Traffic flow estimation with data from a video surveillance camera

This study addresses the problem of traffic flow estimation based on the data from a video surveillance camera. Target problem here is formulated as counting and classifying vehicles by their driving direction. This subject area is in early development, and the focus of this work is only one of the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of big data Vol. 6; no. 1; pp. 1 - 15
Main Authors: Fedorov, Aleksandr, Nikolskaia, Kseniia, Ivanov, Sergey, Shepelev, Vladimir, Minbaleev, Alexey
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 07.08.2019
Springer Nature B.V
SpringerOpen
Subjects:
ISSN:2196-1115, 2196-1115
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study addresses the problem of traffic flow estimation based on the data from a video surveillance camera. Target problem here is formulated as counting and classifying vehicles by their driving direction. This subject area is in early development, and the focus of this work is only one of the busiest crossroads in city Chelyabinsk, Russia. To solve the posed problem, we employed the state-of-the-art Faster R-CNN two-stage detector together with SORT tracker. A simple regions-based heuristic algorithm was used to classify vehicles movement direction. The baseline performance of the Faster R-CNN was enhanced by several modifications: focal loss, adaptive feature pooling, additional mask branch, and anchors optimization. To train and evaluate detector, we gathered 982 video frames with more than 60,000 objects presented in various conditions. The experimental results show that the proposed system can count vehicles and classify their driving direction during weekday rush hours with mean absolute percentage error that is less than 10%. The dataset presented here might be further used by other researches as a challenging test or additional training data.
AbstractList This study addresses the problem of traffic flow estimation based on the data from a video surveillance camera. Target problem here is formulated as counting and classifying vehicles by their driving direction. This subject area is in early development, and the focus of this work is only one of the busiest crossroads in city Chelyabinsk, Russia. To solve the posed problem, we employed the state-of-the-art Faster R-CNN two-stage detector together with SORT tracker. A simple regions-based heuristic algorithm was used to classify vehicles movement direction. The baseline performance of the Faster R-CNN was enhanced by several modifications: focal loss, adaptive feature pooling, additional mask branch, and anchors optimization. To train and evaluate detector, we gathered 982 video frames with more than 60,000 objects presented in various conditions. The experimental results show that the proposed system can count vehicles and classify their driving direction during weekday rush hours with mean absolute percentage error that is less than 10%. The dataset presented here might be further used by other researches as a challenging test or additional training data.
Abstract This study addresses the problem of traffic flow estimation based on the data from a video surveillance camera. Target problem here is formulated as counting and classifying vehicles by their driving direction. This subject area is in early development, and the focus of this work is only one of the busiest crossroads in city Chelyabinsk, Russia. To solve the posed problem, we employed the state-of-the-art Faster R-CNN two-stage detector together with SORT tracker. A simple regions-based heuristic algorithm was used to classify vehicles movement direction. The baseline performance of the Faster R-CNN was enhanced by several modifications: focal loss, adaptive feature pooling, additional mask branch, and anchors optimization. To train and evaluate detector, we gathered 982 video frames with more than 60,000 objects presented in various conditions. The experimental results show that the proposed system can count vehicles and classify their driving direction during weekday rush hours with mean absolute percentage error that is less than 10%. The dataset presented here might be further used by other researches as a challenging test or additional training data.
ArticleNumber 73
Author Nikolskaia, Kseniia
Minbaleev, Alexey
Fedorov, Aleksandr
Ivanov, Sergey
Shepelev, Vladimir
Author_xml – sequence: 1
  givenname: Aleksandr
  orcidid: 0000-0002-8829-3447
  surname: Fedorov
  fullname: Fedorov, Aleksandr
  email: canxes@mail.ru
  organization: South Ural State University
– sequence: 2
  givenname: Kseniia
  orcidid: 0000-0001-8335-2084
  surname: Nikolskaia
  fullname: Nikolskaia, Kseniia
  organization: South Ural State University
– sequence: 3
  givenname: Sergey
  orcidid: 0000-0002-1008-6202
  surname: Ivanov
  fullname: Ivanov, Sergey
  organization: South Ural State University
– sequence: 4
  givenname: Vladimir
  surname: Shepelev
  fullname: Shepelev, Vladimir
  organization: South Ural State University
– sequence: 5
  givenname: Alexey
  surname: Minbaleev
  fullname: Minbaleev, Alexey
  organization: The Institute of State and Law of The Russian Academy of Sciences
BookMark eNp9kMFOHSEUhkljk1rrA3RH4nraAwwwLK1prYmJG7smZ5gzlpu5g4W5mvr0omO0aaIrCDnff36-j2xvTjMx9lnAFyE687W0oJVtQLgGpGqbu3dsXwpnGiGE3vvn_oEdlrIBAKEqYtp99u0y4zjGwMcp3XIqS9ziEtPMb-Pymw-4IB9z2nLkN3GgxMsu31CcJpwD8YBbyviJvR9xKnT4dB6wXz--X578bM4vTs9Ojs-b0LpuaTT0mrQMSGgG54KWnTQhGGuBLChANXagERwF2XWud7KtzZSx1AWjB1IH7GzNHRJu_HWuTfNfnzD6x4eUrzzmJYaJvJOWBuusCmhbQNNDLyRIaHs1itBjzTpas65z-rOr3_abtMtzre-lNE467aysU2KdCjmVkml83irAP5j3q3lfzfsH8_6uMvY_JsTlUemSMU5vknIlS90yX1F-6fQ6dA8bWpkY
CitedBy_id crossref_primary_10_3390_asi5010023
crossref_primary_10_3390_s22030906
crossref_primary_10_1016_j_trpro_2020_10_029
crossref_primary_10_1142_S0218194025500159
crossref_primary_10_52468_2542_1514_2021_5_4__5_19
crossref_primary_10_3390_electronics11152290
crossref_primary_10_1155_2020_8828008
crossref_primary_10_3390_futuretransp3020041
crossref_primary_10_1111_mice_13323
crossref_primary_10_3390_sym15040779
crossref_primary_10_1016_j_envres_2022_114393
crossref_primary_10_1080_01924036_2020_1744027
crossref_primary_10_3390_en13082036
crossref_primary_10_1007_s13042_024_02190_8
crossref_primary_10_1016_j_trc_2024_104743
crossref_primary_10_1016_j_trpro_2020_10_024
crossref_primary_10_3390_electronics12173567
crossref_primary_10_1287_trsc_2023_0493
crossref_primary_10_1007_s00521_023_09049_z
crossref_primary_10_1007_s42421_023_00086_7
