A program to compute the soft Robinson–Foulds distance between phylogenetic networks
Background Over the past two decades, phylogenetic networks have been studied to model reticulate evolutionary events. The relationships among phylogenetic networks, phylogenetic trees and clusters serve as the basis for reconstruction and comparison of phylogenetic networks. To understand these rel...
Gespeichert in:
| Veröffentlicht in: | BMC genomics Jg. 18; H. Suppl 2; S. 111 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
BioMed Central
14.03.2017
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1471-2164, 1471-2164 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Background
Over the past two decades, phylogenetic networks have been studied to model reticulate evolutionary events. The relationships among phylogenetic networks, phylogenetic trees and clusters serve as the basis for reconstruction and comparison of phylogenetic networks. To understand these relationships, two problems are raised: the tree containment problem, which asks whether a phylogenetic tree is displayed in a phylogenetic network, and the cluster containment problem, which asks whether a cluster is represented at a node in a phylogenetic network. Both the problems are NP-complete.
Results
A fast exponential-time algorithm for the cluster containment problem on arbitrary networks is developed and implemented in C. The resulting program is further extended into a computer program for fast computation of the Soft Robinson–Foulds distance between phylogenetic networks.
Conclusions
Two computer programs are developed for facilitating reconstruction and validation of phylogenetic network models in evolutionary and comparative genomics. Our simulation tests indicated that they are fast enough for use in practice. Additionally, the distribution of the Soft Robinson–Foulds distance between phylogenetic networks is demonstrated to be unlikely normal by our simulation data. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1471-2164 1471-2164 |
| DOI: | 10.1186/s12864-017-3500-5 |