Quantitative benchmark computations of two-dimensional bubble dynamics
Benchmark configurations for quantitative validation and comparison of incompressible interfacial flow codes, which model two‐dimensional bubbles rising in liquid columns, are proposed. The benchmark quantities: circularity, center of mass, and mean rise velocity are defined and measured to monitor...
Uloženo v:
| Vydáno v: | International journal for numerical methods in fluids Ročník 60; číslo 11; s. 1259 - 1288 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Chichester, UK
John Wiley & Sons, Ltd
20.08.2009
Wiley |
| Témata: | |
| ISSN: | 0271-2091, 1097-0363, 1097-0363 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Benchmark configurations for quantitative validation and comparison of incompressible interfacial flow codes, which model two‐dimensional bubbles rising in liquid columns, are proposed. The benchmark quantities: circularity, center of mass, and mean rise velocity are defined and measured to monitor convergence toward a reference solution. Comprehensive studies are undertaken by three independent research groups, two representing Eulerian level set finite‐element codes and one representing an arbitrary Lagrangian–Eulerian moving grid approach.
The first benchmark test case considers a bubble with small density and viscosity ratios, which undergoes moderate shape deformation. The results from all codes agree very well allowing for target reference values to be established. For the second test case, a bubble with a very low density compared to that of the surrounding fluid, the results for all groups are in good agreement up to the point of break up, after which all three codes predict different bubble shapes. This highlights the need for the research community to invest more effort in obtaining reference solutions to problems involving break up and coalescence.
Other research groups are encouraged to participate in these benchmarks by contacting the authors and submitting their own data. The reference data for the computed benchmark quantities can also be supplied for validation purposes. Copyright © 2008 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | Benchmark configurations for
quantitative
validation and comparison of incompressible interfacial flow codes, which model two‐dimensional bubbles rising in liquid columns, are proposed. The benchmark quantities: circularity, center of mass, and mean rise velocity are defined and measured to monitor convergence toward a reference solution. Comprehensive studies are undertaken by three independent research groups, two representing Eulerian level set finite‐element codes and one representing an arbitrary Lagrangian–Eulerian moving grid approach.
The first benchmark test case considers a bubble with small density and viscosity ratios, which undergoes moderate shape deformation. The results from all codes agree very well allowing for target reference values to be established. For the second test case, a bubble with a very low density compared to that of the surrounding fluid, the results for all groups are in good agreement up to the point of break up, after which all three codes predict different bubble shapes. This highlights the need for the research community to invest more effort in obtaining reference solutions to problems involving break up and coalescence.
Other research groups are encouraged to participate in these benchmarks by contacting the authors and submitting their own data. The reference data for the computed benchmark quantities can also be supplied for validation purposes. Copyright © 2008 John Wiley & Sons, Ltd. Benchmark configurations for quantitative validation and comparison of incompressible interfacial flow codes, which model two‐dimensional bubbles rising in liquid columns, are proposed. The benchmark quantities: circularity, center of mass, and mean rise velocity are defined and measured to monitor convergence toward a reference solution. Comprehensive studies are undertaken by three independent research groups, two representing Eulerian level set finite‐element codes and one representing an arbitrary Lagrangian–Eulerian moving grid approach. The first benchmark test case considers a bubble with small density and viscosity ratios, which undergoes moderate shape deformation. The results from all codes agree very well allowing for target reference values to be established. For the second test case, a bubble with a very low density compared to that of the surrounding fluid, the results for all groups are in good agreement up to the point of break up, after which all three codes predict different bubble shapes. This highlights the need for the research community to invest more effort in obtaining reference solutions to problems involving break up and coalescence. Other research groups are encouraged to participate in these benchmarks by contacting the authors and submitting their own data. The reference data for the computed benchmark quantities can also be supplied for validation purposes. Copyright © 2008 John Wiley & Sons, Ltd. Benchmark configurations for quantitative validation and comparison of incompressible interfacial flow codes, which model two-dimensional bubbles rising in liquid columns, are proposed. The benchmark quantities: circularity, center of mass, and mean rise velocity are defined and measured to monitor convergence toward a reference solution. Comprehensive studies are undertaken by three independent research groups, two representing Eulerian level set finite-element codes and one representing an arbitrary Lagrangian-Eulerian moving grid approach. |
| Author | Turek, S. Kuzmin, D. Parolini, N. Tobiska, L. Burman, E. Hysing, S. Ganesan, S. |
| Author_xml | – sequence: 1 givenname: S. surname: Hysing fullname: Hysing, S. email: shuren@cimne.upc.edu, shuren.hysing@math.uni-dortmund.de organization: Universitat Politècnica de Catalunya (UPC), Jordi Girona 1-3, Edifici C1, 08034 Barcelona, Spain – sequence: 2 givenname: S. surname: Turek fullname: Turek, S. organization: Institut für Angewandte Mathematik, TU Dortmund, Vogelpothsweg 87, 44227 Dortmund, Germany – sequence: 3 givenname: D. surname: Kuzmin fullname: Kuzmin, D. organization: Institut für Angewandte Mathematik, TU Dortmund, Vogelpothsweg 87, 44227 Dortmund, Germany – sequence: 4 givenname: N. surname: Parolini fullname: Parolini, N. organization: MOX, Dipartimento di Matematica, Politecnico di Milano, Via Bonardi 29, 20133 Milano, Italy – sequence: 5 givenname: E. surname: Burman fullname: Burman, E. organization: Department of Mathematics, University of Sussex, Brighton BN1 9RF, U.K – sequence: 6 givenname: S. surname: Ganesan fullname: Ganesan, S. organization: Department of Aeronautics, Imperial College, London, U.K – sequence: 7 givenname: L. surname: Tobiska fullname: Tobiska, L. organization: Institut für Analysis und Numerik, Otto-von-Guericke Universität, 39016 Magdeburg, Germany |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22097730$$DView record in Pascal Francis |