crossref_primary_10_1007_s11071_025_11807_8
crossref_primary_10_1007_s41062_021_00718_3
crossref_primary_10_1016_j_neucom_2022_04_087
crossref_primary_10_1016_j_ijleo_2022_170418
crossref_primary_10_1109_TITS_2024_3411647
crossref_primary_10_1016_j_trpro_2023_02_074
crossref_primary_10_1109_TITS_2022_3147770
crossref_primary_10_1016_j_isprsjprs_2022_07_022
crossref_primary_10_1080_21680566_2024_2380915
crossref_primary_10_3390_en13071765
crossref_primary_10_3390_s21134564
crossref_primary_10_1155_2022_7690309
crossref_primary_10_1785_0220240222
crossref_primary_10_1016_j_trip_2025_101490
crossref_primary_10_1016_j_isprsjprs_2024_06_012
crossref_primary_10_1051_bioconf_202413802035
crossref_primary_10_3390_rs12223844
crossref_primary_10_1109_TITS_2023_3258683
crossref_primary_10_1109_ACCESS_2024_3510746
crossref_primary_10_1016_j_trd_2025_104688
crossref_primary_10_1109_TITS_2023_3264796
crossref_primary_10_1186_s40537_020_00358_x
crossref_primary_10_1109_ACCESS_2024_3503368
crossref_primary_10_1145_3699731
crossref_primary_10_1186_s40537_021_00542_7
crossref_primary_10_1016_j_ejcon_2025_101291
crossref_primary_10_3390_math10020282
crossref_primary_10_1007_s00542_022_05287_8
crossref_primary_10_1155_2021_4438861
crossref_primary_10_1109_ACCESS_2025_3539713
crossref_primary_10_3390_drones9090637
crossref_primary_10_1007_s00034_025_03197_4
crossref_primary_10_3390_math10111887
crossref_primary_10_1109_ACCESS_2025_3596026
crossref_primary_10_1007_s11042_023_16629_7
crossref_primary_10_1016_j_eswa_2022_119366
crossref_primary_10_1109_JSTARS_2023_3249216
crossref_primary_10_1016_j_trpro_2023_02_059
crossref_primary_10_1051_e3sconf_202130901099
crossref_primary_10_3390_math10244829
crossref_primary_10_3390_s20247071
crossref_primary_10_1186_s40537_024_00932_7
crossref_primary_10_3390_app11125619
crossref_primary_10_1145_3744649
crossref_primary_10_3390_s21062052
crossref_primary_10_1038_s41598_022_24474_1
Cites_doi 10.1007/978-3-319-46448-0_2
10.1117/12.2502012
10.1109/CVPR.2017.690
10.1109/ICCV.2015.169
10.5194/isprs-archives-XLII-4-499-2018
10.1109/CVPR.2017.634
10.1109/CVPR.2016.350
10.1109/CVPRW.2018.00022
10.1109/CVPR.2017.106
10.1109/ICME.2017.8019461
10.1109/MTITS.2017.8005592
10.1109/TITS.2018.2838132
10.1109/TPAMI.2016.2577031
10.3390/s18124272
10.1109/ICCV.2017.324
10.1109/AVSS.2017.8078500
10.1109/CVPR.2016.91
10.1109/ISACV.2018.8354064
10.1109/ICIP.2017.8296962
10.1109/CVPR.2017.4
10.1109/CVPR.2017.351
10.1007/s00500-017-2942-7
10.1109/IST.2017.8261505
10.1007/978-3-319-10602-1_48
10.1109/ICCV.2015.349
10.1109/ICCV.2019.00627
10.1109/avss.2018.8639149
10.1109/ICIP.2016.7533003
10.1109/ICCV.2017.322
10.1109/ICCV.2015.533
10.1016/j.procs.2018.04.281
10.1109/NEUREL.2018.8587012
10.1177/0278364913491297
10.1109/UIC-ATC.2017.8397669
10.1109/CVPR.2018.00913
10.1109/CVPR.2018.00376
10.1109/CVPRW.2017.129
10.1109/ICCV.2017.396
ContentType Journal Article
Copyright The Author(s) 2019
Journal of Big Data is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: Journal of Big Data is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
0-V
3V.
7WY
7WZ
7XB
87Z
88J
8AL
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
M0C
M0N
M2R
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
POGQB
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
Q9U
DOA
DOI 10.1186/s40537-019-0234-z
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Social Sciences Premium Collection
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Social Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Global
Computing Database
Social Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest Sociology & Social Sciences Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Social Science Journals (Alumni Edition)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Sociology & Social Sciences Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest Social Science Journals
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2196-1115
EndPage 15
ExternalDocumentID oai_doaj_org_article_927ed7973ca740a6b0b120204b3f1cba
10_1186_s40537_019_0234_z
GrantInformation_xml – fundername: Government of the Russian Federation
  grantid: 02.A03.21.0011
GroupedDBID 0-V
0R~
3V.
5VS
7WY
8FE
8FG
8FL
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABFTD
ABUWG
ACACY
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
AFGXO
AFKRA
AFPKN
AHBYD
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMKLP
ARALO
ARAPS
ASPBG
AZQEC
BCNDV
BENPR
BEZIV
BGLVJ
BPHCQ
C24
C6C
CCPQU
DWQXO
EBLON
EBS
EJD
FRNLG
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ISR
ITC
K60
K6V
K6~
K7-
M0C
M0N
M2R
M~E
OK1
P62
PIMPY
PQBIZ
PQBZA
PQQKQ
PROAC
RSV
SOJ
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
PRQQA
7XB
8AL
8FK
JQ2
L.-
PKEHL
POGQB
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c498t-50b5e52caea6d99c52826cc6770e7030a3f805a09ec2889b924aff367e8c65de3
IEDL.DBID C24
ISICitedReferencesCount 86
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000599138700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2196-1115
IngestDate Fri Oct 03 12:50:36 EDT 2025
Fri Nov 14 18:49:42 EST 2025
Tue Nov 18 20:51:55 EST 2025
Sat Nov 29 02:28:03 EST 2025
Fri Feb 21 02:36:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Vehicle detection
Traffic analysis
Traffic flow estimation
Convolutional neural network
Surveillance data
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c498t-50b5e52caea6d99c52826cc6770e7030a3f805a09ec2889b924aff367e8c65de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8335-2084
0000-0002-1008-6202
0000-0002-8829-3447
OpenAccessLink https://link.springer.com/10.1186/s40537-019-0234-z
PQID 2269295972
PQPubID 2046140
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_927ed7973ca740a6b0b120204b3f1cba
proquest_journals_2269295972
crossref_primary_10_1186_s40537_019_0234_z
crossref_citationtrail_10_1186_s40537_019_0234_z
springer_journals_10_1186_s40537_019_0234_z
PublicationCentury 2000
PublicationDate 2019-08-07
PublicationDateYYYYMMDD 2019-08-07
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-07
  day: 07
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Journal of big data
PublicationTitleAbbrev J Big Data
PublicationYear 2019
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References Anisimov D, Khanova T. Towards lightweight convolutional neural networks for object detection. In: 2017 14th IEEE international conference on advanced video and signal based surveillance (AVSS). 2017, p. 1–8. https://doi.org/10.1109/AVSS.2017.8078500, http://ieeexplore.ieee.org/document/8078500/, arXiv:1707.01395.
