; 2018. https://github.com/facebookresearch/maskrcnn-benchmark. LinTsung-YiMaireMichaelBelongieSergeHaysJamesPeronaPietroRamananDevaDollárPiotrZitnickC. LawrenceMicrosoft COCO: Common Objects in ContextComputer Vision – ECCV 20142014ChamSpringer International Publishing74075510.1007/978-3-319-10602-1_48 Liu S, Qi L, Qin H, Shi J, Jia J. Path aggregation network for instance segmentation. In: 2018 IEEE/CVF conference on computer vision and pattern recognition. 2018, p. 8759–68. IEEE. https://doi.org/10.1109/CVPR.2018.00913, https://ieeexplore.ieee.org/document/8579011/. Rezatofighi SH, Milan A, Zhang Z, Shi Q, Dick A, Reid I. Joint probabilistic data association revisited. In: 2015 IEEE international conference on computer vision (ICCV). 2015, p. 3047–55. No. December, IEEE. https://doi.org/10.1109/ICCV.2015.349, http://ieeexplore.ieee.org/document/7410706/. Brooks J. COCO annotator. 2019, https://github.com/jsbroks/coco-annotator/. Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, Franke U, Roth S, Schiele B. The cityscapes dataset for semantic urban scene understanding. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). 2016, p. 3213–23. IEEE. https://doi.org/10.1109/CVPR.2016.350, arXiv:1604.01685, http://ieeexplore.ieee.org/document/7780719/. LiSLinJLiGBaiTWangHPangYVehicle type detection based on deep learning in traffic sceneProcedia Comput Sci201813156457210.1016/j.procs.2018.04.281 Bewley A, Ge Z, Ott L, Ramos F, Upcroft B. Simple online and realtime tracking. In: 2016 IEEE international conference on image processing (ICIP). vol. 2016-Aug, p. 3464–8. IEEE. 2016. https://doi.org/10.1109/ICIP.2016.7533003, http://ieeexplore.ieee.org/document/7533003/. SangJWuZGuoPHuHXiangHZhangQCaiBAn improved YOLOv2 for vehicle detectionSensors20181812427210.3390/s18124272 RenSHeKGirshickRSunJFaster R-CNN: towards real-time object detection with region proposal networksIEEE Trans Pattern Anal Mach Intell20173961137114910.1109/TPAMI.2016.2577031 Sun X, Ding J, Dalla Chiara G, Cheah L, Cheung NM. A generic framework for monitoring local freight traffic movements using computer vision-based techniques. In: 5th IEEE international conference on models and technologies for intelligent transportation systems, MT-ITS 2017—proceedings. 2017; p. 63–8. https://doi.org/10.1109/MTITS.2017.8005592. HuXiaoweiXuXuemiaoXiaoYongjieChenHaoHeShengfengQinJingHengPheng-AnnSINet: A Scale-Insensitive Convolutional Neural Network for Fast Vehicle DetectionIEEE Transactions on Intelligent Transportation Systems20192031010101910.1109/TITS.2018.2838132 PeppaMVBellDKomarTXiaoWUrban traffic flow analysis based on deep learning car detection from cctv image seriesInt Arch Photogramm Remote Sens Spat Inf Sci201842456557210.5194/isprs-archives-XLII-4-499-2018 Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep association metric. In: 2017 IEEE international conference on image processing (ICIP). vol. 2017 Sept, 2017, p. 3645–9. IEEE. https://doi.org/10.1109/ICIP.2017.8296962. Tang Z, Wang G, Xiao H, Zheng A, Hwang JN. Single-camera and inter-camera vehicle tracking and 3D speed estimation based on fusion of visual and semantic features. In: 2018 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW). vol. 2018 June, 2018, p. 1080–7. IEEE. https://doi.org/10.1109/CVPRW.2018.00022, https://ieeexplore.ieee.org/document/8575384/. Wang L, Lu Y, Wang H, Zheng Y, Ye H, Xue X. Evolving boxes for fast vehicle detection. In: 2017 IEEE international conference on multimedia and Expo (ICME). 