| BookMark | eNp90V1r2zAUBmAxWliSFvYTfDO2G6f6iiVdbl3TFkJLSD92J2T5mGmT5cyy2-bfVyFtx6AtCASHRwfxvmO0F9oACH0ieEowpke1r6ZEMf4BjQhWIsesYHtohKkgOcWKfETjGH9jjBWVbITmy8GE3vWmd3eQlRDsr8Z0fzLbNuthO21DzNo66-_bvHINhJgmxmflUJYesmoTTONsPED7tfERDp_uCbqen1wdn-WLy9Pz42-L3HIleV5RXoIhQhWC45nkQGBWkKKkrIZSSoplTTBwJQQ1slKsEqxkouKKcqZqYtkEfdntXXft3wFirxsXLXhvArRD1FIVRBYsnQn6-q4kQqRMJKOzRD8_UROt8XVngnVRrzuXothommITguHkpjtnuzbGDmpt3S6ivjPOa4L1tgKdKtDbCv794eXB885XaL6j987D5k2n54sf_3sXe3h48ak6XQgmZvr24lR_X_2kq-WS6Rv2CFOGpPo |
| CODEN | IJNFDW |
| CitedBy_id | crossref_primary_10_1016_j_jcp_2025_114348 crossref_primary_10_1016_j_apnum_2015_09_002 crossref_primary_10_1016_j_jcp_2022_111473 crossref_primary_10_1016_j_jcp_2023_112040 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104151 crossref_primary_10_1016_j_oceaneng_2023_114497 crossref_primary_10_1002_fld_4267 crossref_primary_10_1007_s10444_019_09681_1 crossref_primary_10_1063_5_0094196 crossref_primary_10_1016_j_ijmultiphaseflow_2024_105006 crossref_primary_10_1016_j_nucengdes_2024_113470 crossref_primary_10_1016_j_oceaneng_2024_118582 crossref_primary_10_1134_S1995080224602285 crossref_primary_10_1002_fld_4949 crossref_primary_10_3390_pr9060948 crossref_primary_10_1002_cite_202100145 crossref_primary_10_1016_j_ijhydene_2022_01_143 crossref_primary_10_1016_j_jnnfm_2020_104408 crossref_primary_10_1016_j_compfluid_2019_104290 crossref_primary_10_1093_imanum_draf003 crossref_primary_10_1007_s11663_019_01630_z crossref_primary_10_1016_j_cej_2018_05_110 crossref_primary_10_1016_j_mcm_2011_08_027 crossref_primary_10_1016_j_aml_2012_01_037 crossref_primary_10_1016_j_nucengdes_2019_01_020 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123451 crossref_primary_10_1002_nme_5844 crossref_primary_10_1080_10618561003627605 crossref_primary_10_1137_110830587 crossref_primary_10_1016_j_compfluid_2022_105725 crossref_primary_10_1016_j_cpc_2015_06_021 crossref_primary_10_1016_j_cma_2012_10_005 crossref_primary_10_1016_j_cpc_2022_108501 crossref_primary_10_1007_s12206_019_1016_4 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103288 crossref_primary_10_1080_02286203_2024_2374289 crossref_primary_10_1016_j_jnnfm_2019_04_002 crossref_primary_10_1016_j_oceaneng_2022_110711 crossref_primary_10_1007_s11081_018_9393_6 crossref_primary_10_1016_j_jcp_2022_111215 crossref_primary_10_1007_s12046_018_1041_5 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121681 crossref_primary_10_1103_95cr_8mkj crossref_primary_10_1007_s11401_018_0079_3 crossref_primary_10_1002_fld_5256 crossref_primary_10_1016_j_compfluid_2020_104763 crossref_primary_10_1016_j_compfluid_2019_04_001 crossref_primary_10_1007_s11831_015_9143_2 crossref_primary_10_1016_j_compfluid_2015_05_013 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104816 crossref_primary_10_1002_fld_2611 crossref_primary_10_1016_j_compfluid_2011_01_035 crossref_primary_10_1016_j_jcp_2025_113908 crossref_primary_10_1007_s00707_018_2265_5 crossref_primary_10_1134_S0015462822602224 crossref_primary_10_1016_j_cma_2021_114184 crossref_primary_10_1002_fld_5265 crossref_primary_10_1016_j_cma_2021_114186 crossref_primary_10_1007_s10915_024_02530_4 crossref_primary_10_1002_fld_4971 crossref_primary_10_1016_j_ijmultiphaseflow_2009_12_002 crossref_primary_10_1063_5_0226148 crossref_primary_10_1016_j_camwa_2019_08_007 crossref_primary_10_1016_j_jcp_2020_109911 crossref_primary_10_1016_j_camwa_2021_11_022 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104409 crossref_primary_10_1016_j_jcp_2020_109363 crossref_primary_10_1080_10407790_2024_2379604 crossref_primary_10_1016_j_ijmultiphaseflow_2019_103125 crossref_primary_10_1002_fld_4185 crossref_primary_10_1016_j_compfluid_2014_06_030 crossref_primary_10_1016_j_apm_2025_116302 crossref_primary_10_1016_j_jcp_2016_07_037 crossref_primary_10_1007_s10915_014_9885_2 crossref_primary_10_1016_j_jcp_2013_12_055 crossref_primary_10_1016_j_jcp_2015_05_029 crossref_primary_10_1007_s13367_016_0021_8 crossref_primary_10_1002_fld_3802 crossref_primary_10_1002_fld_4509 crossref_primary_10_1134_S0015462820030015 crossref_primary_10_1016_j_jcp_2020_110054 crossref_primary_10_1103_PhysRevE_107_025308 crossref_primary_10_1016_j_compfluid_2021_105121 crossref_primary_10_1016_j_ijheatmasstransfer_2019_118565 crossref_primary_10_1016_j_jcp_2024_113602 crossref_primary_10_3390_fluids10010020 crossref_primary_10_1002_fld_4071 crossref_primary_10_1016_j_enganabound_2019_04_002 crossref_primary_10_1016_j_jcp_2015_11_014 crossref_primary_10_1016_j_nucengdes_2022_111924 crossref_primary_10_1146_annurev_fluid_122316_045034 crossref_primary_10_1016_j_compfluid_2015_10_005 crossref_primary_10_1016_j_compfluid_2016_06_026 crossref_primary_10_1016_j_jcp_2019_109068 crossref_primary_10_1016_j_cma_2020_113176 crossref_primary_10_1007_s11012_017_0634_0 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103822 crossref_primary_10_1016_j_compfluid_2025_106716 crossref_primary_10_1016_j_compfluid_2024_106186 crossref_primary_10_1016_j_jcp_2021_110229 crossref_primary_10_1017_jfm_2016_276 crossref_primary_10_1016_j_cma_2017_01_002 crossref_primary_10_1016_j_ijheatfluidflow_2014_11_002 crossref_primary_10_1002_nme_7554 crossref_primary_10_1016_j_euromechflu_2020_11_004 crossref_primary_10_1016_j_jcp_2021_110587 crossref_primary_10_3390_math8081224 crossref_primary_10_1002_nme_5493 crossref_primary_10_1016_j_jcp_2022_110962 crossref_primary_10_1016_j_jcp_2024_112983 crossref_primary_10_1016_j_ijmultiphaseflow_2018_04_010 crossref_primary_10_1016_j_apm_2016_01_049 crossref_primary_10_1016_j_jcp_2019_07_016 crossref_primary_10_1002_fld_4886 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104614 crossref_primary_10_1186_s40323_024_00276_0 crossref_primary_10_1002_fld_4408 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104617 crossref_primary_10_1016_j_jcp_2020_109732 crossref_primary_10_1080_10618562_2020_1720000 crossref_primary_10_1016_j_camwa_2012_05_020 crossref_primary_10_1016_j_cma_2016_04_014 crossref_primary_10_1016_j_compfluid_2017_02_001 crossref_primary_10_1016_j_cma_2020_113158 crossref_primary_10_1016_j_euromechflu_2015_01_003 crossref_primary_10_3390_math11183900 crossref_primary_10_1016_j_cma_2016_04_019 crossref_primary_10_1016_j_cma_2022_114843 