Chu P, Ling H. FAMNet: Joint learning of feature, affinity and multi-dimensional assignment for online multiple object tracking. 2019. arXiv:1811.07258arXiv:1904.04989.
Li S. 3D-DETNet: a single stage video-based vehicle detector. 2018, arXiv:1801.01769.
Jung H, Choi MK, Jung J, Lee JH, Kwon S, Jung WY. ResNet-based vehicle classification and localization in traffic surveillance systems. In: 2017 IEEE conference on computer vision and pattern recognition workshops (CVPRW). 2017, p. 934–40. IEEE. https://doi.org/10.1109/CVPRW.2017.129, http://ieeexplore.ieee.org/document/8014863/.
Lin TY, Dollar P, Girshick R, He K, Hariharan B, Belongie S. Feature pyramid networks for object detection. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). vol. 2017 Jan, 2017, p. 936–44. IEEE. https://doi.org/10.1109/CVPR.2017.106, http://ieeexplore.ieee.org/document/8099589/.
Zhu F, Lu Y, Ying N, Giakos G. Fast vehicle detection based on evolving convolutional neural network. In: 2017 IEEE international conference on imaging systems and techniques (IST). vol. 2018-Jan, 2017, p. 1–4. IEEE. https://doi.org/10.1109/IST.2017.8261505.
Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accu- rate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2012, p. 580–7, http://arxiv.org/pdf/1311.2524v3.pdf.
Wen L, Du D, Cai Z, Lei Z, Chang MC, Qi H, Lim J, Yang MH, Lyu S. UA-DETRAC: a new benchmark and protocol for multi-object detection and tracking. 2015. arXiv:1511.04136.
He K, Gkioxari G, Dollar P, Girshick R. Mask R-CNN. In: 2017 IEEE international conference on computer vision (ICCV). vol. 2017 Oct, 2017, p. 2980–8. IEEE. https://doi.org/10.1109/ICCV.2017.322, http://ieeexplore.ieee.org/document/8237584/.
Kim C, Li F, Ciptadi A, Rehg JM. Multiple hypothesis tracking revisited. In: 2015 IEEE international conference on computer vision (ICCV). vol. 22. 2015, p. 4696–704. IEEE. https://doi.org/10.1109/ICCV.2015.533, http://ieeexplore.ieee.org/document/7410890/.
LiuWeiAnguelovDragomirErhanDumitruSzegedyChristianReedScottFuCheng-YangBergAlexander C.SSD: Single Shot MultiBox DetectorComputer Vision – ECCV 20162016ChamSpringer International Publishing213710.1007/978-3-319-46448-0_2
Sommer L, Acatay O, Schumann A, Beyerer J. Ensemble of two-stage regression based detectors for accurate vehicle detection in traffic surveillance data. 2019, p. 1–6. https://doi.org/10.1109/avss.2018.8639149.
RathoreMMSonHAhmadAPaulAReal-time video processing for traffic control in smart city using Hadoop ecosystem with GPUsSoft Comput20182251533154410.1007/s00500-017-2942-7
Wang X, Cheng P, Liu X, Uzochukwu B. Focal loss dense detector for vehicle surveillance. In: 2018 international conference on intelligent systems and computer vision (ISCV). vol. 2018 May, 2018, p. 1–5. IEEE. https://doi.org/10.1109/ISACV.2018.8354064.
Spanhel J, Sochor J, Makarov A. Vehicle fine-grained recognition based on convolutional neural networks for real-world applications. In: 2018 14th symposium on neural networks and applications (NEUREL). 2018, p. 1–5. IEEE. https://doi.org/10.1109/NEUREL.2018.8587012.
Zhang S, Wu G, Costeira JP, Moura JM. FCN-rLSTM: Deep spatio-temporal neural networks for vehicle counting in city cameras. In: Proceedings of the IEEE international conference on computer vision 2017-Oct, 2017, p. 3687–96. https://doi.org/10.1109/ICCV.2017.396.
Girshick R. Fast R-CNN. In: Proceedings of the IEEE international conference on computer vision 2015 Inter, 2015, p. 1440–8. https://doi.org/10.1109/ICCV.2015.169.
Li C, Dobler G, Feng X, Wang Y. TrackNet: simultaneous object detection and tracking and its application in traffic video analysis. 2019, p. 1–10, arXiv:1902.01466.
Lin TY, Goyal P, Girshick R, He K, Dollar P. Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision. 2017 Oct, p. 2999–3007. https://doi.org/10.1109/ICCV.2017.324.
GeigerALenzPStillerCUrtasunRVision meets robotics: the KITTI datasetInt J Rob Res201332111231123710.1177/0278364913491297
Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z, Song Y, Guadarrama S, Murphy K. Speed/accuracy trade-offs for modern convolutional object detectors. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). 2017, p. 3296–7. IEEE. https://doi.org/10.1109/CVPR.2017.351, arXiv:1611.10012http://ieeexplore.ieee.org/document/8099834/.
Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time object detection. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). 2016, p. 779–88. IEEE. https://doi.org/10.1109/CVPR.2016.91, arXiv:1506.02640http://ieeexplore.ieee.org/document/7780460/.