2017, p. 1135–40. IEEE. https://doi.org/10.1109/ICME.2017.8019461. Zhang S, Wu G, Costeira JP, Moura JM. Table of contents. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). vol. 2017-Jan, 2017, p. v–liii. IEEE. https://doi.org/10.1109/CVPR.2017.4, http://ieeexplore.ieee.org/document/8099487/. Wei Y, Song N, Ke L, Chang Mc, Lyu S. Street object detection/tracking for AI city traffic analysis. In: 2017 IEEE smartwor MM Rathore (234_CR25) 2018; 22 MV Peppa (234_CR24) 2018; 42 S Li (234_CR15) 2018; 131 Xiaowei Hu (234_CR10) 2019; 20 234_CR29 234_CR27 234_CR14 234_CR36 J Sang (234_CR30) 2018; 18 234_CR37 234_CR12 234_CR34 234_CR13 234_CR35 234_CR32 234_CR11 234_CR33 S Ren (234_CR28) 2017; 39 234_CR31 Tsung-Yi Lin (234_CR19) 2014 Wei Liu (234_CR21) 2016 234_CR18 234_CR16 234_CR38 234_CR17 234_CR39 234_CR2 234_CR1 234_CR26 234_CR23 234_CR43 A Geiger (234_CR6) 2013; 32 234_CR22 234_CR44 234_CR41 234_CR20 234_CR42 234_CR9 234_CR40 234_CR8 234_CR7 234_CR5 234_CR4 234_CR3 |
| References_xml | – reference: RathoreMMSonHAhmadAPaulAReal-time video processing for traffic control in smart city using Hadoop ecosystem with GPUsSoft Comput20182251533154410.1007/s00500-017-2942-7 – reference: RenSHeKGirshickRSunJFaster R-CNN: towards real-time object detection with region proposal networksIEEE Trans Pattern Anal Mach Intell20173961137114910.1109/TPAMI.2016.2577031 – reference: Anisimov D, Khanova T. Towards lightweight convolutional neural networks for object detection. In: 2017 14th IEEE international conference on advanced video and signal based surveillance (AVSS). 2017, p. 1–8. https://doi.org/10.1109/AVSS.2017.8078500, http://ieeexplore.ieee.org/document/8078500/, arXiv:1707.01395. – reference: Jung H, Choi MK, Jung J, Lee JH, Kwon S, Jung WY. ResNet-based vehicle classification and localization in traffic surveillance systems. In: 2017 IEEE conference on computer vision and pattern recognition workshops (CVPRW). 2017, p. 934–40. IEEE. https://doi.org/10.1109/CVPRW.2017.129, http://ieeexplore.ieee.org/document/8014863/. – reference: Bewley A, Ge Z, Ott L, Ramos F, Upcroft B. Simple online and realtime tracking. In: 2016 IEEE international conference on image processing (ICIP). vol. 2016-Aug, p. 3464–8. IEEE. 2016. https://doi.org/10.1109/ICIP.2016.7533003, http://ieeexplore.ieee.org/document/7533003/. – reference: Massa F, Girshick R. maskrcnn-benchmark: Fast, modular reference implementation of instance segmentation and object detection algorithms in PyTorch; 2018. https://github.com/facebookresearch/maskrcnn-benchmark. – reference: Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, Franke U, Roth S, Schiele B. The cityscapes dataset for semantic urban scene understanding. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). 2016, p. 3213–23. IEEE. https://doi.org/10.1109/CVPR.2016.350, arXiv:1604.01685, http://ieeexplore.ieee.org/document/7780719/. – reference: LiSLinJLiGBaiTWangHPangYVehicle type detection based on deep learning in traffic sceneProcedia Comput Sci201813156457210.1016/j.procs.2018.04.281 – reference: HuXiaoweiXuXuemiaoXiaoYongjieChenHaoHeShengfengQinJingHengPheng-AnnSINet: A Scale-Insensitive Convolutional Neural Network for Fast Vehicle DetectionIEEE Transactions on Intelligent Transportation Systems20192031010101910.1109/TITS.2018.2838132 – reference: LinTsung-YiMaireMichaelBelongieSergeHaysJamesPeronaPietroRamananDevaDollárPiotrZitnickC. LawrenceMicrosoft COCO: Common Objects in ContextComputer Vision – ECCV 20142014ChamSpringer International Publishing74075510.1007/978-3-319-10602-1_48 – reference: Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep association metric. In: 2017 IEEE international conference on image processing (ICIP). vol. 2017 Sept, 2017, p. 3645–9. IEEE. https://doi.org/10.1109/ICIP.2017.8296962. – reference: Kim C, Li F, Ciptadi A, Rehg JM. Multiple hypothesis tracking revisited. In: 2015 IEEE international conference on computer vision (ICCV). vol. 22. 2015, p. 4696–704. IEEE. https://doi.org/10.1109/ICCV.2015.533, http://ieeexplore.ieee.org/document/7410890/. – reference: Sommer L, Acatay O, Schumann A, Beyerer J. Ensemble of two-stage regression based detectors for accurate vehicle detection in traffic surveillance data. 2019, p. 1–6. https://doi.org/10.1109/avss.2018.8639149. – reference: GeigerALenzPStillerCUrtasunRVision meets robotics: the KITTI datasetInt J Rob Res201332111231123710.1177/0278364913491297 – reference: Zhang S, Wu G, Costeira JP, Moura JM. FCN-rLSTM: Deep spatio-temporal neural networks for vehicle counting in city cameras. In: Proceedings of the IEEE international conference on computer vision 2017-Oct, 2017, p. 3687–96. https://doi.org/10.1109/ICCV.2017.396. – reference: Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z, Song Y, Guadarrama S, Murphy K. Speed/accuracy trade-offs for modern convolutional object detectors. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). 2017, p. 3296–7. IEEE. https://doi.org/10.1109/CVPR.2017.351, arXiv:1611.10012http://ieeexplore.ieee.org/document/8099834/. – reference: Spanhel J, Sochor J, Makarov A. Vehicle fine-grained recognition based on convolutional neural networks for real-world applications. In: 2018 14th symposium on neural networks and applications (NEUREL). 2018, p. 1–5. IEEE. https://doi.org/10.1109/NEUREL.2018.8587012. – reference: Redmon J, Farhadi A. YOLO9000: Better, faster, stronger. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). 2017, p. 6517–25. IEEE. https://doi.org/10.1109/CVPR.2017.690, arXiv:1612.08242http://ieeexplore.ieee.org/document/8100173/. – reference: Wen L, Du D, Cai Z, Lei Z, Chang MC, Qi H, Lim J, Yang MH, Lyu S. UA-DETRAC: a new benchmark and protocol for multi-object detection and tracking. 2015. arXiv:1511.04136. – reference: Xie S, Girshick R, Dollár P, Tu Z, He K. Aggregated residual transformations for deep neural networks. In: Proceedings—30th IEEE conference on computer vision and pattern recognition, CVPR 2017. 2017-Jan, 2016, p. 5987–95. https://doi.org/10.1109/CVPR.2017.634, arXiv:1611.05431. – reference: He K, Gkioxari G, Dollar P, Girshick R. Mask R-CNN. In: 2017 IEEE international conference on computer vision (ICCV). vol. 2017 Oct, 2017, p. 2980–8. IEEE. https://doi.org/10.1109/ICCV.2017.322, http://ieeexplore.ieee.org/document/8237584/. – reference: Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accu- rate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2012, p. 580–7, http://arxiv.org/pdf/1311.2524v3.pdf. – reference: Liu S, Qi L, Qin H, Shi J, Jia J. Path aggregation network for instance segmentation. In: 2018 IEEE/CVF conference on computer vision and pattern recognition. 2018, p. 8759–68. IEEE. https://doi.org/10.1109/CVPR.2018.00913, https://ieeexplore.ieee.org/document/8579011/. – reference: PeppaMVBellDKomarTXiaoWUrban traffic flow analysis based on deep learning car detection from cctv image seriesInt Arch Photogramm Remote Sens Spat Inf Sci201842456557210.5194/isprs-archives-XLII-4-499-2018 – reference: LiuWeiAnguelovDragomirErhanDumitruSzegedyChristianReedScottFuCheng-YangBergAlexander C.SSD: Single Shot MultiBox DetectorComputer Vision – ECCV 20162016ChamSpringer International Publishing213710.1007/978-3-319-46448-0_2 – reference: Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time object detection. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). 2016, p. 779–88. IEEE. https://doi.org/10.1109/CVPR.2016.91, arXiv:1506.02640http://ieeexplore.ieee.org/document/7780460/. – reference: Chu P, Ling H. FAMNet: Joint learning of feature, affinity and multi-dimensional assignment for online multiple object tracking. 2019. arXiv:1811.07258arXiv:1904.04989. – reference: Sun X, Ding J, Dalla Chiara G, Cheah L, Cheung NM. A generic framework for monitoring local freight traffic movements using computer vision-based techniques. In: 5th IEEE international conference on models and technologies for intelligent transportation systems, MT-ITS 2017—proceedings. 2017; p. 63–8. https://doi.org/10.1109/MTITS.2017.8005592. – reference: Wang X, Cheng P, Liu X, Uzochukwu B. Focal loss dense detector for vehicle surveillance. In: 2018 international conference on intelligent systems and computer vision (ISCV). vol. 2018 May, 2018, p. 1–5. IEEE. https://doi.org/10.1109/ISACV.2018.8354064. – reference: Rezatofighi SH, Milan A, Zhang Z, Shi Q, Dick A, Reid I. Joint probabilistic data association revisited. In: 2015 IEEE international conference on computer vision (ICCV). 2015, p. 3047–55. No. December, IEEE. https://doi.org/10.1109/ICCV.2015.349, http://ieeexplore.ieee.org/document/7410706/. – reference: Zhang S, Wu G, Costeira JP, Moura JM. Table of contents. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). vol. 2017-Jan, 2017, p. v–liii. IEEE. https://doi.org/10.1109/CVPR.2017.4, http://ieeexplore.ieee.org/document/8099487/. – reference: Lin TY, Dollar P, Girshick R, He K, Hariharan B, Belongie S. Feature pyramid networks for object detection. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). vol. 2017 Jan, 2017, p. 936–44. IEEE. https://doi.org/10.1109/CVPR.2017.106, http://ieeexplore.ieee.org/document/8099589/. – reference: Luo W, Yang B, Urtasun R. Fast and furious: real time end-to-end 3D detection, tracking and motion forecasting with a single convolutional net. In: 2018 IEEE/CVF conference on computer vision and pattern recognition. 2018, p. 3569–77. IEEE. https://doi.org/10.1109/CVPR.2018.00376, https://www.scopus.com/inward/record.uri?eid=2-s2.0-84956766303&partnerID=40&md5=123d54008fbf65570432b00879599f56https://ieeexplore.ieee.org/document/8578474/. – reference: Sochor J, Špaňhel J, Herout A. BoxCars: improving vehicle fine-grained recognition using 3D bounding boxes in traffic surveillance. 2017, p. 1–12. arXiv:1703.00686. – reference: Girshick R. Fast R-CNN. In: Proceedings of the IEEE international conference on computer vision 2015 Inter, 2015, p. 1440–8. https://doi.org/10.1109/ICCV.2015.169. – reference: Tang Z, Wang G, Xiao H, Zheng A, Hwang JN. Single-camera and inter-camera vehicle tracking and 3D speed estimation based on fusion of visual and semantic features. In: 2018 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW). vol. 2018 June, 2018, p. 1080–7. IEEE. https://doi.org/10.1109/CVPRW.2018.00022, https://ieeexplore.ieee.org/document/8575384/. – reference: Lin TY, Goyal P, Girshick R, He K, Dollar P. Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision. 2017 Oct, p. 2999–3007. https://doi.org/10.1109/ICCV.2017.324. – reference: SangJWuZGuoPHuHXiangHZhangQCaiBAn improved YOLOv2 for vehicle detectionSensors20181812427210.3390/s18124272 – reference: Wang L, Lu Y, Wang H, Zheng Y, Ye H, Xue X. Evolving boxes for fast vehicle detection. In: 2017 IEEE international conference on multimedia and Expo (ICME). 2017, p. 1135–40. IEEE. https://doi.org/10.1109/ICME.2017.8019461. – reference: Li C, Dobler G, Feng X, Wang Y. TrackNet: simultaneous object detection and tracking and its application in traffic video analysis. 2019, p. 1–10, arXiv:1902.01466. – reference: Wei Y, Song N, Ke L, Chang Mc, Lyu S. Street object detection/tracking for AI city traffic analysis. In: 2017 IEEE smartworld, ubiquitous intelligence & computing, advanced & trusted computed, scalable computing & communications, cloud & big data computing, internet of people and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). 2017, p. 1–5. No. i. IEEE. https://doi.org/10.1109/UIC-ATC.2017.8397669. – reference: Li S. 3D-DETNet: a single stage video-based vehicle detector. 2018, arXiv:1801.01769. – reference: Brooks J. COCO annotator. 2019, https://github.com/jsbroks/coco-annotator/. – reference: Zhu F, Lu Y, Ying N, Giakos G. Fast vehicle detection based on evolving convolutional neural network. In: 2017 IEEE international conference on imaging systems and techniques (IST). vol. 2018-Jan, 2017, p. 1–4. IEEE. https://doi.org/10.1109/IST.2017.8261505. – start-page: 21 volume-title: Computer Vision – ECCV 2016 year: 2016 ident: 234_CR21 doi: 10.1007/978-3-319-46448-0_2 – ident: 234_CR3 – ident: 234_CR16 doi: 10.1117/12.2502012 – ident: 234_CR23 – ident: 234_CR27 doi: 10.1109/CVPR.2017.690 – ident: 234_CR7 doi: 10.1109/ICCV.2015.169 – volume: 42 start-page: 565 issue: 4 year: 2018 ident: 234_CR24 publication-title: Int Arch Photogramm Remote Sens Spat Inf Sci doi: 10.5194/isprs-archives-XLII-4-499-2018 – ident: 234_CR41 doi: 10.1109/CVPR.2017.634 – ident: 234_CR5 doi: 10.1109/CVPR.2016.350 – ident: 234_CR35 doi: 10.1109/CVPRW.2018.00022 – ident: 234_CR17 doi: 10.1109/CVPR.2017.106 – ident: 234_CR36 doi: 10.1109/ICME.2017.8019461 – ident: 234_CR34 doi: 10.1109/MTITS.2017.8005592 – volume: 20 start-page: 1010 issue: 3 year: 2019 ident: 234_CR10 publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2018.2838132 – volume: 39 start-page: 1137 issue: 6 year: 2017 ident: 234_CR28 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2016.2577031 – volume: 18 start-page: 4272 issue: 12 year: 2018 ident: 234_CR30 publication-title: Sensors doi: 10.3390/s18124272 – ident: 234_CR18 doi: 10.1109/ICCV.2017.324 – ident: 234_CR1 doi: 10.1109/AVSS.2017.8078500 – ident: 234_CR26 doi: 10.1109/CVPR.2016.91 – ident: 234_CR37 doi: 10.1109/ISACV.2018.8354064 – ident: 234_CR40 doi: 10.1109/ICIP.2017.8296962 – ident: 234_CR43 doi: 10.1109/CVPR.2017.4 – ident: 234_CR8 – ident: 234_CR11 doi: 10.1109/CVPR.2017.351 – volume: 22 start-page: 1533 issue: 5 year: 2018 ident: 234_CR25 publication-title: Soft Comput doi: 10.1007/s00500-017-2942-7 – ident: 234_CR44 doi: 10.1109/IST.2017.8261505 – ident: 234_CR14 – ident: 234_CR39 – start-page: 740 volume-title: Computer Vision – ECCV 2014 year: 2014 ident: 234_CR19 doi: 10.1007/978-3-319-10602-1_48 – ident: 234_CR29 doi: 10.1109/ICCV.2015.349 – ident: 234_CR4 doi: 10.1109/ICCV.2019.00627 – ident: 234_CR32 doi: 10.1109/avss.2018.8639149 – ident: 234_CR2 doi: 10.1109/ICIP.2016.7533003 – ident: 234_CR9 doi: 10.1109/ICCV.2017.322 – ident: 234_CR13 doi: 10.1109/ICCV.2015.533 – volume: 131 start-page: 564 year: 2018 ident: 234_CR15 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2018.04.281 – ident: 234_CR33 doi: 10.1109/NEUREL.2018.8587012 – volume: 32 start-page: 1231 issue: 11 year: 2013 ident: 234_CR6 publication-title: Int J Rob Res doi: 10.1177/0278364913491297 – ident: 234_CR31 – ident: 234_CR38 doi: 10.1109/UIC-ATC.2017.8397669 – ident: 234_CR20 doi: 10.1109/CVPR.2018.00913 – ident: 234_CR22 doi: 10.1109/CVPR.2018.00376 – ident: 234_CR12 doi: 10.1109/CVPRW.2017.129 – ident: 234_CR42 doi: 10.1109/ICCV.2017.396 |
| SSID | ssj0001340564 |
| Score | 2.4367597 |
| Snippet | This study addresses the problem of traffic flow estimation based on the data from a video surveillance camera. Target problem here is formulated as counting... Abstract This study addresses the problem of traffic flow estimation based on the data from a video surveillance camera. Target problem here is formulated as... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Anchors Big Data Cameras Classification Communications Engineering Computational Science and Engineering Computer Science Convolutional neural network Counting Data Data Mining and Knowledge Discovery Database Management Driving Electronic surveillance Estimation Heuristic Heuristic methods Information Storage and Retrieval Mathematical Applications in Computer Science Methodology Networks Optimization Surveillance Surveillance data Traffic Traffic analysis Traffic flow Traffic flow estimation Traffic surveillance Vehicle detection Vehicles Video data |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Global (OCUL) dbid: M0C link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07bxQxEB5BoKBJwktcSJALKpAV3z78qBCJiGiIKEBKZ3nHXoQU3YbbSyLl12fG580pSKSh9dqWtTOel-3vA3hfYUWZj0qyb9okyUo6GXRg1tTYN7HNkGeZbMKcntqzM_e9FNzGcq1ysonZUMcBuUZ-SGECeXIaWn26-COZNYpPVwuFxmN4wpENX-n7po43NZaawhHdlMPMudWHY8P4JZQ_O0nOqpE399xRRu2_F2r-dTqanc7Jzv8udxe2S7gpPq_14zk8SosXsDNROYiys1_CEfksBpMQ_flwLRh5Y_2kUXCdVvA1UsEPUUQQ_G5vEOPl8ioxYRGNFhi4svUKfp58-XH8VRZ6BYmNsyvZqq5NbYUhBR2dw5ayL42ojVGJ7UCoe6vaoFzCylrXUaZGK6m1SRZ1G1P9GrYWwyK9AREVxi7Gpg-RUm2NFANomoMSb4zUZmegpr_ssWCPMwXGuc85iNV-LRhPgvEsGH8zgw93Qy7WwBsPdT5i0d11ZMzs3DAsf_myBb2rTIrGmRqDaVTQnermFb8N7up-jl2Ywf4kSl828ug3cpzBx0kZNp__uaK9hyd7C8-qrIRWKrMPW6vlZTqAp3i1-j0u32UtvgVsKfja priority: 102 providerName: ProQuest – databaseName: SpringerOpen dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSx0xEB-seuhFq1Z8VksOnpRg3u7m66ii9CQ9KHgL2SQrBXlP3j4V_OudycsqSltor9nJEiYzmZlM5jcAB1WoMPIRiXeNTBxPScu98tQ1NXZNlBnyLDeb0JeX5ubG_ix13P3w2n1ISeaTOqu1Ucd9Q9AjGPpajnam4c-fYEWOjaV3fGelxCFfrNRIqJqSwfztzHc2KEP1v_MvP6REs6W5WP-vNX6BteJYspOFJGzAUppswvrQtIEVHd6CU7ROBBvBurvpEyOMjUXxIqMbWUYPRhmVnDDPqEJvyvqH2WOi1kQ4mwVPd1hf4fri_OrsBy-NFHhorJlzKVqZZBV88ipaGyTGWSoEpbVIpPG-7oyQXtgUKmNsizEZrqRWOpmgZEz1NixPppO0AyyKENsYm85HDKpVQGuv8B8YYoeIY2YEYmCtCwVlnJpd3LkcbRjlFjxyyCNHPHLPIzh8nXK_gNj4G_Ep7dcrIaFj54Hp7NYVZXO20ilqq-vgdSO8akU7rqgKuK27cWj9CPaG3XZFZXuHfii6iiib1QiOht19-_zHFe3-E_U3-Fxl8TBc6D1Yns8e0j6shsf5r372PUvyC6wy7o4 priority: 102 providerName: Springer Nature |
| Title | Traffic flow estimation with data from a video surveillance camera |
| URI | https://link.springer.com/article/10.1186/s40537-019-0234-z https://www.proquest.com/docview/2269295972 https://doaj.org/article/927ed7973ca740a6b0b120204b3f1cba |
| Volume | 6 |
| WOSCitedRecordID | wos000599138700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: 7WY dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global (OCUL) customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: M0C dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: P5Z dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: K7- dateStart: 20141201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: PIMPY dateStart: 20141201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Social Science Database customDbUrl: eissn: 2196-1115 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: M2R dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/socscijournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2196-1115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340564 issn: 2196-1115 databaseCode: C24 dateStart: 20141201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB-0-uCL3-LVeuTBJyU0l83m49E7WhTpsYhi60vIJlkolDu5u1boX9-Z7F5tBfXFl8BukmWYTHbml4_fALyRUSLyEZl3qs4c_5KOBx0oa2rqVKoL5VlJNmHmc3t87Jobqb7oTFhPD9wrbt9Jk5NxporBKBF0K9qJpBudbdVNYltCI2HcDTBVVlcqDES0GrYxJ1bvrxUxlyBydhzdlOKXtxxR4eu_FWT-ti9a3M3hY3g4xInsfS_fE7iTF0_h0TYHAxum5DOYorMhFgjWnS1_MqLM6O8iMlpgZXT-k9ENEhYYXbhbsvX56iJTpiHszWKgJann8PXw4MvsAx_yIvConN3wWrR1rmUMOejkXKwRNukYtTEi0wQOVWdFHYTLUVrrWoRYKEmlTbZR1ylXL2BnsVzkl8CSiKlNSXUhIUbWEZ23xm8gYo4J39kRiK2SfBxIwyl3xZkv4MFq3-vVo1496dVfjuDtdZcfPWPG3xpPSfPXDYnsurxAE_CDCfh_mcAI9rbj5ocZuPYYVmLkh6YmR_BuO5a_qv8o0e7_kOgVPJDF0iwXZg92Nqvz_Brux4vN6Xo1hrvm28kY7k0P5s1nfJpJNS7mi-Unw7E8EjMqJdU29Xds23w8ak6uAPhV83k |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXyqtioYAPcAFZ9TqJHwdUtUDVasuKQ5F6M47tIKRqUzbbVvRH8RuZyaOrItFbD1wd20riz_OyZz6A1zJI9HxE4lVeJI5S0nKvPLGmxiqPRVvyrCWb0NOpOTqyX1bg95ALQ9cqB5nYCupYB4qRb6KZgJoch8qtk5-cWKPodHWg0OhgMUm_ztFla97vf8T1fSPl7qfDD3u8ZxXgIbdmwQtRFqmQwSevorWhQKdDhaC0Fong77PKiMILm4I0xpbooPiqypROJqgipgznvQW388xo2lcTzZcxnQzNH5X3h6djozabnOqloL9uOSrHnF9cUX8tS8AV0_av09hWye2u_W-_5wHc781ptt3h_yGspNkjWBuoKlgvuR7DDupkKpbBquP6nFFlkS5lk1EcmtE1WUaJNswzykusWXM6P0tEyISjWfAUuXsCX2_kS9ZhdVbP0lNgUYRYxphXPmo0aQLaOArnsEKHiG1mBGJYVRf62upE8XHsWh_LKNcBwSEQHAHBXYzg7eWQk66wyHWddwgqlx2pJnjbUM-_u17EOCt1itrqLHidC69KUY4l5T6XWTUOpR_BxgAd1wuqxi1xM4J3A_iWj__5Rs-un-wV3N07_HzgDvank-dwT7YbwHChN2B1MT9NL-BOOFv8aOYv2x3E4NtNY_IPSFBVvg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSx0xEB-qLaWXWltLX7U1h54swbgf-Tj60UeL8vBQwVvIJlkpyHvy9qngX-9MNmuxqFC8ZidLmMxkZjKZ3wB8K3yBkY-IvK3qyPGUNNxJR11TQ1uFOkGepWYTajLRp6fmOPc57YbX7kNKsq9pIJSm6WL7IrS9imu53VUEQ4JhsOFocyp-swQvKSFFIr6fyx3SJUuJhLLK2cwHZ96zRwm2_56v-U96NFmd8cqz1_sO3maHk-32ErIKL-L0PawMzRxY1u0PsIdWi-AkWHs-u2aEvdEXNTK6qWX0kJRRKQpzjCr3Zqy7nF9FalmEs5l3dLe1BifjH7_3f_LcYIH7yugFr0VTx7rwLjoZjPE1xl_Se6mUiHQSuLLVonbCRF9obRqM1XAlpVRRe1mHWH6E5elsGj8BC8KHJoSqdQGDbenRC5D4Dwy9fcAxPQIxsNn6jD5OTTDObYpCtLQ9jyzyyBKP7M0Itu6mXPTQG08R79He3RESanYamM3PbFZCawoVgzKq9E5VwslGNDsFVQc3ZbvjGzeCjWHnbVblzqJ_ii4kymwxgu_DTv_9_OiKPv8X9Sa8Pj4Y26Nfk8N1eFMkSdFcqA1YXswv4xd45a8Wf7r51yTgt_QH-lc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traffic+flow+estimation+with+data+from+a+video+surveillance+camera&rft.jtitle=Journal+of+big+data&rft.au=Aleksandr+Fedorov&rft.au=Kseniia+Nikolskaia&rft.au=Sergey+Ivanov&rft.au=Vladimir+Shepelev&rft.date=2019-08-07&rft.pub=SpringerOpen&rft.eissn=2196-1115&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1186%2Fs40537-019-0234-z&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_927ed7973ca740a6b0b120204b3f1cba |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-1115&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-1115&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-1115&client=summon |