crossref_primary_10_1016_j_jcp_2019_109192 crossref_primary_10_1016_j_jcp_2024_113148 crossref_primary_10_1016_j_sctalk_2022_100055 crossref_primary_10_1016_j_enganabound_2023_12_009 crossref_primary_10_1016_j_jcp_2022_111049 crossref_primary_10_1007_s00021_017_0334_5 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125657 crossref_primary_10_1016_j_enganabound_2019_10_015 crossref_primary_10_1016_j_jcp_2020_109718 crossref_primary_10_1002_fld_4413 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103727 crossref_primary_10_1002_fld_4414 crossref_primary_10_1002_fld_4778 crossref_primary_10_1016_j_compfluid_2025_106813 crossref_primary_10_1016_j_euromechflu_2018_12_003 crossref_primary_10_1007_s00419_024_02622_5 crossref_primary_10_1016_j_jnnfm_2015_12_003 crossref_primary_10_1016_j_compfluid_2019_06_022 crossref_primary_10_1016_j_cpc_2018_04_020 crossref_primary_10_1016_j_ijheatfluidflow_2009_02_009 crossref_primary_10_1016_j_jcp_2014_04_055 crossref_primary_10_1063_5_0212742 crossref_primary_10_1016_j_ijheatfluidflow_2017_12_001 crossref_primary_10_1016_j_apm_2020_02_022 crossref_primary_10_1016_j_jcp_2021_110321 crossref_primary_10_1002_fld_3692 crossref_primary_10_1016_j_ces_2017_06_009 crossref_primary_10_1016_j_camwa_2023_05_033 crossref_primary_10_1016_j_jcp_2024_113016 crossref_primary_10_1016_j_jnnfm_2015_10_002 crossref_primary_10_1080_15502287_2018_1520756 crossref_primary_10_1016_j_camwa_2023_12_013 crossref_primary_10_1016_j_jcp_2024_113011 crossref_primary_10_1016_j_jcp_2024_113495 crossref_primary_10_1016_j_cma_2024_117341 crossref_primary_10_1007_s12206_015_1129_3 crossref_primary_10_1137_23M156968X crossref_primary_10_1016_j_ijmultiphaseflow_2021_103613 crossref_primary_10_1016_j_ijheatfluidflow_2024_109657 crossref_primary_10_1016_j_cocis_2023_101724 crossref_primary_10_1016_j_jcp_2025_114072 crossref_primary_10_1016_j_jcp_2018_10_019 crossref_primary_10_1016_j_jcp_2020_109674 crossref_primary_10_1016_j_jcp_2020_109671 crossref_primary_10_1016_j_jcp_2025_114195 crossref_primary_10_1016_j_oceaneng_2021_109743 crossref_primary_10_1016_j_ijheatfluidflow_2016_10_001 crossref_primary_10_1063_5_0279778 crossref_primary_10_1063_5_0256094 crossref_primary_10_1016_j_cam_2012_05_004 crossref_primary_10_1002_fld_5082 crossref_primary_10_1016_j_cam_2022_114116 crossref_primary_10_1016_j_jcp_2024_113122 crossref_primary_10_1016_j_compfluid_2022_105569 crossref_primary_10_1002_fld_4671 crossref_primary_10_1016_j_jcp_2011_01_033 crossref_primary_10_1016_j_jcp_2021_110151 crossref_primary_10_1080_10618562_2017_1322200 crossref_primary_10_1002_fld_4796 crossref_primary_10_1016_j_jcp_2017_08_047 crossref_primary_10_3233_ISP_200278 crossref_primary_10_1016_j_apor_2021_102963 crossref_primary_10_1002_fld_4678 crossref_primary_10_1063_5_0266104 crossref_primary_10_1016_j_jcp_2017_12_006 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103745 crossref_primary_10_1016_j_compfluid_2015_06_001 crossref_primary_10_1016_j_jcp_2017_04_019 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104207 crossref_primary_10_1140_epjst_e2013_01806_3 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103320 crossref_primary_10_1016_j_jcp_2025_114062 crossref_primary_10_1063_5_0281713 crossref_primary_10_1016_j_compfluid_2021_105154 crossref_primary_10_1016_j_jcp_2019_04_019 crossref_primary_10_1016_j_jcp_2022_111734 crossref_primary_10_1080_00295639_2022_2141517 crossref_primary_10_1080_10407790_2018_1525157 crossref_primary_10_1016_j_camwa_2016_12_014 crossref_primary_10_1016_j_jcp_2022_111093 crossref_primary_10_1016_j_oceaneng_2022_111401 crossref_primary_10_1016_j_jcp_2019_108904 crossref_primary_10_1016_j_cma_2018_12_009 crossref_primary_10_1016_j_crma_2016_06_007 crossref_primary_10_1016_j_amc_2018_03_074 crossref_primary_10_1016_j_jcp_2019_01_028 crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_091 crossref_primary_10_1007_s40571_021_00435_9 crossref_primary_10_1017_jfm_2022_674 crossref_primary_10_1063_5_0216609 crossref_primary_10_1016_j_cej_2024_153312 crossref_primary_10_1016_j_jcp_2020_109893 crossref_primary_10_1016_j_actaastro_2018_07_026 crossref_primary_10_1002_fld_2696 crossref_primary_10_1002_mma_9602 crossref_primary_10_3390_pr7080542 crossref_primary_10_1016_j_icheatmasstransfer_2022_106284 crossref_primary_10_1016_j_cma_2015_05_014 crossref_primary_10_1016_j_jcp_2018_11_032 crossref_primary_10_1016_j_jcp_2021_110113 crossref_primary_10_1177_09544062221138830 crossref_primary_10_1016_j_cma_2025_117956 crossref_primary_10_1007_s11663_020_01947_0 crossref_primary_10_1016_j_jcp_2023_112110 crossref_primary_10_1016_j_jcp_2015_03_005 crossref_primary_10_1016_j_jcp_2024_113101 crossref_primary_10_1016_j_ultsonch_2020_105375 crossref_primary_10_1016_j_compfluid_2022_105664 crossref_primary_10_1016_j_jcp_2017_07_029 crossref_primary_10_1016_j_jnnfm_2021_104568 crossref_primary_10_1016_j_ijmultiphaseflow_2016_10_016 crossref_primary_10_1007_s42241_018_0169_4 crossref_primary_10_1007_s42757_020_0074_2 crossref_primary_10_1007_s10404_012_0940_8 crossref_primary_10_1016_j_ijheatmasstransfer_2019_04_101 crossref_primary_10_1016_j_compfluid_2019_104345 crossref_primary_10_1016_j_jcp_2025_114282 crossref_primary_10_1002_fld_3653 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103460 crossref_primary_10_1016_j_jcp_2023_111936 crossref_primary_10_1016_j_jcp_2025_114285 crossref_primary_10_1002_nme_5598 crossref_primary_10_1016_j_jcp_2022_111079 crossref_primary_10_1016_j_jcp_2024_112920 crossref_primary_10_1016_j_oceaneng_2022_111629 crossref_primary_10_1016_j_camwa_2016_12_020 crossref_primary_10_1016_j_cma_2022_114759 crossref_primary_10_1016_j_compfluid_2025_106580 crossref_primary_10_1016_j_jcp_2025_113755 crossref_primary_10_1016_j_jcp_2022_111874 crossref_primary_10_1016_j_euromechflu_2022_11_001 crossref_primary_10_1016_j_jcp_2017_07_031 crossref_primary_10_1016_j_jcp_2024_113331 crossref_primary_10_1016_j_cjche_2018_08_023 crossref_primary_10_1016_j_compfluid_2016_04_026 crossref_primary_10_1016_j_ces_2024_120691 crossref_primary_10_1080_15502287_2010_483242 crossref_primary_10_3390_fluids7050152 crossref_primary_10_1016_j_compfluid_2020_104667 crossref_primary_10_1002_fld_5316 crossref_primary_10_1016_j_apor_2025_104423 crossref_primary_10_1016_j_compfluid_2017_04_025 crossref_primary_10_1016_j_compfluid_2020_104789 crossref_primary_10_1137_20M1317773 crossref_primary_10_1134_S1995080223050426 crossref_primary_10_1007_s10915_023_02325_z crossref_primary_10_1007_s10494_021_00293_8 crossref_primary_10_1080_10407790_2023_2236791 crossref_primary_10_1002_fld_4907 crossref_primary_10_1016_j_aml_2017_01_012 crossref_primary_10_1016_j_compfluid_2024_106212 