Xie S, Girshick R, Dollár P, Tu Z, He K. Aggregated residual transformations for deep neural networks. In: Proceedings—30th IEEE conference on computer vision and pattern recognition, CVPR 2017. 2017-Jan, 2016, p. 5987–95. https://doi.org/10.1109/CVPR.2017.634, arXiv:1611.05431.
Luo W, Yang B, Urtasun R. Fast and furious: real time end-to-end 3D detection, tracking and motion forecasting with a single convolutional net. In: 2018 IEEE/CVF conference on computer vision and pattern recognition. 2018, p. 3569–77. IEEE. https://doi.org/10.1109/CVPR.2018.00376, https://www.scopus.com/inward/record.uri?eid=2-s2.0-84956766303&partnerID=40&md5=123d54008fbf65570432b00879599f56https://ieeexplore.ieee.org/document/8578474/.
Massa F, Girshick R. maskrcnn-benchmark: Fast, modular reference implementation of instance segmentation and object detection algorithms in PyTorch; 2018. https://github.com/facebookresearch/maskrcnn-benchmark.
LinTsung-YiMaireMichaelBelongieSergeHaysJamesPeronaPietroRamananDevaDollárPiotrZitnickC. LawrenceMicrosoft COCO: Common Objects in ContextComputer Vision – ECCV 20142014ChamSpringer International Publishing74075510.1007/978-3-319-10602-1_48
Liu S, Qi L, Qin H, Shi J, Jia J. Path aggregation network for instance segmentation. In: 2018 IEEE/CVF conference on computer vision and pattern recognition. 2018, p. 8759–68. IEEE. https://doi.org/10.1109/CVPR.2018.00913, https://ieeexplore.ieee.org/document/8579011/.
Rezatofighi SH, Milan A, Zhang Z, Shi Q, Dick A, Reid I. Joint probabilistic data association revisited. In: 2015 IEEE international conference on computer vision (ICCV). 2015, p. 3047–55. No. December, IEEE. https://doi.org/10.1109/ICCV.2015.349, http://ieeexplore.ieee.org/document/7410706/.
Brooks J. COCO annotator. 2019, https://github.com/jsbroks/coco-annotator/.
Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, Franke U, Roth S, Schiele B. The cityscapes dataset for semantic urban scene understanding. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). 2016, p. 3213–23. IEEE. https://doi.org/10.1109/CVPR.2016.350, arXiv:1604.01685, http://ieeexplore.ieee.org/document/7780719/.
LiSLinJLiGBaiTWangHPangYVehicle type detection based on deep learning in traffic sceneProcedia Comput Sci201813156457210.1016/j.procs.2018.04.281
Bewley A, Ge Z, Ott L, Ramos F, Upcroft B. Simple online and realtime tracking. In: 2016 IEEE international conference on image processing (ICIP). vol. 2016-Aug, p. 3464–8. IEEE. 2016. https://doi.org/10.1109/ICIP.2016.7533003, http://ieeexplore.ieee.org/document/7533003/.
SangJWuZGuoPHuHXiangHZhangQCaiBAn improved YOLOv2 for vehicle detectionSensors20181812427210.3390/s18124272
RenSHeKGirshickRSunJFaster R-CNN: towards real-time object detection with region proposal networksIEEE Trans Pattern Anal Mach Intell20173961137114910.1109/TPAMI.2016.2577031
Sun X, Ding J, Dalla Chiara G, Cheah L, Cheung NM. A generic framework for monitoring local freight traffic movements using computer vision-based techniques. In: 5th IEEE international conference on models and technologies for intelligent transportation systems, MT-ITS 2017—proceedings. 2017; p. 63–8. https://doi.org/10.1109/MTITS.2017.8005592.
HuXiaoweiXuXuemiaoXiaoYongjieChenHaoHeShengfengQinJingHengPheng-AnnSINet: A Scale-Insensitive Convolutional Neural Network for Fast Vehicle DetectionIEEE Transactions on Intelligent Transportation Systems20192031010101910.1109/TITS.2018.2838132
PeppaMVBellDKomarTXiaoWUrban traffic flow analysis based on deep learning car detection from cctv image seriesInt Arch Photogramm Remote Sens Spat Inf Sci201842456557210.5194/isprs-archives-XLII-4-499-2018
Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep association metric. In: 2017 IEEE international conference on image processing (ICIP). vol. 2017 Sept, 2017, p. 3645–9. IEEE. https://doi.org/10.1109/ICIP.2017.8296962.
Tang Z, Wang G, Xiao H, Zheng A, Hwang JN. Single-camera and inter-camera vehicle tracking and 3D speed estimation based on fusion of visual and semantic features. In: 2018 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW). vol. 2018 June, 2018, p. 1080–7. IEEE. https://doi.org/10.1109/CVPRW.2018.00022, https://ieeexplore.ieee.org/document/8575384/.
Wang L, Lu Y, Wang H, Zheng Y, Ye H, Xue X. Evolving boxes for fast vehicle detection. In: 2017 IEEE international conference on multimedia and Expo (ICME). 2017, p. 1135–40. IEEE. https://doi.org/10.1109/ICME.2017.8019461.
Zhang S, Wu G, Costeira JP, Moura JM. Table of contents. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). vol. 2017-Jan, 2017, p. v–liii. IEEE. https://doi.org/10.1109/CVPR.2017.4, http://ieeexplore.ieee.org/document/8099487/.
Wei Y, Song N, Ke L, Chang Mc, Lyu S. Street object detection/tracking for AI city traffic analysis. In: 2017 IEEE smartwor
MM Rathore (234_CR25) 2018; 22
MV Peppa (234_CR24) 2018; 42
S Li (234_CR15) 2018; 131
Xiaowei Hu (234_CR10) 2019; 20
234_CR29
234_CR27
234_CR14
234_CR36
J Sang (234_CR30) 2018; 18
234_CR37
234_CR12
234_CR34
234_CR13
234_CR35
234_CR32
234_CR11
234_CR33
S Ren (234_CR28) 2017; 39
234_CR31
Tsung-Yi Lin (234_CR19) 2014
Wei Liu (234_CR21) 2016
234_CR18
234_CR16
234_CR38
234_CR17
234_CR39
234_CR2
234_CR1
234_CR26
234_CR23
234_CR43
A Geiger (234_CR6) 2013; 32
234_CR22
234_CR44
234_CR41
234_CR20
234_CR42
234_CR9
234_CR40
234_CR8
234_CR7
234_CR5
234_CR4
234_CR3
References_xml – reference: RathoreMMSonHAhmadAPaulAReal-time video processing for traffic control in smart city using Hadoop ecosystem with GPUsSoft Comput20182251533154410.1007/s00500-017-2942-7
– reference: RenSHeKGirshickRSunJFaster R-CNN: towards real-time object detection with region proposal networksIEEE Trans Pattern Anal Mach Intell20173961137114910.1109/TPAMI.2016.2577031
– reference: Anisimov D, Khanova T. Towards lightweight convolutional neural networks for object detection. In: 2017 14th IEEE international conference on advanced video and signal based surveillance (AVSS). 2017, p. 1–8. https://doi.org/10.1109/AVSS.2017.8078500, http://ieeexplore.ieee.org/document/8078500/, arXiv:1707.01395.