crossref_primary_10_1016_j_compfluid_2024_106455 crossref_primary_10_1016_j_camwa_2016_09_023 crossref_primary_10_1063_5_0260829 crossref_primary_10_1016_j_camwa_2017_12_034 crossref_primary_10_1016_j_jcp_2017_05_020 crossref_primary_10_1016_j_jcp_2021_110730 crossref_primary_10_1016_j_enganabound_2024_106043 crossref_primary_10_1016_j_jcp_2023_112010 crossref_primary_10_1016_j_compfluid_2018_12_016 crossref_primary_10_1016_j_jcp_2019_05_017 crossref_primary_10_1016_j_jcp_2025_113980 crossref_primary_10_1002_nme_6853 crossref_primary_10_1063_5_0228822 crossref_primary_10_1016_j_jcp_2019_109224 crossref_primary_10_1016_j_jcp_2019_109225 crossref_primary_10_1016_j_cma_2019_01_009 crossref_primary_10_1016_j_ijheatmasstransfer_2016_07_096 crossref_primary_10_1002_fld_5328 crossref_primary_10_3390_math6100203 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104368 crossref_primary_10_1002_fld_2429 crossref_primary_10_1016_j_enganabound_2024_106045 crossref_primary_10_3390_app13031955 crossref_primary_10_1016_j_jcp_2012_01_018 crossref_primary_10_1016_j_piutam_2015_04_043 crossref_primary_10_1063_5_0281871 crossref_primary_10_1016_j_apm_2021_05_007 crossref_primary_10_1007_s11663_022_02634_y crossref_primary_10_1016_j_ijmultiphaseflow_2020_103362 crossref_primary_10_1016_j_jcp_2015_06_004 crossref_primary_10_1016_j_jandt_2022_10_001 crossref_primary_10_1007_s10665_019_09998_2 crossref_primary_10_1016_j_enganabound_2021_04_011 crossref_primary_10_1063_5_0186236 crossref_primary_10_1142_S0217984924501537 crossref_primary_10_1007_s40430_020_02612_y crossref_primary_10_1080_10407790_2018_1454758 crossref_primary_10_1016_j_compfluid_2021_104883 crossref_primary_10_1016_j_jcp_2013_08_018 crossref_primary_10_1002_fld_5215 crossref_primary_10_1016_j_ijheatmasstransfer_2023_125089 crossref_primary_10_1016_j_jcp_2013_10_028 crossref_primary_10_1063_1_5142353 crossref_primary_10_1080_10618562_2016_1155703 crossref_primary_10_1016_j_ijmultiphaseflow_2014_04_008 crossref_primary_10_1002_fld_4808 crossref_primary_10_1016_j_compfluid_2025_106674 crossref_primary_10_1177_09544062221081425 crossref_primary_10_1016_j_enganabound_2021_04_005 crossref_primary_10_1016_j_enganabound_2022_06_018 crossref_primary_10_1016_j_jcp_2011_11_035 crossref_primary_10_1016_j_cam_2013_12_014 crossref_primary_10_1016_j_jcp_2025_113943 crossref_primary_10_1016_j_jcp_2023_112276 crossref_primary_10_1002_fld_5100 crossref_primary_10_1016_j_cma_2018_05_029 crossref_primary_10_1016_j_oceaneng_2019_106649 crossref_primary_10_1016_j_compfluid_2018_06_008 crossref_primary_10_1016_j_jcp_2019_108959 crossref_primary_10_1051_epjconf_201714302122 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104861 crossref_primary_10_1016_j_nucengdes_2018_10_006 crossref_primary_10_1002_fld_4813 crossref_primary_10_1002_fld_4814 crossref_primary_10_1080_19942060_2022_2026820 crossref_primary_10_1016_j_cma_2020_113425 crossref_primary_10_26748_KSOE_2018_4_32_2_077 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103687 crossref_primary_10_1002_fld_4817 crossref_primary_10_1063_5_0214646 crossref_primary_10_1016_j_cpc_2017_10_003 crossref_primary_10_1002_fld_2643 crossref_primary_10_1016_j_compfluid_2019_104269 crossref_primary_10_1016_j_ijmecsci_2021_106946 crossref_primary_10_1016_j_jcp_2017_12_021 crossref_primary_10_1016_j_jcp_2021_110727 crossref_primary_10_1016_j_jcp_2021_110605 crossref_primary_10_1016_j_jcp_2022_111796 crossref_primary_10_1016_j_camwa_2015_07_007 crossref_primary_10_1016_j_jcp_2022_111552 crossref_primary_10_1016_j_jcp_2021_110166 crossref_primary_10_1016_j_apm_2018_12_017 crossref_primary_10_1016_j_compfluid_2022_105590 |
| Cites_doi | 10.1002/fld.591 10.1016/ S0045‐7825(96)01155‐3 10.1007/BF01385643 10.1007/978-3-642-58393-3 10.1063/1.1842220 10.1017/S0022112098003176 10.1007/978-3-642-61623-5 10.1017/S0022112097005570 10.1098/rsta.1952.0006 10.1016/j.apnum.2006.03.003 10.1016/j.ces.2005.01.031 10.1007/BFb0014497 10.1146/annurev.fluid.31.1.567 10.1017/S0022112099004449 10.1002/nme.1620150502 10.1002/aic.10607 10.1002/fld.395 10.1016/j.cma.2006.08.018 10.1006/jcph.2000.6537 10.1017/S002211208100311X 10.1002/fld.195 10.1016/0021‐9991(92)90307‐K 10.1007/s002110000225 10.1016/j.jcp.2004.01.015 10.1086/624040 10.1002/fld.1147 10.1016/j.ijmultiphaseflow.2006.07.003 10.1007/s00791‐003‐0120‐1 10.1006/jcph.2001.6938 10.1016/0021‐9991(88)90002‐2 |
| ContentType | Journal Article |
| Copyright | Copyright © 2008 John Wiley & Sons, Ltd. 2009 INIST-CNRS |
| Copyright_xml | – notice: Copyright © 2008 John Wiley & Sons, Ltd. – notice: 2009 INIST-CNRS |
| DBID | BSCLL AAYXX CITATION IQODW 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
| DOI | 10.1002/fld.1934 |
| DatabaseName | Istex CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Aerospace Database Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Physics |
| EISSN | 1097-0363 |
| EndPage | 1288 |
| ExternalDocumentID | 22097730 10_1002_fld_1934 FLD1934 ark_67375_WNG_BSX2SQQ3_V |
| Genre | article |
| GrantInformation_xml | – fundername: German Research foundation (DFG) funderid: To143/9 – fundername: Swiss National Science Foundation funderid: 112166 – fundername: SFB TR R30 funderid: TPC3 – fundername: Paketantrag PAK178 funderid: Tu102/27‐1; Ku1530/5‐1 – fundername: Sonderforschungsbereich SFB708 funderid: TP B7 |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX CITATION O8X 6TJ ABEML ACSCC AGHNM AI. AMVHM IQODW M6O PALCI RIWAO RJQFR SAMSI VH1 VOH ZY4 ~A~ 7SC 7TB 7U5 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c4984-d24bea1796740584e1e5616b23feb88208f10e49772a8d93d73b37d492439f1c3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 457 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000268287500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0271-2091 1097-0363 |
| IngestDate | Thu Oct 02 10:20:07 EDT 2025 Fri Sep 05 09:34:21 EDT 2025 Mon Jul 21 09:14:48 EDT 2025 Tue Nov 18 22:55:01 EST 2025 Sat Nov 29 03:27:41 EST 2025 Wed Aug 20 07:24:28 EDT 2025 Sun Sep 21 06:20:46 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Geometrical shape Euler Lagrange equation Computational fluid dynamics benchmarking Bubble ascent Digital simulation Computation code Boundary conditions finite-element method Finite element method Bubbles rising bubble level set method multiphase flow Modelling ALE Incompressible fluid numerical simulation Navier-Stokes equations |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4984-d24bea1796740584e1e5616b23feb88208f10e49772a8d93d73b37d492439f1c3 |
| Notes | ArticleID:FLD1934 Paketantrag PAK178 - No. Tu102/27-1; No. Ku1530/5-1 Swiss National Science Foundation - No. 112166 istex:C2490CF73FB6B954122EA9004F2433A71934FC07 Sonderforschungsbereich SFB708 - No. TP B7 German Research foundation (DFG) - No. To143/9 SFB TR R30 - No. TPC3 ark:/67375/WNG-BSX2SQQ3-V ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/fld.1934 |
| PQID | 1770278325 |
| PQPubID | 23500 |
| PageCount | 30 |
| ParticipantIDs | proquest_miscellaneous_896186386 proquest_miscellaneous_1770278325 pascalfrancis_primary_22097730 crossref_citationtrail_10_1002_fld_1934 crossref_primary_10_1002_fld_1934 wiley_primary_10_1002_fld_1934_FLD1934 istex_primary_ark_67375_WNG_BSX2SQQ3_V |
| PublicationCentury | 2000 |
| PublicationDate | 20 August 2009 |
| PublicationDateYYYYMMDD | 2009-08-20 |
| PublicationDate_xml | – month: 08 year: 2009 text: 20 August 2009 day: 20 |
| PublicationDecade | 2000 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
| PublicationTitle | International journal for numerical methods in fluids |
| PublicationTitleAlternate | Int. J. Numer. Meth. Fluids |
| PublicationYear | 2009 |
| Publisher | John Wiley & Sons, Ltd Wiley |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
| References | Christon AM, Gresho PM, Sutton SB. Computational predictability of time-dependent natural convection flows in enclosures (including a benchmark solution). International Journal for Numerical Methods in Fluids 2002; 40(8):953-980. DOI: 10.1002/fld.395. Annaland MS, Dijkhuizen W, Deen NG, Kuipers JAM. Numerical simulation of behavior of gas bubbles using a 3-D front-tracking method. AIChE Journal 2006; 52(1):99-110. DOI: 10.1002/aic.10607. Sussman M, Smereka P. Axisymmetric free boundary problems. Journal of Fluid Mechanics 1997; 341:269-294. Di Pietro DA, Lo Forte S, Parolini N. Mass preserving finite element implementations of the level set method. Applied Numerical Mathematics 2006; 56(9):1179-1195. DOI: 10.1016/j.apnum.2006.03.003. Martin J, Moyce W. An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philosophical Transactions of the Royal Society of London, Series A 1952; A 244:312-324. Annaland MS, Deen NG, Kuipers JAM. Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method. Chemical Engineering Science 2005; 60(11):2999-3011. DOI: 10.1016/j.ces.2005.01.031. Chen T, Minev PD, Nandakumar K. A projection scheme for incompressible multiphase flow using adaptive Eulerian grid. International Journal for Numerical Methods in Fluids 2001; 45(1):1-19. DOI: 10.1002/fld.591. Wadell H. Sphericity and roundness of rock particles. Journal of Geology 1933; 41:310-331. Unverdi SO, Tryggvason G. A front-tracking method for viscous, incompressible, multi-fluid flows. Journal of Computational Physics 1992; 100(1):25-37. DOI: 10.1016/0021-9991(92)90307-K. Ye T, Shyy W, Chung JN. A fixed-grid, sharp-interface method for bubble dynamics and phase change. Journal of Computational Physics 2001; 174(2):781-815. DOI: 10.1006/jcph.2001.6938. Turek S. On discrete projection methods for the incompressible Navier-Stokes equations: an algorithmical approach. Computer Methods in Applied Mechanics and Engineering 1997; 143(3-4):271-288. DOI: 10.1016/ S0045-7825(96)01155-3. Scardovelli1 R, Zaleski S. Direct numerical simulation of free-surface and interfacial flow. Annual Review of Fluid Mechanics 1999; 31:567-603. DOI: 10.1146/annurev.fluid.31.1.567. Norman CE, Miksis MJ. Dynamics of a gas bubble rising in an inclined channel at finite Reynolds number. Physics of Fluids 2005; 17(2):022102. DOI: 10.1063/1.1842220. Esmaeeli A, Tryggvason G. Direct numerical simulations of bubbly flows. Part 1: low Reynolds number arrays. Journal of Fluid Mechanics 1998; 377:313-345. Kuzmin D, Turek S. High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter. Journal of Computational Physics 2004; 198(1):131-158. DOI: 10.1016/j.jcp.2004.01.015. Dziuk G. An algorithm for evolutionary surfaces. Numerische Mathematik 1991; 58:603-611. Hysing S. A new implicit surface tension implementation for interfacial flows. International Journal for Numerical Methods in Fluids 2006; 51(6):659-672. DOI: 10.1002/fld.1147. Ganesan S, Matthies G, Tobiska L. On spurious velocities in incompressible flow problems with interfaces. Computer Methods in Applied Mechanics and Engineering 2007; 196(7):1193-1202. DOI: 10.1016/j.cma.2006.08.018. Bonometti T, Magnaudet J. An interface-capturing method for incompressible two-phase flows. Validation and application to bubble dynamics. International Journal of Multiphase Flow 2007; 33(2):109-133. DOI: 10.1016/j.ijmultiphaseflow.2006.07.003. Turek S. Efficient Solvers for Incompressible Flow Problems, An Algorithmic and Computational Approach. Lecture Notes in Computational Science and Engineering, vol. 6. Springer: Berlin, 1999. Bhaga D, Weber ME. Bubbles in viscous liquids: shapes, wakes and velocities. Journal of Fluid Mechanics 1981; 105:61-85. DOI: 10.1017/S002211208100311X. Bänsch E. Finite element discretization of the Navier-Stokes equations with a free capillary surface. Numerische Mathematik 2001; 88(2):203-235. DOI: 10.1007/s002110000225. Ruschak KJ. A method for incorporating free boundaries with surface tension in finite element fluid-flow simulators. International Journal for Numerical Methods in Engineering 1980; 15(5):639-648. DOI: 10.1002/nme.1620150502. John V, Matthies G. MooNMD-a program package based on mapped finite element methods. Computing and Visualization in Science 2004; 6(2-3):163-170. DOI: 10.1007/s00791-003-0120-1. Hron J, Turek S. In Proposal for Numerical Benchmarking of Fluid-Structure Interaction Between an Elastic Object and Laminar Incompressible Flow, Bungartz H-J, Schäfer M (eds), Lecture Notes in Computational Science and Engineering, Fluid-Structure Interaction-Modelling, Simulation, Optimization, vol. 53. Springer: Berlin, 2006; 371-385. ISBN 3-540-34595-7. Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 1988; 79(1):12-49. DOI: 10.1016/0021-9991(88)90002-2. Sussman M, Puckett EG. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. Journal of Computational Physics 2000; 162(2):301-337. DOI: 10.1006/jcph.2000.6537. Girault V, Raviart PA. Finite Element Methods for Navier-Stokes Equations. Springer: Berlin, 1986. Chen L, Garimella SV, Reizes JA, Leonardi E. The development of a bubble rising in a viscous liquid. Journal of Fluid Mechanics 1999; 387:61-96. John V, Matthies G. Higher-order finite element discretizations in a benchmark problem for incompressible flows. International Journal for Numerical Methods in Fluids 2001; 37(8):885-903. DOI: 10.1002/fld.195. Clift R, Grace JR, Weber ME. Bubbles, Drops and Particles. Academic Press: New York, 1978. 