– reference: Jung H, Choi MK, Jung J, Lee JH, Kwon S, Jung WY. ResNet-based vehicle classification and localization in traffic surveillance systems. In: 2017 IEEE conference on computer vision and pattern recognition workshops (CVPRW). 2017, p. 934–40. IEEE. https://doi.org/10.1109/CVPRW.2017.129, http://ieeexplore.ieee.org/document/8014863/.
– reference: Bewley A, Ge Z, Ott L, Ramos F, Upcroft B. Simple online and realtime tracking. In: 2016 IEEE international conference on image processing (ICIP). vol. 2016-Aug, p. 3464–8. IEEE. 2016. https://doi.org/10.1109/ICIP.2016.7533003, http://ieeexplore.ieee.org/document/7533003/.
– reference: Massa F, Girshick R. maskrcnn-benchmark: Fast, modular reference implementation of instance segmentation and object detection algorithms in PyTorch; 2018. https://github.com/facebookresearch/maskrcnn-benchmark.
– reference: Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, Franke U, Roth S, Schiele B. The cityscapes dataset for semantic urban scene understanding. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). 2016, p. 3213–23. IEEE. https://doi.org/10.1109/CVPR.2016.350, arXiv:1604.01685, http://ieeexplore.ieee.org/document/7780719/.
– reference: LiSLinJLiGBaiTWangHPangYVehicle type detection based on deep learning in traffic sceneProcedia Comput Sci201813156457210.1016/j.procs.2018.04.281
– reference: HuXiaoweiXuXuemiaoXiaoYongjieChenHaoHeShengfengQinJingHengPheng-AnnSINet: A Scale-Insensitive Convolutional Neural Network for Fast Vehicle DetectionIEEE Transactions on Intelligent Transportation Systems20192031010101910.1109/TITS.2018.2838132
– reference: LinTsung-YiMaireMichaelBelongieSergeHaysJamesPeronaPietroRamananDevaDollárPiotrZitnickC. LawrenceMicrosoft COCO: Common Objects in ContextComputer Vision – ECCV 20142014ChamSpringer International Publishing74075510.1007/978-3-319-10602-1_48
– reference: Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep association metric. In: 2017 IEEE international conference on image processing (ICIP). vol. 2017 Sept, 2017, p. 3645–9. IEEE. https://doi.org/10.1109/ICIP.2017.8296962.
– reference: Kim C, Li F, Ciptadi A, Rehg JM. Multiple hypothesis tracking revisited. In: 2015 IEEE international conference on computer vision (ICCV). vol. 22. 2015, p. 4696–704. IEEE. https://doi.org/10.1109/ICCV.2015.533, http://ieeexplore.ieee.org/document/7410890/.
– reference: Sommer L, Acatay O, Schumann A, Beyerer J. Ensemble of two-stage regression based detectors for accurate vehicle detection in traffic surveillance data. 2019, p. 1–6. https://doi.org/10.1109/avss.2018.8639149.
– reference: GeigerALenzPStillerCUrtasunRVision meets robotics: the KITTI datasetInt J Rob Res201332111231123710.1177/0278364913491297
– reference: Zhang S, Wu G, Costeira JP, Moura JM. FCN-rLSTM: Deep spatio-temporal neural networks for vehicle counting in city cameras. In: Proceedings of the IEEE international conference on computer vision 2017-Oct, 2017, p. 3687–96. https://doi.org/10.1109/ICCV.2017.396.
– reference: Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z, Song Y, Guadarrama S, Murphy K. Speed/accuracy trade-offs for modern convolutional object detectors. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). 2017, p. 3296–7. IEEE. https://doi.org/10.1109/CVPR.2017.351, arXiv:1611.10012http://ieeexplore.ieee.org/document/8099834/.
– reference: Spanhel J, Sochor J, Makarov A. Vehicle fine-grained recognition based on convolutional neural networks for real-world applications. In: 2018 14th symposium on neural networks and applications (NEUREL). 2018, p. 1–5. IEEE. https://doi.org/10.1109/NEUREL.2018.8587012.
– reference: Redmon J, Farhadi A. YOLO9000: Better, faster, stronger. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). 2017, p. 6517–25. IEEE. https://doi.org/10.1109/CVPR.2017.690, arXiv:1612.08242http://ieeexplore.ieee.org/document/8100173/.
– reference: Wen L, Du D, Cai Z, Lei Z, Chang MC, Qi H, Lim J, Yang MH, Lyu S. UA-DETRAC: a new benchmark and protocol for multi-object detection and tracking. 2015. arXiv:1511.04136.
– reference: Xie S, Girshick R, Dollár P, Tu Z, He K. Aggregated residual transformations for deep neural networks. In: Proceedings—30th IEEE conference on computer vision and pattern recognition, CVPR 2017. 2017-Jan, 2016, p. 5987–95. https://doi.org/10.1109/CVPR.2017.634, arXiv:1611.05431.
– reference: He K, Gkioxari G, Dollar P, Girshick R. Mask R-CNN. In: 2017 IEEE international conference on computer vision (ICCV). vol. 2017 Oct, 2017, p. 2980–8. IEEE. https://doi.org/10.1109/ICCV.2017.322, http://ieeexplore.ieee.org/document/8237584/.
– reference: Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accu- rate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2012, p. 580–7, http://arxiv.org/pdf/1311.2524v3.pdf.
– reference: Liu S, Qi L, Qin H, Shi J, Jia J. Path aggregation network for instance segmentation. In: 2018 IEEE/CVF conference on computer vision and pattern recognition. 2018, p. 8759–68. IEEE. https://doi.org/10.1109/CVPR.2018.00913, https://ieeexplore.ieee.org/document/8579011/.