2006; 52 1991; 58 1933; 41 2006; 51 2006; 56 1992; 100 1998 2004; 3 1996; 52 1952 2007 2004; 6 1996 2006 1988; 79 2005 1981; 105 2004 2005; 60 2003 1999; 387 2001; 88 2001; 45 2007; 33 1998; 377 1978 1999 2004; 198 1980; 15 2001; 174 2001 2002; 40 1997; 341 1997; 143 2007; 196 1986 2000; 162 1999; 31 2001; 37 2005; 17 Parolini N (e_1_2_1_37_2) 2005 Hooper R (e_1_2_1_8_2) 2001 e_1_2_1_41_2 e_1_2_1_40_2 e_1_2_1_22_2 e_1_2_1_45_2 e_1_2_1_23_2 e_1_2_1_44_2 e_1_2_1_20_2 e_1_2_1_43_2 Rannacher R (e_1_2_1_46_2) 2004 Shewchuk JR (e_1_2_1_47_2) 1996 e_1_2_1_21_2 e_1_2_1_42_2 e_1_2_1_26_2 e_1_2_1_27_2 e_1_2_1_24_2 e_1_2_1_25_2 e_1_2_1_28_2 e_1_2_1_29_2 Turek S (e_1_2_1_17_2) 1996 Turek S (e_1_2_1_18_2) 1998 Clift R (e_1_2_1_19_2) 1978 e_1_2_1_6_2 e_1_2_1_30_2 e_1_2_1_7_2 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_2_2 e_1_2_1_11_2 e_1_2_1_34_2 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_33_2 e_1_2_1_32_2 e_1_2_1_10_2 e_1_2_1_31_2 Koebe M (e_1_2_1_9_2) 2003 e_1_2_1_15_2 e_1_2_1_38_2 e_1_2_1_16_2 e_1_2_1_13_2 e_1_2_1_36_2 e_1_2_1_35_2 Hron J (e_1_2_1_14_2) 2006 e_1_2_1_39_2 |
| References_xml | – reference: Ye T, Shyy W, Chung JN. A fixed-grid, sharp-interface method for bubble dynamics and phase change. Journal of Computational Physics 2001; 174(2):781-815. DOI: 10.1006/jcph.2001.6938. – reference: John V, Matthies G. Higher-order finite element discretizations in a benchmark problem for incompressible flows. International Journal for Numerical Methods in Fluids 2001; 37(8):885-903. DOI: 10.1002/fld.195. – reference: Di Pietro DA, Lo Forte S, Parolini N. Mass preserving finite element implementations of the level set method. Applied Numerical Mathematics 2006; 56(9):1179-1195. DOI: 10.1016/j.apnum.2006.03.003. – reference: Annaland MS, Dijkhuizen W, Deen NG, Kuipers JAM. Numerical simulation of behavior of gas bubbles using a 3-D front-tracking method. AIChE Journal 2006; 52(1):99-110. DOI: 10.1002/aic.10607. – reference: Bonometti T, Magnaudet J. An interface-capturing method for incompressible two-phase flows. Validation and application to bubble dynamics. International Journal of Multiphase Flow 2007; 33(2):109-133. DOI: 10.1016/j.ijmultiphaseflow.2006.07.003. – reference: Girault V, Raviart PA. Finite Element Methods for Navier-Stokes Equations. Springer: Berlin, 1986. – reference: Ruschak KJ. A method for incorporating free boundaries with surface tension in finite element fluid-flow simulators. International Journal for Numerical Methods in Engineering 1980; 15(5):639-648. DOI: 10.1002/nme.1620150502. – reference: Esmaeeli A, Tryggvason G. Direct numerical simulations of bubbly flows. Part 1: low Reynolds number arrays. Journal of Fluid Mechanics 1998; 377:313-345. – reference: Dziuk G. An algorithm for evolutionary surfaces. Numerische Mathematik 1991; 58:603-611. – reference: Scardovelli1 R, Zaleski S. Direct numerical simulation of free-surface and interfacial flow. Annual Review of Fluid Mechanics 1999; 31:567-603. DOI: 10.1146/annurev.fluid.31.1.567. – reference: Martin J, Moyce W. An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philosophical Transactions of the Royal Society of London, Series A 1952; A 244:312-324. – reference: Norman CE, Miksis MJ. Dynamics of a gas bubble rising in an inclined channel at finite Reynolds number. Physics of Fluids 2005; 17(2):022102. DOI: 10.1063/1.1842220. – reference: Chen L, Garimella SV, Reizes JA, Leonardi E. The development of a bubble rising in a viscous liquid. Journal of Fluid Mechanics 1999; 387:61-96. – reference: Kuzmin D, Turek S. High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter. Journal of Computational Physics 2004; 198(1):131-158. DOI: 10.1016/j.jcp.2004.01.015. – reference: Unverdi SO, Tryggvason G. A front-tracking method for viscous, incompressible, multi-fluid flows. Journal of Computational Physics 1992; 100(1):25-37. DOI: 10.1016/0021-9991(92)90307-K. – reference: Sussman M, Smereka P. Axisymmetric free boundary problems. Journal of Fluid Mechanics 1997; 341:269-294. – reference: Hron J, Turek S. In Proposal for Numerical Benchmarking of Fluid-Structure Interaction Between an Elastic Object and Laminar Incompressible Flow, Bungartz H-J, Schäfer M (eds), Lecture Notes in Computational Science and Engineering, Fluid-Structure Interaction-Modelling, Simulation, Optimization, vol. 53. Springer: Berlin, 2006; 371-385. ISBN 3-540-34595-7. – reference: Bänsch E. Finite element discretization of the Navier-Stokes equations with a free capillary surface. Numerische Mathematik 2001; 88(2):203-235. DOI: 10.1007/s002110000225. – reference: Christon AM, Gresho PM, Sutton SB. Computational predictability of time-dependent natural convection flows in enclosures (including a benchmark solution). International Journal for Numerical Methods in Fluids 2002; 40(8):953-980. DOI: 10.1002/fld.395. – reference: John V, Matthies G. MooNMD-a program package based on mapped finite element methods. Computing and Visualization in Science 2004; 6(2-3):163-170. DOI: 10.1007/s00791-003-0120-1. – reference: Ganesan S, Matthies G, Tobiska L. On spurious velocities in incompressible flow problems with interfaces. Computer Methods in Applied Mechanics and Engineering 2007; 196(7):1193-1202. DOI: 10.1016/j.cma.2006.08.018. – reference: Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 1988; 79(1):12-49. DOI: 10.1016/0021-9991(88)90002-2. – reference: Turek S. Efficient Solvers for Incompressible Flow Problems, An Algorithmic and Computational Approach. Lecture Notes in Computational Science and Engineering, vol. 6. Springer: Berlin, 1999. – reference: Turek S. On discrete projection methods for the incompressible Navier-Stokes equations: an algorithmical approach. Computer Methods in Applied Mechanics and Engineering 1997; 143(3-4):271-288. DOI: 10.1016/ S0045-7825(96)01155-3. – reference: Annaland MS, Deen NG, Kuipers JAM. Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method. Chemical Engineering Science 2005; 60(11):2999-3011. DOI: 10.1016/j.ces.2005.01.031. – reference: Chen T, Minev PD, Nandakumar K. A projection scheme for incompressible multiphase flow using adaptive Eulerian grid. International Journal for Numerical Methods in Fluids 2001; 45(1):1-19. DOI: 10.1002/fld.591. – reference: Clift R, Grace JR, Weber ME. Bubbles, Drops and Particles. Academic Press: New York, 1978. – reference: Sussman M, Puckett EG. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. Journal of Computational Physics 2000; 162(2):301-337. DOI: 10.1006/jcph.2000.6537. – reference: Bhaga D, Weber ME. Bubbles in viscous liquids: shapes, wakes and velocities. Journal of Fluid Mechanics 1981; 105:61-85. DOI: 10.1017/S002211208100311X. – reference: Hysing S. A new implicit surface tension implementation for interfacial flows. International Journal for Numerical Methods in Fluids 2006; 51(6):659-672. DOI: 10.1002/fld.1147. – reference: Wadell H. Sphericity and roundness of rock particles. Journal of Geology 1933; 41:310-331. – volume: 31 start-page: 567 year: 1999 end-page: 603 article-title: Direct numerical simulation of free‐surface and interfacial flow publication-title: Annual Review of Fluid Mechanics – volume: 100 start-page: 25 issue: 1 year: 1992 end-page: 37 article-title: A front‐tracking method for viscous, incompressible, multi‐fluid flows publication-title: Journal of Computational Physics – year: 2005 – volume: 45 start-page: 1 issue: 1 year: 2001 end-page: 19 article-title: A projection scheme for incompressible multiphase flow using adaptive Eulerian grid publication-title: International Journal for Numerical Methods in Fluids – volume: 198 start-page: 131 issue: 1 year: 2004 end-page: 158 article-title: High‐resolution FEM–TVD schemes based on a fully multidimensional flux limiter publication-title: Journal of Computational Physics – year: 2001 – start-page: 312 year: 1952 end-page: 324 article-title: An experimental study of the collapse of liquid columns on a rigid horizontal plane publication-title: Philosophical Transactions of the Royal Society of London, Series A – year: 2007 – volume: 105 start-page: 61 year: 1981 end-page: 85 article-title: Bubbles in viscous liquids: shapes, wakes and velocities publication-title: Journal of Fluid Mechanics – year: 2003 – start-page: 371 year: 2006 end-page: 385 – volume: 17 start-page: 022102 issue: 2 year: 2005 article-title: Dynamics of a gas bubble rising in an inclined channel at finite Reynolds number publication-title: Physics of Fluids – volume: 6 start-page: 163 issue: 2–3 year: 2004 end-page: 170 article-title: MooNMD—a program package based on mapped finite element methods publication-title: Computing and Visualization in Science – volume: 33 start-page: 109 issue: 2 year: 2007 end-page: 133 article-title: An interface‐capturing method for incompressible two‐phase flows. Validation and application to bubble dynamics publication-title: International Journal of Multiphase Flow – volume: 377 start-page: 313 year: 1998 end-page: 345 article-title: Direct numerical simulations of bubbly flows. Part 1: low Reynolds number arrays publication-title: Journal of Fluid Mechanics – volume: 79 start-page: 12 issue: 1 year: 1988 end-page: 49 article-title: Fronts propagating with curvature‐dependent speed: algorithms based on Hamilton–Jacobi formulations publication-title: Journal of Computational Physics – year: 1998 – volume: 341 start-page: 269 year: 1997 end-page: 294 article-title: Axisymmetric free boundary problems publication-title: Journal of Fluid Mechanics – volume: 60 start-page: 2999 issue: 11 year: 2005 end-page: 3011 article-title: Numerical simulation of gas bubbles behaviour using a three‐dimensional volume of fluid method publication-title: Chemical Engineering Science – start-page: 417 year: 2005 end-page: 427 – volume: 143 start-page: 271 issue: 3–4 year: 1997 end-page: 288 article-title: On discrete projection methods for the incompressible Navier–Stokes equations: an algorithmical approach publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 52 start-page: 99 issue: 1 year: 2006 end-page: 110 article-title: Numerical simulation of behavior of gas bubbles using a 3‐D front‐tracking method publication-title: AIChE Journal – year: 1986 – volume: 52 start-page: 547 year: 1996 end-page: 566 – volume: 41 start-page: 310 year: 1933 end-page: 331 article-title: Sphericity and roundness of rock particles publication-title: Journal of Geology – volume: 58 start-page: 603 year: 1991 end-page: 611 article-title: An algorithm for evolutionary surfaces publication-title: Numerische Mathematik – volume: 40 start-page: 953 issue: 8 year: 2002 end-page: 980 article-title: Computational predictability of time‐dependent natural convection flows in enclosures (including a benchmark solution) publication-title: International Journal for Numerical Methods in Fluids – volume: 88 start-page: 203 issue: 2 year: 2001 end-page: 235 article-title: Finite element discretization of the Navier–Stokes equations with a free capillary surface publication-title: Numerische Mathematik – volume: 174 start-page: 781 issue: 2 year: 2001 end-page: 815 article-title: A fixed‐grid, sharp‐interface method for bubble dynamics and phase change publication-title: Journal of Computational Physics – year: 2006 – year: 2004 – volume: 15 start-page: 639 issue: 5 year: 1980 end-page: 648 article-title: A method for incorporating free boundaries with surface tension in finite element fluid‐flow simulators publication-title: International Journal for Numerical Methods in Engineering – start-page: 22 end-page: 31 – volume: 162 start-page: 301 issue: 2 year: 2000 end-page: 337 article-title: A coupled level set and volume‐of‐fluid method for computing 3D and axisymmetric incompressible two‐phase flows publication-title: Journal of Computational Physics – volume: 37 start-page: 885 issue: 8 year: 2001 end-page: 903 article-title: Higher‐order finite element discretizations in a benchmark problem for incompressible flows publication-title: International Journal for Numerical Methods in Fluids – year: 1978 – volume: 51 start-page: 659 issue: 6 year: 2006 end-page: 672 article-title: A new implicit surface tension implementation for interfacial flows publication-title: International Journal for Numerical Methods in Fluids – volume: 56 start-page: 1179 issue: 9 year: 2006 end-page: 1195 article-title: Mass preserving finite element implementations of the level set method publication-title: Applied Numerical Mathematics – volume: 387 start-page: 61 year: 1999 end-page: 96 article-title: The development of a bubble rising in a viscous liquid publication-title: Journal of Fluid Mechanics – volume: 196 start-page: 1193 issue: 7 year: 2007 end-page: 1202 article-title: On spurious velocities in incompressible flow problems with interfaces publication-title: Computer Methods in Applied Mechanics and Engineering – start-page: 203 year: 1996 end-page: 222 – year: 1999 – volume: 3 start-page: 155 year: 2004 end-page: 182 – ident: e_1_2_1_24_2 doi: 10.1002/fld.591 – ident: e_1_2_1_35_2 doi: 10.1016/ S0045‐7825(96)01155‐3 – ident: e_1_2_1_44_2 doi: 10.1007/BF01385643 – volume-title: Bubbles, Drops and Particles year: 1978 ident: e_1_2_1_19_2 – ident: e_1_2_1_30_2 doi: 10.1007/978-3-642-58393-3 – ident: e_1_2_1_25_2 doi: 10.1063/1.1842220 – start-page: 417 