– reference: PeppaMVBellDKomarTXiaoWUrban traffic flow analysis based on deep learning car detection from cctv image seriesInt Arch Photogramm Remote Sens Spat Inf Sci201842456557210.5194/isprs-archives-XLII-4-499-2018
– reference: LiuWeiAnguelovDragomirErhanDumitruSzegedyChristianReedScottFuCheng-YangBergAlexander C.SSD: Single Shot MultiBox DetectorComputer Vision – ECCV 20162016ChamSpringer International Publishing213710.1007/978-3-319-46448-0_2
– reference: Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time object detection. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). 2016, p. 779–88. IEEE. https://doi.org/10.1109/CVPR.2016.91, arXiv:1506.02640http://ieeexplore.ieee.org/document/7780460/.
– reference: Chu P, Ling H. FAMNet: Joint learning of feature, affinity and multi-dimensional assignment for online multiple object tracking. 2019. arXiv:1811.07258arXiv:1904.04989.
– reference: Sun X, Ding J, Dalla Chiara G, Cheah L, Cheung NM. A generic framework for monitoring local freight traffic movements using computer vision-based techniques. In: 5th IEEE international conference on models and technologies for intelligent transportation systems, MT-ITS 2017—proceedings. 2017; p. 63–8. https://doi.org/10.1109/MTITS.2017.8005592.
– reference: Wang X, Cheng P, Liu X, Uzochukwu B. Focal loss dense detector for vehicle surveillance. In: 2018 international conference on intelligent systems and computer vision (ISCV). vol. 2018 May, 2018, p. 1–5. IEEE. https://doi.org/10.1109/ISACV.2018.8354064.
– reference: Rezatofighi SH, Milan A, Zhang Z, Shi Q, Dick A, Reid I. Joint probabilistic data association revisited. In: 2015 IEEE international conference on computer vision (ICCV). 2015, p. 3047–55. No. December, IEEE. https://doi.org/10.1109/ICCV.2015.349, http://ieeexplore.ieee.org/document/7410706/.
– reference: Zhang S, Wu G, Costeira JP, Moura JM. Table of contents. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). vol. 2017-Jan, 2017, p. v–liii. IEEE. https://doi.org/10.1109/CVPR.2017.4, http://ieeexplore.ieee.org/document/8099487/.
– reference: Lin TY, Dollar P, Girshick R, He K, Hariharan B, Belongie S. Feature pyramid networks for object detection. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). vol. 2017 Jan, 2017, p. 936–44. IEEE. https://doi.org/10.1109/CVPR.2017.106, http://ieeexplore.ieee.org/document/8099589/.
– reference: Luo W, Yang B, Urtasun R. Fast and furious: real time end-to-end 3D detection, tracking and motion forecasting with a single convolutional net. In: 2018 IEEE/CVF conference on computer vision and pattern recognition. 2018, p. 3569–77. IEEE. https://doi.org/10.1109/CVPR.2018.00376, https://www.scopus.com/inward/record.uri?eid=2-s2.0-84956766303&partnerID=40&md5=123d54008fbf65570432b00879599f56https://ieeexplore.ieee.org/document/8578474/.
– reference: Sochor J, Špaňhel J, Herout A. BoxCars: improving vehicle fine-grained recognition using 3D bounding boxes in traffic surveillance. 2017, p. 1–12. arXiv:1703.00686.
– reference: Girshick R. Fast R-CNN. In: Proceedings of the IEEE international conference on computer vision 2015 Inter, 2015, p. 1440–8. https://doi.org/10.1109/ICCV.2015.169.
– reference: Tang Z, Wang G, Xiao H, Zheng A, Hwang JN. Single-camera and inter-camera vehicle tracking and 3D speed estimation based on fusion of visual and semantic features. In: 2018 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW). vol. 2018 June, 2018, p. 1080–7. IEEE. https://doi.org/10.1109/CVPRW.2018.00022, https://ieeexplore.ieee.org/document/8575384/.
– reference: Lin TY, Goyal P, Girshick R, He K, Dollar P. Focal loss for dense object detection. In: Proceedings of the IEEE international conference on computer vision. 2017 Oct, p. 2999–3007. https://doi.org/10.1109/ICCV.2017.324.
– reference: SangJWuZGuoPHuHXiangHZhangQCaiBAn improved YOLOv2 for vehicle detectionSensors20181812427210.3390/s18124272
– reference: Wang L, Lu Y, Wang H, Zheng Y, Ye H, Xue X. Evolving boxes for fast vehicle detection. In: 2017 IEEE international conference on multimedia and Expo (ICME). 2017, p. 1135–40. IEEE. https://doi.org/10.1109/ICME.2017.8019461.
– reference: Li C, Dobler G, Feng X, Wang Y. TrackNet: simultaneous object detection and tracking and its application in traffic video analysis. 2019, p. 1–10, arXiv:1902.01466.
– reference: Wei Y, Song N, Ke L, Chang Mc, Lyu S. Street object detection/tracking for AI city traffic analysis. In: 2017 IEEE smartworld, ubiquitous intelligence & computing, advanced & trusted computed, scalable computing & communications, cloud & big data computing, internet of people and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). 2017, p. 1–5. No. i. IEEE. https://doi.org/10.1109/UIC-ATC.2017.8397669.
– reference: Li S. 3D-DETNet: a single stage video-based vehicle detector. 2018, arXiv:1801.01769.
– reference: Brooks J. COCO annotator. 2019, https://github.com/jsbroks/coco-annotator/.
– reference: Zhu F, Lu Y, Ying N, Giakos G. Fast vehicle detection based on evolving convolutional neural network. In: 2017 IEEE international conference on imaging systems and techniques (IST). vol. 2018-Jan, 2017, p. 1–4. IEEE. https://doi.org/10.1109/IST.2017.8261505.
– start-page: 21
  volume-title: Computer Vision – ECCV 2016
  year: 2016
  ident: 234_CR21
  doi: 10.1007/978-3-319-46448-0_2
– ident: 234_CR3
– ident: 234_CR16
  doi: 10.1117/12.2502012
– ident: 234_CR23
– ident: 234_CR27
  doi: 10.1109/CVPR.2017.690
– ident: 234_CR7
  doi: 10.1109/ICCV.2015.169
– volume: 42
  start-page: 565
  issue: 4
  year: 2018
  ident: 234_CR24
  publication-title: Int Arch Photogramm Remote Sens Spat Inf Sci
  doi: 10.5194/isprs-archives-XLII-4-499-2018
– ident: 234_CR41
  doi: 10.1109/CVPR.2017.634
– ident: 234_CR5
  doi: 10.1109/CVPR.2016.350
– ident: 234_CR35
  doi: 10.1109/CVPRW.2018.00022
– ident: 234_CR17
  doi: 10.1109/CVPR.2017.106
– ident: 234_CR36
  doi: 10.1109/ICME.2017.8019461
– ident: 234_CR34
  doi: 10.1109/MTITS.2017.8005592
– volume: 20
  start-page: 1010
  issue: 3
  year: 2019
  ident: 234_CR10
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2018.2838132
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: 234_CR28
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2577031
– volume: 18
  start-page: 4272
  issue: 12
  year: 2018
  ident: 234_CR30
  publication-title: Sensors
  doi: 10.3390/s18124272
– ident: 234_CR18
  doi: 10.1109/ICCV.2017.324
– ident: 234_CR1
  doi: 10.1109/AVSS.2017.8078500
– ident: 234_CR26
  doi: 10.1109/CVPR.2016.91
– ident: 234_CR37
  doi: 10.1109/ISACV.2018.8354064
– ident: 234_CR40
  doi: 10.1109/ICIP.2017.8296962
– ident: 234_CR43
  doi: 10.1109/CVPR.2017.4
– ident: 234_CR8
– ident: 234_CR11
  doi: 10.1109/CVPR.2017.351
– volume: 22
  start-page: 1533
  issue: 5
  year: 2018
  ident: 234_CR25
  publication-title: Soft Comput
  doi: 10.1007/s00500-017-2942-7
– ident: 234_CR44
  doi: 10.1109/IST.2017.8261505
– ident: 234_CR14
– ident: 234_CR39
– start-page: 740
  volume-title: Computer Vision – ECCV 2014
  year: 2014
  ident: 234_CR19
  doi: 10.1007/978-3-319-10602-1_48
– ident: 234_CR29
  doi: 10.1109/ICCV.2015.349
– ident: 234_CR4
  doi: 10.1109/ICCV.2019.00627
– ident: 234_CR32
  doi: 10.1109/avss.2018.8639149
– ident: 234_CR2
  doi: 10.1109/ICIP.2016.7533003
– ident: 234_CR9
  doi: 10.1109/ICCV.2017.322
– ident: 234_CR13
  doi: 10.1109/ICCV.2015.533
– volume: 131
  start-page: 564
  year: 2018
  ident: 234_CR15
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2018.04.281
– ident: 234_CR33
  doi: 10.1109/NEUREL.2018.8587012
– volume: 32
  start-page: 1231
  issue: 11
  year: 2013
  ident: 234_CR6
  publication-title: Int J Rob Res
  doi: 10.1177/0278364913491297
– ident: 234_CR31
– ident: 234_CR38
  doi: 10.1109/UIC-ATC.2017.8397669
– ident: 234_CR20
  doi: 10.1109/CVPR.2018.00913
– ident: 234_CR22
  doi: 10.1109/CVPR.2018.00376
– ident: 234_CR12
  doi: 10.1109/CVPRW.2017.129
– ident: 234_CR42
  doi: 10.1109/ICCV.2017.396
SSID ssj0001340564
Score 2.4368408
Snippet This study addresses the problem of traffic flow estimation based on the data from a video surveillance camera. Target problem here is formulated as counting...
Abstract This study addresses the problem of traffic flow estimation based on the data from a video surveillance camera. Target problem here is formulated as...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Anchors
Big Data
Cameras
Classification
Communications Engineering
Computational Science and Engineering
Computer Science
Convolutional neural network
Counting
Data
Data Mining and Knowledge Discovery
Database Management
Driving
Electronic surveillance
Estimation
Heuristic
Heuristic methods
Information Storage and Retrieval
Mathematical Applications in Computer Science
Methodology
Networks
Optimization
Surveillance
Surveillance data
Traffic
Traffic analysis
Traffic flow
Traffic flow estimation
Traffic surveillance
Vehicle detection
Vehicles
Video data
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PSxwxFA5FeuhFbau41pYceqoEM8lMfhy1VHooSw9t8RaSNwkUZFd2VwX_-r6Xmd2qYHvxOjOBx8vLfN9L8r7H2Mde-2I6XTBNBRBt76RwKTXCSF8A4U-rqsD365udTt3Fhf9-r9UX3Qkb5IEHx514ZXNvvdUQbSujSTI1iio6ky4NpEqNpPX3kqm6u6KRiJh2PMZsnDlZtqRcgiZ5gTDVirsHQFT1-h-QzEfnohVuznfZ9sgT-elg32v2Is_esJ11DwY-Lsm37AzBhlQgeLmc33KSzBhqETltsHK6_8mpgoRHTgV3c768Xtxk6jSEozlE2pLaYz_Pv_z4_FWMfREEtN6tRCdTlzsFMUfTew8dpk0GwFgrMy3gqIuTXZQ-g3LOJ0yx0BJtbHZguj7rfbY1m8_yAeMF2QG0Df3kSuuTShEQrqwyGbG7gJ4wuXZSgFE0nHpXXIaaPDgTBr8G9Gsgv4a7Cfu0GXI1KGb86-Mz8vzmQxK7rg8wBMIYAuF_ITBhR-t5C-MKXAaklcj8MF1SE3a8nsu_r5-06PA5LHrHXqkaaU5Ie8S2Vovr_J69hJvV7-XiQw3VP3cq6n8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ABI/INFORM Global
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4cCF8hQLBfnACWTVsRM_TohWVByg4gCoN8ue2Aip2pTNtkj99XiyTldFoheuiR2NMuOZz2PPNwCve-Wy7lQu21RE3vZWcBtjw7VwGUv4U3Ji4Pv-yRwf25MT96Um3MZ6rXL2iZOj7gekHPl-gQklkhf4K9-d_eLUNYpOV2sLjdtwh5ANXen7LA63ORZV4Ihu62FmY_X-2BJ_SRHM8RKsWn55LRxNrP3XoOZfp6NT0Dna_V9xH8D9CjfZ-419PIRbafkIdudWDqyu7MdwUGIWkUmwfDr8ZsS8sSlpZJSnZXSNlFEhCguM6vYGNp6vLhI1LCqzGQbKbD2Bb0cfvh5-5LW9AsfW2TXvROxSJzGkoHvnsCu7L42ojRGJ_EBQ2YouCJdQWuti2akVSZQ2yaLu-qSews5yWKZnwHIBGdg25Ctz66KMAUvUM1KnAgEyqgWI-S97rNzj1ALj1E97EKv9RjG-KMaTYvzlAt5cTTnbEG_cNPiAVHc1kDizpwfD6oevS9A7aVJvnFEYTCuCjiI2kmqDo8oNxrCAvVmVvi7k0W_1uIC3szFsX_9Touc3f-wF3JOTEVouzB7srFfn6SXcxYv1z3H1arLiP42--KE
  priority: 102
  providerName: ProQuest
Title Traffic flow estimation with data from a video surveillance camera
URI https://link.springer.com/article/10.1186/s40537-019-0234-z
https://www.proquest.com/docview/2269295972
https://doaj.org/article/927ed7973ca740a6b0b120204b3f1cba
Volume 6
WOSCitedRecordID wos000599138700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: 7WY
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: M0C
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: P5Z
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: K7-
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: PIMPY
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Social Science Database
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: M2R
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/socscijournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 2196-1115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340564
  issn: 2196-1115
  databaseCode: C24
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoy4EL5aluKSsfOIEsHDvx48iuWlGVriLEo-Vi2Y5TVap20WbbSv31zHiToiJAgosP8Tiyxh7Pw55vCHnVSNuqSrbgpsbIysZwZkIomOK2jaD-pMgIfF8-6NnMnJzYus_j7obX7sOVZD6ps1gb9bYrEXoE_mkZ6JmS3WyQraowFt_xTfsUhxxYkUCoyv4G87cj7-igDNV_x7785Uo0a5qD7f-a4yPysDcs6bv1TnhM7qX5E7I9FG2gvQw_JRPQTggbQduLxTVFjI118iLFiCzFB6MUU06op5iht6Dd5fIqYWkiGE2jxxjWM_L5YP_T9D3rCymwWFqzYhUPVapE9MmrxtpYgZ-lYlRa84QS72VreOW5TVEYYwP4ZDATqXQyUVVNks_J5nwxTzuEtmBOxLLAU7EtbRDBR9BvWqgEyr6NckT4wFoXe5RxLHZx4bK3YZRb88gBjxzyyN2MyOvbId_XEBt_I57get0SIjp2_rBYnrle2JwVOjXaahm9LrlXgYdCYBZwkG0Rgx-RvWG1XS-ynQM7FExF8K_EiLwZVvdn9x9ntPtP1C_IA5G3h2Fc75HN1fIyvST349XqvFuOyYb-ejomW5P9Wf1xnPf1OEcJoD3SDNpjPsVWYG9dfQPa-vC4Pv0BFt73QQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXylMsFPABLiCrjp34cUCIAlWrXVYcCurN2I6NkKpN2d22oj-K34gnj66KRG89cE1sK7E_zzcz9swAvKiFSbISKZupIdCy1oxq7wsqmUkh05_gbQa-rxM1neqDA_N5DX4PsTB4rXKQia2grpuAPvKtrCZkJs_qL3979JNi1Sg8XR1KaHSwGMdfp9lkW7zZ-5DX9yXnOx_33-_SvqoADaXRS1oxX8WKBxedrI0JVTY6ZAhSKRYR_k4kzSrHTAxca-OzgeJSElJFHWRVR5HHvQbXS6EV7quxoiufjsjqjyz7w9NCy61FiflS8kQYmsmxpGcX6K-tEnBBtf3rNLYluZ2N_2167sDtXp0m7zr834W1OLsHG0OpCtJLrvuwnTkZk2WQdNicEsws0oVsEvRDE7wmSzDQhjiCcYkNWRzPTyIWZMq9SXDouXsAX67kTx7C-qyZxUdAUlaiQlkgF6TSeO5dyKyuuIxZxUlBjIANq2pDn1sdS3wc2tbG0tJ2QLAZCBaBYM9G8Oq8y1GXWOSyxtsIlfOGmBO8fdDMv9texFjDVayVUSI4VTInPfMFx9hnL1IRvBvB5gAd2wuqhV3hZgSvB_CtXv_zix5fPthzuLm7_2liJ3vT8RO4xdsNoClTm7C-nB_Hp3AjnCx_LObP2h1E4NtVY_IPfq5VhQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB-0ivhi_ah4tWoefFKW5pLdfDza6qFYjj6o9C0ks0kplLtye63Qv76Z3WylokLxdXcSwmQmM5PJ_AbgbSttUo1MOUxFrOrW8MqEMK0Utwmz-ZOiR-D7caDnc3N0ZA9Ln9NufO0-piSHmgZCaVqsd8_aNKi4UbtdTTAkeX5bZZtTV5d34R4lpEjE90u5Q3_JIjOhqks2848jb9ijHrb_hq_5W3q0tzqzzf9e72N4VBxO9mGQkCdwJy6ewubYzIEV3X4Ge9lqEZwES6fLn4ywN4aiRkY3tYwekjIqRWGeUeXeknXnq4tILYvyaIae7ra24Pvs07f9z1VpsFBhbc26anhoYiPQR69aa7HJ8ZdCVFrzSCeBl8nwxnMbURhjQ47V8kqk0tGgatoon8PGYrmIL4Cl7GZgPaXTMtU2iOAx2z0tVMxOQEI5AT6y2WFBH6cmGKeuj0KMcgOPXOaRIx65ywm8ux5yNkBv_It4j_bumpBQs_sPy9WxK0rorNCx1VZL9LrmXgUepoKqg4NMUwx-Ajvjzruiyp3L_ml2IXPcJSbwftzpX7__uqLtW1G_gQeHH2fu4Mv860t4KHpJMRXXO7CxXp3HV3AfL9Yn3ep1L-BXEEn6Hg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traffic+flow+estimation+with+data+from+a+video+surveillance+camera&rft.jtitle=Journal+of+big+data&rft.au=Fedorov%2C+Aleksandr&rft.au=Nikolskaia%2C+Kseniia&rft.au=Ivanov%2C+Sergey&rft.au=Shepelev%2C+Vladimir&rft.date=2019-08-07&rft.issn=2196-1115&rft.eissn=2196-1115&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1186%2Fs40537-019-0234-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s40537_019_0234_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-1115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-1115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-1115&client=summon