volume-title: Applied and Industrial Mathematics in Italy, Proceedings of SIMAI 2004 year: 2005 ident: e_1_2_1_37_2 – ident: e_1_2_1_7_2 doi: 10.1017/S0022112098003176 – ident: e_1_2_1_42_2 doi: 10.1007/978-3-642-61623-5 – ident: e_1_2_1_28_2 doi: 10.1017/S0022112097005570 – ident: e_1_2_1_5_2 – ident: e_1_2_1_21_2 doi: 10.1098/rsta.1952.0006 – start-page: 371 volume-title: Proposal for Numerical Benchmarking of Fluid–Structure Interaction Between an Elastic Object and Laminar Incompressible Flow year: 2006 ident: e_1_2_1_14_2 – ident: e_1_2_1_40_2 doi: 10.1016/j.apnum.2006.03.003 – ident: e_1_2_1_36_2 – ident: e_1_2_1_2_2 doi: 10.1016/j.ces.2005.01.031 – ident: e_1_2_1_39_2 – start-page: 203 volume-title: Applied Computational Geometry: Towards Geometric Engineering year: 1996 ident: e_1_2_1_47_2 doi: 10.1007/BFb0014497 – ident: e_1_2_1_10_2 doi: 10.1146/annurev.fluid.31.1.567 – ident: e_1_2_1_6_2 doi: 10.1017/S0022112099004449 – start-page: 155 volume-title: Encyclopedia of Computational Mechanics year: 2004 ident: e_1_2_1_46_2 – ident: e_1_2_1_45_2 doi: 10.1002/nme.1620150502 – ident: e_1_2_1_38_2 – ident: e_1_2_1_3_2 doi: 10.1002/aic.10607 – volume-title: Proceedings of ENUMATH year: 1998 ident: e_1_2_1_18_2 – ident: e_1_2_1_13_2 doi: 10.1002/fld.395 – start-page: 547 volume-title: Flow Simulation with High‐Performance Computers II (Notes on Numerical Fluid Mechanics) year: 1996 ident: e_1_2_1_17_2 – volume-title: Computational Methods in Multiphase Flow year: 2001 ident: e_1_2_1_8_2 – ident: e_1_2_1_43_2 doi: 10.1016/j.cma.2006.08.018 – ident: e_1_2_1_26_2 doi: 10.1006/jcph.2000.6537 – ident: e_1_2_1_16_2 – volume-title: FEDSM2003‐45154 in Proceedings of the 2003 ASME Joint U.S.–European Fluids Engineering Conference year: 2003 ident: e_1_2_1_9_2 – ident: e_1_2_1_20_2 doi: 10.1017/S002211208100311X – ident: e_1_2_1_15_2 doi: 10.1002/fld.195 – ident: e_1_2_1_23_2 – ident: e_1_2_1_11_2 doi: 10.1016/0021‐9991(92)90307‐K – ident: e_1_2_1_22_2 doi: 10.1007/s002110000225 – ident: e_1_2_1_32_2 doi: 10.1016/j.jcp.2004.01.015 – ident: e_1_2_1_27_2 doi: 10.1086/624040 – ident: e_1_2_1_33_2 doi: 10.1002/fld.1147 – ident: e_1_2_1_34_2 – ident: e_1_2_1_4_2 doi: 10.1016/j.ijmultiphaseflow.2006.07.003 – ident: e_1_2_1_41_2 doi: 10.1007/s00791‐003‐0120‐1 – ident: e_1_2_1_12_2 doi: 10.1006/jcph.2001.6938 – ident: e_1_2_1_29_2 doi: 10.1016/0021‐9991(88)90002‐2 – ident: e_1_2_1_31_2 |
| SSID | ssj0009283 |
| Score | 2.4618554 |
| Snippet | Benchmark configurations for quantitative validation and comparison of incompressible interfacial flow codes, which model two‐dimensional bubbles rising in... Benchmark configurations for quantitative validation and comparison of incompressible interfacial flow codes, which model two‐dimensional bubbles rising in... Benchmark configurations for quantitative validation and comparison of incompressible interfacial flow codes, which model two-dimensional bubbles rising in... |
| SourceID | proquest pascalfrancis crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1259 |
| SubjectTerms | ALE Benchmarking Bubbles Computational fluid dynamics Computational methods in fluid dynamics Drops and bubbles Exact sciences and technology finite-element method Fluid dynamics Fluid flow Fundamental areas of phenomenology (including applications) level set method Mathematical models Monitors multiphase flow Nonhomogeneous flows Numerical analysis numerical simulation Physics rising bubble Two dimensional |
| Title | Quantitative benchmark computations of two-dimensional bubble dynamics |
| URI | https://api.istex.fr/ark:/67375/WNG-BSX2SQQ3-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.1934 https://www.proquest.com/docview/1770278325 https://www.proquest.com/docview/896186386 |
| Volume | 60 |
| WOSCitedRecordID | wos000268287500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0363 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009283 issn: 0271-2091 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BwgEObSlUhEdlJASn0Pix8e4RaEMPUUQoLblZfgpE2KBsUjjyE_ob-0sYrzdpI1EJidNexlprXv7ssb8BeJG5kPV1T8fmLgE3KDzDmNO0G6jUktnc6vro4mwoR6N8Mik-NLcq41uYxA-xPnCLkVHn6xjg2lQHV6ShYepeI_oQt6HN0G1FC9qHHwenwyvKXZZIOJmk6AsFXVHP9tjBauzGYtSOev0VL0fqCvUTUmOLDeR5Hb_WC9Bg-3-mvgNbDewkb5Kf3IdbvtyF7QaCkibAq124d42f8AEcj5e6rF-hYU4kBmW-fNfzb8TWrSDSWR-ZBbL4Obv8feFio4BE8kHM0pipJy71u68ewung6NO7427TeqFrRZGLrmPCeI3B2peI6HLhqUeg1TeMB28QlPfyQHteIHhkOncFd5IbLp3A3RwvArV8D1rlrPSPgGSZiZV-54NH7GVcnmstI2dQJqzlNHTg1coGyja85LE9xlQlRmWmUF0qqqsDz9eSPxIXx19kXtZmXAugVuLdNZmpz6P36u3JhJ2Mx1yddWB_w87rAQx9RWLew7-tDK8w5GIdRZd-tqwUlTLWaznLOkBukMljJx3MbX2cUO0KN85YDYaH8fv4XwWfwN1U0oop7im0FvOlfwZ37PniazXfb6LgD3VFC5w |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxEB6VBAl6aKGACIViJASn0NjejXfFCSghiCUi9C83y17bApFuUDYBjjwCz8iTMF7vpo1EJSROexlrrfHM-POM_Q3A49i4uK96yjd3cXhA4TH6nKJdR4USLE9yVaUuTjIxGiWTSfphA543b2ECP8Qq4eY9o4rX3sF9Qnr_nDXUTc0zhB_RFWhHaEVxC9oHHwfH2TnnLgssnExQNIaUNtyzPbbfjF3bjdpesT_87UhVooJc6GyxBj0vAthqBxps_9fcb8BWDTzJi2ApN2HDFjuwXYNQUrt4uQObFxgKb8FwvFRF9Q4NoyLRKPPpTM2_kLxqBhGyfWTmyOL77PfPX8a3Cgg0H0QvtZ5aYkLH-_I2HA9eH70aduvmC908SpOoa1ikrUJ37QvEdElkqUWo1deMO6sRlvcSR3s2QvjIVGJSbgTXXJgIz3M8dTTnd6BVzAp7F0gca1_rN9ZZRF_aJIlSwrMGxVGec-o68LRZBJnXzOS-QcZUBk5lJlFd0qurA49Wkl8DG8dfZJ5U67gSQK3422silqejN_Ll4YQdjsdcnnRgb22hVwMYGovAyId_a1ZeotP5Sooq7GxZSiqEr9hyFneAXCKT-F46aJd9nFBlC5fOWA6yA_-996-CD-Ha8Oh9JrO3o3e7cD0UuHzAuw-txXxpH8DV_Nvicznfq13iD21FD4w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFD4aK0JwwWCAKD_DSAiuymo7iRNxBZQwRFWtjG29s-zY1iZKOjUtcMkj8Iw8Ccdx0q0Sk5C4ys2xYp0_f_axvwPwLDYuTlRf-eYuDjcoPMaYU7TnqFCCFWmh6qOLo6EYjdLJJNvfgFftW5jAD7E6cPORUedrH-D2zLjdc9ZQNzUvEX5EV6ATxVmCUdkZfMoPh-ecuyywcDJB0Rky2nLP9tluO3ZtNep4xf7wtyNVhQpyobPFGvS8CGDrFSjf-q-534KbDfAkr4On3IYNW27DVgNCSRPi1TbcuMBQeAf2xktV1u_QMCsSjTInX9X8CynqZhDhtI_MHFl8n_3--cv4VgGB5oPopdZTS0zoeF_dhcP83ee3e72m-UKviLI06hkWaaswXBOBmC6NLLUItRLNuLMaYXk_dbRvI4SPTKUm40ZwzYWJcD_HM0cLfg82y1lp7wOJY-1r_cY6i-hLmzRVSnjWoDgqCk5dF160RpBFw0zuG2RMZeBUZhLVJb26uvB0JXkW2Dj-IvO8tuNKALXib6-JWB6P3ss3BxN2MB5zedSFnTVDrwYwdBaBmQ__1lpeYtD5Sooq7WxZSSqEr9hyFneBXCKT-l46mN0SnFDtC5fOWObDgf8--FfBJ3Btf5DL4YfRx4dwPdS3fL57BJuL-dI-hqvFt8VpNd9pIuIP42APBw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+benchmark+computations+of+two%E2%80%90dimensional+bubble+dynamics&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Hysing%2C+S.&rft.au=Turek%2C+S.&rft.au=Kuzmin%2C+D.&rft.au=Parolini%2C+N.&rft.date=2009-08-20&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=60&rft.issue=11&rft.spage=1259&rft.epage=1288&rft_id=info:doi/10.1002%2Ffld.1934&rft.externalDBID=10.1002%252Ffld.1934&rft.externalDocID=FLD1934 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon |