Quantitative benchmark computations of two-dimensional bubble dynamics

Benchmark configurations for quantitative validation and comparison of incompressible interfacial flow codes, which model two‐dimensional bubbles rising in liquid columns, are proposed. The benchmark quantities: circularity, center of mass, and mean rise velocity are defined and measured to monitor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in fluids Jg. 60; H. 11; S. 1259 - 1288
Hauptverfasser: Hysing, S., Turek, S., Kuzmin, D., Parolini, N., Burman, E., Ganesan, S., Tobiska, L.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Chichester, UK John Wiley & Sons, Ltd 20.08.2009
Wiley
Schlagworte:
ISSN:0271-2091, 1097-0363, 1097-0363
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Benchmark configurations for quantitative validation and comparison of incompressible interfacial flow codes, which model two‐dimensional bubbles rising in liquid columns, are proposed. The benchmark quantities: circularity, center of mass, and mean rise velocity are defined and measured to monitor convergence toward a reference solution. Comprehensive studies are undertaken by three independent research groups, two representing Eulerian level set finite‐element codes and one representing an arbitrary Lagrangian–Eulerian moving grid approach. The first benchmark test case considers a bubble with small density and viscosity ratios, which undergoes moderate shape deformation. The results from all codes agree very well allowing for target reference values to be established. For the second test case, a bubble with a very low density compared to that of the surrounding fluid, the results for all groups are in good agreement up to the point of break up, after which all three codes predict different bubble shapes. This highlights the need for the research community to invest more effort in obtaining reference solutions to problems involving break up and coalescence. Other research groups are encouraged to participate in these benchmarks by contacting the authors and submitting their own data. The reference data for the computed benchmark quantities can also be supplied for validation purposes. Copyright © 2008 John Wiley & Sons, Ltd.
AbstractList Benchmark configurations for quantitative validation and comparison of incompressible interfacial flow codes, which model two‐dimensional bubbles rising in liquid columns, are proposed. The benchmark quantities: circularity, center of mass, and mean rise velocity are defined and measured to monitor convergence toward a reference solution. Comprehensive studies are undertaken by three independent research groups, two representing Eulerian level set finite‐element codes and one representing an arbitrary Lagrangian–Eulerian moving grid approach. The first benchmark test case considers a bubble with small density and viscosity ratios, which undergoes moderate shape deformation. The results from all codes agree very well allowing for target reference values to be established. For the second test case, a bubble with a very low density compared to that of the surrounding fluid, the results for all groups are in good agreement up to the point of break up, after which all three codes predict different bubble shapes. This highlights the need for the research community to invest more effort in obtaining reference solutions to problems involving break up and coalescence. Other research groups are encouraged to participate in these benchmarks by contacting the authors and submitting their own data. The reference data for the computed benchmark quantities can also be supplied for validation purposes. Copyright © 2008 John Wiley & Sons, Ltd.
Benchmark configurations for quantitative validation and comparison of incompressible interfacial flow codes, which model two-dimensional bubbles rising in liquid columns, are proposed. The benchmark quantities: circularity, center of mass, and mean rise velocity are defined and measured to monitor convergence toward a reference solution. Comprehensive studies are undertaken by three independent research groups, two representing Eulerian level set finite-element codes and one representing an arbitrary Lagrangian-Eulerian moving grid approach.
Benchmark configurations for quantitative validation and comparison of incompressible interfacial flow codes, which model two‐dimensional bubbles rising in liquid columns, are proposed. The benchmark quantities: circularity, center of mass, and mean rise velocity are defined and measured to monitor convergence toward a reference solution. Comprehensive studies are undertaken by three independent research groups, two representing Eulerian level set finite‐element codes and one representing an arbitrary Lagrangian–Eulerian moving grid approach. The first benchmark test case considers a bubble with small density and viscosity ratios, which undergoes moderate shape deformation. The results from all codes agree very well allowing for target reference values to be established. For the second test case, a bubble with a very low density compared to that of the surrounding fluid, the results for all groups are in good agreement up to the point of break up, after which all three codes predict different bubble shapes. This highlights the need for the research community to invest more effort in obtaining reference solutions to problems involving break up and coalescence. Other research groups are encouraged to participate in these benchmarks by contacting the authors and submitting their own data. The reference data for the computed benchmark quantities can also be supplied for validation purposes. Copyright © 2008 John Wiley & Sons, Ltd.
Author Turek, S.
Kuzmin, D.
Parolini, N.
Tobiska, L.
Burman, E.
Hysing, S.
Ganesan, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Hysing
  fullname: Hysing, S.
  email: shuren@cimne.upc.edu, shuren.hysing@math.uni-dortmund.de
  organization: Universitat Politècnica de Catalunya (UPC), Jordi Girona 1-3, Edifici C1, 08034 Barcelona, Spain
– sequence: 2
  givenname: S.
  surname: Turek
  fullname: Turek, S.
  organization: Institut für Angewandte Mathematik, TU Dortmund, Vogelpothsweg 87, 44227 Dortmund, Germany
– sequence: 3
  givenname: D.
  surname: Kuzmin
  fullname: Kuzmin, D.
  organization: Institut für Angewandte Mathematik, TU Dortmund, Vogelpothsweg 87, 44227 Dortmund, Germany
– sequence: 4
  givenname: N.
  surname: Parolini
  fullname: Parolini, N.
  organization: MOX, Dipartimento di Matematica, Politecnico di Milano, Via Bonardi 29, 20133 Milano, Italy
– sequence: 5
  givenname: E.
  surname: Burman
  fullname: Burman, E.
  organization: Department of Mathematics, University of Sussex, Brighton BN1 9RF, U.K
– sequence: 6
  givenname: S.
  surname: Ganesan
  fullname: Ganesan, S.
  organization: Department of Aeronautics, Imperial College, London, U.K
– sequence: 7
  givenname: L.
  surname: Tobiska
  fullname: Tobiska, L.
  organization: Institut für Analysis und Numerik, Otto-von-Guericke Universität, 39016 Magdeburg, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22097730$$DView record in Pascal Francis
BookMark eNp90V1r2zAUBmAxWliSFvYTfDO2G6f6iiVdbl3TFkJLSD92J2T5mGmT5cyy2-bfVyFtx6AtCASHRwfxvmO0F9oACH0ieEowpke1r6ZEMf4BjQhWIsesYHtohKkgOcWKfETjGH9jjBWVbITmy8GE3vWmd3eQlRDsr8Z0fzLbNuthO21DzNo66-_bvHINhJgmxmflUJYesmoTTONsPED7tfERDp_uCbqen1wdn-WLy9Pz42-L3HIleV5RXoIhQhWC45nkQGBWkKKkrIZSSoplTTBwJQQ1slKsEqxkouKKcqZqYtkEfdntXXft3wFirxsXLXhvArRD1FIVRBYsnQn6-q4kQqRMJKOzRD8_UROt8XVngnVRrzuXothommITguHkpjtnuzbGDmpt3S6ivjPOa4L1tgKdKtDbCv794eXB885XaL6j987D5k2n54sf_3sXe3h48ak6XQgmZvr24lR_X_2kq-WS6Rv2CFOGpPo
CODEN IJNFDW
CitedBy_id crossref_primary_10_1016_j_jcp_2025_114348
crossref_primary_10_1016_j_apnum_2015_09_002
crossref_primary_10_1016_j_jcp_2022_111473
crossref_primary_10_1016_j_jcp_2023_112040
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104151
crossref_primary_10_1016_j_oceaneng_2023_114497
crossref_primary_10_1002_fld_4267
crossref_primary_10_1007_s10444_019_09681_1
crossref_primary_10_1063_5_0094196
crossref_primary_10_1016_j_ijmultiphaseflow_2024_105006
crossref_primary_10_1016_j_nucengdes_2024_113470
crossref_primary_10_1016_j_oceaneng_2024_118582
crossref_primary_10_1134_S1995080224602285
crossref_primary_10_1002_fld_4949
crossref_primary_10_3390_pr9060948
crossref_primary_10_1002_cite_202100145
crossref_primary_10_1016_j_ijhydene_2022_01_143
crossref_primary_10_1016_j_jnnfm_2020_104408
crossref_primary_10_1016_j_compfluid_2019_104290
crossref_primary_10_1093_imanum_draf003
crossref_primary_10_1007_s11663_019_01630_z
crossref_primary_10_1016_j_cej_2018_05_110
crossref_primary_10_1016_j_mcm_2011_08_027
crossref_primary_10_1016_j_aml_2012_01_037
crossref_primary_10_1016_j_nucengdes_2019_01_020
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123451
crossref_primary_10_1002_nme_5844
crossref_primary_10_1080_10618561003627605
crossref_primary_10_1137_110830587
crossref_primary_10_1016_j_compfluid_2022_105725
crossref_primary_10_1016_j_cpc_2015_06_021
crossref_primary_10_1016_j_cma_2012_10_005
crossref_primary_10_1016_j_cpc_2022_108501
crossref_primary_10_1007_s12206_019_1016_4
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103288
crossref_primary_10_1080_02286203_2024_2374289
crossref_primary_10_1016_j_jnnfm_2019_04_002
crossref_primary_10_1016_j_oceaneng_2022_110711
crossref_primary_10_1007_s11081_018_9393_6
crossref_primary_10_1016_j_jcp_2022_111215
crossref_primary_10_1007_s12046_018_1041_5
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121681
crossref_primary_10_1103_95cr_8mkj
crossref_primary_10_1007_s11401_018_0079_3
crossref_primary_10_1002_fld_5256
crossref_primary_10_1016_j_compfluid_2020_104763
crossref_primary_10_1016_j_compfluid_2019_04_001
crossref_primary_10_1007_s11831_015_9143_2
crossref_primary_10_1016_j_compfluid_2015_05_013
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104816
crossref_primary_10_1002_fld_2611
crossref_primary_10_1016_j_compfluid_2011_01_035
crossref_primary_10_1016_j_jcp_2025_113908
crossref_primary_10_1007_s00707_018_2265_5
crossref_primary_10_1134_S0015462822602224
crossref_primary_10_1016_j_cma_2021_114184
crossref_primary_10_1002_fld_5265
crossref_primary_10_1016_j_cma_2021_114186
crossref_primary_10_1007_s10915_024_02530_4
crossref_primary_10_1002_fld_4971
crossref_primary_10_1016_j_ijmultiphaseflow_2009_12_002
crossref_primary_10_1063_5_0226148
crossref_primary_10_1016_j_camwa_2019_08_007
crossref_primary_10_1016_j_jcp_2020_109911
crossref_primary_10_1016_j_camwa_2021_11_022
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104409
crossref_primary_10_1016_j_jcp_2020_109363
crossref_primary_10_1080_10407790_2024_2379604
crossref_primary_10_1016_j_ijmultiphaseflow_2019_103125
crossref_primary_10_1002_fld_4185
crossref_primary_10_1016_j_compfluid_2014_06_030
crossref_primary_10_1016_j_apm_2025_116302
crossref_primary_10_1016_j_jcp_2016_07_037
crossref_primary_10_1007_s10915_014_9885_2
crossref_primary_10_1016_j_jcp_2013_12_055
crossref_primary_10_1016_j_jcp_2015_05_029
crossref_primary_10_1007_s13367_016_0021_8
crossref_primary_10_1002_fld_3802
crossref_primary_10_1002_fld_4509
crossref_primary_10_1134_S0015462820030015
crossref_primary_10_1016_j_jcp_2020_110054
crossref_primary_10_1103_PhysRevE_107_025308
crossref_primary_10_1016_j_compfluid_2021_105121
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118565
crossref_primary_10_1016_j_jcp_2024_113602
crossref_primary_10_3390_fluids10010020
crossref_primary_10_1002_fld_4071
crossref_primary_10_1016_j_enganabound_2019_04_002
crossref_primary_10_1016_j_jcp_2015_11_014
crossref_primary_10_1016_j_nucengdes_2022_111924
crossref_primary_10_1146_annurev_fluid_122316_045034
crossref_primary_10_1016_j_compfluid_2015_10_005
crossref_primary_10_1016_j_compfluid_2016_06_026
crossref_primary_10_1016_j_jcp_2019_109068
crossref_primary_10_1016_j_cma_2020_113176
crossref_primary_10_1007_s11012_017_0634_0
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103822
crossref_primary_10_1016_j_compfluid_2025_106716
crossref_primary_10_1016_j_compfluid_2024_106186
crossref_primary_10_1016_j_jcp_2021_110229
crossref_primary_10_1017_jfm_2016_276
crossref_primary_10_1016_j_cma_2017_01_002
crossref_primary_10_1016_j_ijheatfluidflow_2014_11_002
crossref_primary_10_1002_nme_7554
crossref_primary_10_1016_j_euromechflu_2020_11_004
crossref_primary_10_1016_j_jcp_2021_110587
crossref_primary_10_3390_math8081224
crossref_primary_10_1002_nme_5493
crossref_primary_10_1016_j_jcp_2022_110962
crossref_primary_10_1016_j_jcp_2024_112983
crossref_primary_10_1016_j_ijmultiphaseflow_2018_04_010
crossref_primary_10_1016_j_apm_2016_01_049
crossref_primary_10_1016_j_jcp_2019_07_016
crossref_primary_10_1002_fld_4886
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104614
crossref_primary_10_1186_s40323_024_00276_0
crossref_primary_10_1002_fld_4408
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104617
crossref_primary_10_1016_j_jcp_2020_109732
crossref_primary_10_1080_10618562_2020_1720000
crossref_primary_10_1016_j_camwa_2012_05_020
crossref_primary_10_1016_j_cma_2016_04_014
crossref_primary_10_1016_j_compfluid_2017_02_001
crossref_primary_10_1016_j_cma_2020_113158
crossref_primary_10_1016_j_euromechflu_2015_01_003
crossref_primary_10_3390_math11183900
crossref_primary_10_1016_j_cma_2016_04_019
crossref_primary_10_1016_j_cma_2022_114843
crossref_primary_10_1016_j_jcp_2019_109192
crossref_primary_10_1016_j_jcp_2024_113148
crossref_primary_10_1016_j_sctalk_2022_100055
crossref_primary_10_1016_j_enganabound_2023_12_009
crossref_primary_10_1016_j_jcp_2022_111049
crossref_primary_10_1007_s00021_017_0334_5
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125657
crossref_primary_10_1016_j_enganabound_2019_10_015
crossref_primary_10_1016_j_jcp_2020_109718
crossref_primary_10_1002_fld_4413
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103727
crossref_primary_10_1002_fld_4414
crossref_primary_10_1002_fld_4778
crossref_primary_10_1016_j_compfluid_2025_106813
crossref_primary_10_1016_j_euromechflu_2018_12_003
crossref_primary_10_1007_s00419_024_02622_5
crossref_primary_10_1016_j_jnnfm_2015_12_003
crossref_primary_10_1016_j_compfluid_2019_06_022
crossref_primary_10_1016_j_cpc_2018_04_020
crossref_primary_10_1016_j_ijheatfluidflow_2009_02_009
crossref_primary_10_1016_j_jcp_2014_04_055
crossref_primary_10_1063_5_0212742
crossref_primary_10_1016_j_ijheatfluidflow_2017_12_001
crossref_primary_10_1016_j_apm_2020_02_022
crossref_primary_10_1016_j_jcp_2021_110321
crossref_primary_10_1002_fld_3692
crossref_primary_10_1016_j_ces_2017_06_009
crossref_primary_10_1016_j_camwa_2023_05_033
crossref_primary_10_1016_j_jcp_2024_113016
crossref_primary_10_1016_j_jnnfm_2015_10_002
crossref_primary_10_1080_15502287_2018_1520756
crossref_primary_10_1016_j_camwa_2023_12_013
crossref_primary_10_1016_j_jcp_2024_113011
crossref_primary_10_1016_j_jcp_2024_113495
crossref_primary_10_1016_j_cma_2024_117341
crossref_primary_10_1007_s12206_015_1129_3
crossref_primary_10_1137_23M156968X
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103613
crossref_primary_10_1016_j_ijheatfluidflow_2024_109657
crossref_primary_10_1016_j_cocis_2023_101724
crossref_primary_10_1016_j_jcp_2025_114072
crossref_primary_10_1016_j_jcp_2018_10_019
crossref_primary_10_1016_j_jcp_2020_109674
crossref_primary_10_1016_j_jcp_2020_109671
crossref_primary_10_1016_j_jcp_2025_114195
crossref_primary_10_1016_j_oceaneng_2021_109743
crossref_primary_10_1016_j_ijheatfluidflow_2016_10_001
crossref_primary_10_1063_5_0279778
crossref_primary_10_1063_5_0256094
crossref_primary_10_1016_j_cam_2012_05_004
crossref_primary_10_1002_fld_5082
crossref_primary_10_1016_j_cam_2022_114116
crossref_primary_10_1016_j_jcp_2024_113122
crossref_primary_10_1016_j_compfluid_2022_105569
crossref_primary_10_1002_fld_4671
crossref_primary_10_1016_j_jcp_2011_01_033
crossref_primary_10_1016_j_jcp_2021_110151
crossref_primary_10_1080_10618562_2017_1322200
crossref_primary_10_1002_fld_4796
crossref_primary_10_1016_j_jcp_2017_08_047
crossref_primary_10_3233_ISP_200278
crossref_primary_10_1016_j_apor_2021_102963
crossref_primary_10_1002_fld_4678
crossref_primary_10_1063_5_0266104
crossref_primary_10_1016_j_jcp_2017_12_006
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103745
crossref_primary_10_1016_j_compfluid_2015_06_001
crossref_primary_10_1016_j_jcp_2017_04_019
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104207
crossref_primary_10_1140_epjst_e2013_01806_3
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103320
crossref_primary_10_1016_j_jcp_2025_114062
crossref_primary_10_1063_5_0281713
crossref_primary_10_1016_j_compfluid_2021_105154
crossref_primary_10_1016_j_jcp_2019_04_019
crossref_primary_10_1016_j_jcp_2022_111734
crossref_primary_10_1080_00295639_2022_2141517
crossref_primary_10_1080_10407790_2018_1525157
crossref_primary_10_1016_j_camwa_2016_12_014
crossref_primary_10_1016_j_jcp_2022_111093
crossref_primary_10_1016_j_oceaneng_2022_111401
crossref_primary_10_1016_j_jcp_2019_108904
crossref_primary_10_1016_j_cma_2018_12_009
crossref_primary_10_1016_j_crma_2016_06_007
crossref_primary_10_1016_j_amc_2018_03_074
crossref_primary_10_1016_j_jcp_2019_01_028
crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_091
crossref_primary_10_1007_s40571_021_00435_9
crossref_primary_10_1017_jfm_2022_674
crossref_primary_10_1063_5_0216609
crossref_primary_10_1016_j_cej_2024_153312
crossref_primary_10_1016_j_jcp_2020_109893
crossref_primary_10_1016_j_actaastro_2018_07_026
crossref_primary_10_1002_fld_2696
crossref_primary_10_1002_mma_9602
crossref_primary_10_3390_pr7080542
crossref_primary_10_1016_j_icheatmasstransfer_2022_106284
crossref_primary_10_1016_j_cma_2015_05_014
crossref_primary_10_1016_j_jcp_2018_11_032
crossref_primary_10_1016_j_jcp_2021_110113
crossref_primary_10_1177_09544062221138830
crossref_primary_10_1016_j_cma_2025_117956
crossref_primary_10_1007_s11663_020_01947_0
crossref_primary_10_1016_j_jcp_2023_112110
crossref_primary_10_1016_j_jcp_2015_03_005
crossref_primary_10_1016_j_jcp_2024_113101
crossref_primary_10_1016_j_ultsonch_2020_105375
crossref_primary_10_1016_j_compfluid_2022_105664
crossref_primary_10_1016_j_jcp_2017_07_029
crossref_primary_10_1016_j_jnnfm_2021_104568
crossref_primary_10_1016_j_ijmultiphaseflow_2016_10_016
crossref_primary_10_1007_s42241_018_0169_4
crossref_primary_10_1007_s42757_020_0074_2
crossref_primary_10_1007_s10404_012_0940_8
crossref_primary_10_1016_j_ijheatmasstransfer_2019_04_101
crossref_primary_10_1016_j_compfluid_2019_104345
crossref_primary_10_1016_j_jcp_2025_114282
crossref_primary_10_1002_fld_3653
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103460
crossref_primary_10_1016_j_jcp_2023_111936
crossref_primary_10_1016_j_jcp_2025_114285
crossref_primary_10_1002_nme_5598
crossref_primary_10_1016_j_jcp_2022_111079
crossref_primary_10_1016_j_jcp_2024_112920
crossref_primary_10_1016_j_oceaneng_2022_111629
crossref_primary_10_1016_j_camwa_2016_12_020
crossref_primary_10_1016_j_cma_2022_114759
crossref_primary_10_1016_j_compfluid_2025_106580
crossref_primary_10_1016_j_jcp_2025_113755
crossref_primary_10_1016_j_jcp_2022_111874
crossref_primary_10_1016_j_euromechflu_2022_11_001
crossref_primary_10_1016_j_jcp_2017_07_031
crossref_primary_10_1016_j_jcp_2024_113331
crossref_primary_10_1016_j_cjche_2018_08_023
crossref_primary_10_1016_j_compfluid_2016_04_026
crossref_primary_10_1016_j_ces_2024_120691
crossref_primary_10_1080_15502287_2010_483242
crossref_primary_10_3390_fluids7050152
crossref_primary_10_1016_j_compfluid_2020_104667
crossref_primary_10_1002_fld_5316
crossref_primary_10_1016_j_apor_2025_104423
crossref_primary_10_1016_j_compfluid_2017_04_025
crossref_primary_10_1016_j_compfluid_2020_104789
crossref_primary_10_1137_20M1317773
crossref_primary_10_1134_S1995080223050426
crossref_primary_10_1007_s10915_023_02325_z
crossref_primary_10_1007_s10494_021_00293_8
crossref_primary_10_1080_10407790_2023_2236791
crossref_primary_10_1002_fld_4907
crossref_primary_10_1016_j_aml_2017_01_012
crossref_primary_10_1016_j_compfluid_2024_106212
crossref_primary_10_1016_j_compfluid_2024_106455
crossref_primary_10_1016_j_camwa_2016_09_023
crossref_primary_10_1063_5_0260829
crossref_primary_10_1016_j_camwa_2017_12_034
crossref_primary_10_1016_j_jcp_2017_05_020
crossref_primary_10_1016_j_jcp_2021_110730
crossref_primary_10_1016_j_enganabound_2024_106043
crossref_primary_10_1016_j_jcp_2023_112010
crossref_primary_10_1016_j_compfluid_2018_12_016
crossref_primary_10_1016_j_jcp_2019_05_017
crossref_primary_10_1016_j_jcp_2025_113980
crossref_primary_10_1002_nme_6853
crossref_primary_10_1063_5_0228822
crossref_primary_10_1016_j_jcp_2019_109224
crossref_primary_10_1016_j_jcp_2019_109225
crossref_primary_10_1016_j_cma_2019_01_009
crossref_primary_10_1016_j_ijheatmasstransfer_2016_07_096
crossref_primary_10_1002_fld_5328
crossref_primary_10_3390_math6100203
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104368
crossref_primary_10_1002_fld_2429
crossref_primary_10_1016_j_enganabound_2024_106045
crossref_primary_10_3390_app13031955
crossref_primary_10_1016_j_jcp_2012_01_018
crossref_primary_10_1016_j_piutam_2015_04_043
crossref_primary_10_1063_5_0281871
crossref_primary_10_1016_j_apm_2021_05_007
crossref_primary_10_1007_s11663_022_02634_y
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103362
crossref_primary_10_1016_j_jcp_2015_06_004
crossref_primary_10_1016_j_jandt_2022_10_001
crossref_primary_10_1007_s10665_019_09998_2
crossref_primary_10_1016_j_enganabound_2021_04_011
crossref_primary_10_1063_5_0186236
crossref_primary_10_1142_S0217984924501537
crossref_primary_10_1007_s40430_020_02612_y
crossref_primary_10_1080_10407790_2018_1454758
crossref_primary_10_1016_j_compfluid_2021_104883
crossref_primary_10_1016_j_jcp_2013_08_018
crossref_primary_10_1002_fld_5215
crossref_primary_10_1016_j_ijheatmasstransfer_2023_125089
crossref_primary_10_1016_j_jcp_2013_10_028
crossref_primary_10_1063_1_5142353
crossref_primary_10_1080_10618562_2016_1155703
crossref_primary_10_1016_j_ijmultiphaseflow_2014_04_008
crossref_primary_10_1002_fld_4808
crossref_primary_10_1016_j_compfluid_2025_106674
crossref_primary_10_1177_09544062221081425
crossref_primary_10_1016_j_enganabound_2021_04_005
crossref_primary_10_1016_j_enganabound_2022_06_018
crossref_primary_10_1016_j_jcp_2011_11_035
crossref_primary_10_1016_j_cam_2013_12_014
crossref_primary_10_1016_j_jcp_2025_113943
crossref_primary_10_1016_j_jcp_2023_112276
crossref_primary_10_1002_fld_5100
crossref_primary_10_1016_j_cma_2018_05_029
crossref_primary_10_1016_j_oceaneng_2019_106649
crossref_primary_10_1016_j_compfluid_2018_06_008
crossref_primary_10_1016_j_jcp_2019_108959
crossref_primary_10_1051_epjconf_201714302122
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104861
crossref_primary_10_1016_j_nucengdes_2018_10_006
crossref_primary_10_1002_fld_4813
crossref_primary_10_1002_fld_4814
crossref_primary_10_1080_19942060_2022_2026820
crossref_primary_10_1016_j_cma_2020_113425
crossref_primary_10_26748_KSOE_2018_4_32_2_077
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103687
crossref_primary_10_1002_fld_4817
crossref_primary_10_1063_5_0214646
crossref_primary_10_1016_j_cpc_2017_10_003
crossref_primary_10_1002_fld_2643
crossref_primary_10_1016_j_compfluid_2019_104269
crossref_primary_10_1016_j_ijmecsci_2021_106946
crossref_primary_10_1016_j_jcp_2017_12_021
crossref_primary_10_1016_j_jcp_2021_110727
crossref_primary_10_1016_j_jcp_2021_110605
crossref_primary_10_1016_j_jcp_2022_111796
crossref_primary_10_1016_j_camwa_2015_07_007
crossref_primary_10_1016_j_jcp_2022_111552
crossref_primary_10_1016_j_jcp_2021_110166
crossref_primary_10_1016_j_apm_2018_12_017
crossref_primary_10_1016_j_compfluid_2022_105590
Cites_doi 10.1002/fld.591
10.1016/ S0045‐7825(96)01155‐3
10.1007/BF01385643
10.1007/978-3-642-58393-3
10.1063/1.1842220
10.1017/S0022112098003176
10.1007/978-3-642-61623-5
10.1017/S0022112097005570
10.1098/rsta.1952.0006
10.1016/j.apnum.2006.03.003
10.1016/j.ces.2005.01.031
10.1007/BFb0014497
10.1146/annurev.fluid.31.1.567
10.1017/S0022112099004449
10.1002/nme.1620150502
10.1002/aic.10607
10.1002/fld.395
10.1016/j.cma.2006.08.018
10.1006/jcph.2000.6537
10.1017/S002211208100311X
10.1002/fld.195
10.1016/0021‐9991(92)90307‐K
10.1007/s002110000225
10.1016/j.jcp.2004.01.015
10.1086/624040
10.1002/fld.1147
10.1016/j.ijmultiphaseflow.2006.07.003
10.1007/s00791‐003‐0120‐1
10.1006/jcph.2001.6938
10.1016/0021‐9991(88)90002‐2
ContentType Journal Article
Copyright Copyright © 2008 John Wiley & Sons, Ltd.
2009 INIST-CNRS
Copyright_xml – notice: Copyright © 2008 John Wiley & Sons, Ltd.
– notice: 2009 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/fld.1934
DatabaseName Istex
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Aerospace Database

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1097-0363
EndPage 1288
ExternalDocumentID 22097730
10_1002_fld_1934
FLD1934
ark_67375_WNG_BSX2SQQ3_V
Genre article
GrantInformation_xml – fundername: German Research foundation (DFG)
  funderid: To143/9
– fundername: Swiss National Science Foundation
  funderid: 112166
– fundername: SFB TR R30
  funderid: TPC3
– fundername: Paketantrag PAK178
  funderid: Tu102/27‐1; Ku1530/5‐1
– fundername: Sonderforschungsbereich SFB708
  funderid: TP B7
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
O8X
6TJ
ABEML
ACSCC
AGHNM
AI.
AMVHM
IQODW
M6O
PALCI
RIWAO
RJQFR
SAMSI
VH1
VOH
ZY4
~A~
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c4984-d24bea1796740584e1e5616b23feb88208f10e49772a8d93d73b37d492439f1c3
IEDL.DBID DRFUL
ISICitedReferencesCount 457
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000268287500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0271-2091
1097-0363
IngestDate Thu Oct 02 10:20:07 EDT 2025
Fri Sep 05 09:34:21 EDT 2025
Mon Jul 21 09:14:48 EDT 2025
Tue Nov 18 22:55:01 EST 2025
Sat Nov 29 03:27:41 EST 2025
Wed Aug 20 07:24:28 EDT 2025
Sun Sep 21 06:20:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Geometrical shape
Euler Lagrange equation
Computational fluid dynamics
benchmarking
Bubble ascent
Digital simulation
Computation code
Boundary conditions
finite-element method
Finite element method
Bubbles
rising bubble
level set method
multiphase flow
Modelling
ALE
Incompressible fluid
numerical simulation
Navier-Stokes equations
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4984-d24bea1796740584e1e5616b23feb88208f10e49772a8d93d73b37d492439f1c3
Notes ArticleID:FLD1934
Paketantrag PAK178 - No. Tu102/27-1; No. Ku1530/5-1
Swiss National Science Foundation - No. 112166
istex:C2490CF73FB6B954122EA9004F2433A71934FC07
Sonderforschungsbereich SFB708 - No. TP B7
German Research foundation (DFG) - No. To143/9
SFB TR R30 - No. TPC3
ark:/67375/WNG-BSX2SQQ3-V
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/fld.1934
PQID 1770278325
PQPubID 23500
PageCount 30
ParticipantIDs proquest_miscellaneous_896186386
proquest_miscellaneous_1770278325
pascalfrancis_primary_22097730
crossref_citationtrail_10_1002_fld_1934
crossref_primary_10_1002_fld_1934
wiley_primary_10_1002_fld_1934_FLD1934
istex_primary_ark_67375_WNG_BSX2SQQ3_V
PublicationCentury 2000
PublicationDate 20 August 2009
PublicationDateYYYYMMDD 2009-08-20
PublicationDate_xml – month: 08
  year: 2009
  text: 20 August 2009
  day: 20
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal for numerical methods in fluids
PublicationTitleAlternate Int. J. Numer. Meth. Fluids
PublicationYear 2009
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Christon AM, Gresho PM, Sutton SB. Computational predictability of time-dependent natural convection flows in enclosures (including a benchmark solution). International Journal for Numerical Methods in Fluids 2002; 40(8):953-980. DOI: 10.1002/fld.395.
Annaland MS, Dijkhuizen W, Deen NG, Kuipers JAM. Numerical simulation of behavior of gas bubbles using a 3-D front-tracking method. AIChE Journal 2006; 52(1):99-110. DOI: 10.1002/aic.10607.
Sussman M, Smereka P. Axisymmetric free boundary problems. Journal of Fluid Mechanics 1997; 341:269-294.
Di Pietro DA, Lo Forte S, Parolini N. Mass preserving finite element implementations of the level set method. Applied Numerical Mathematics 2006; 56(9):1179-1195. DOI: 10.1016/j.apnum.2006.03.003.
Martin J, Moyce W. An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philosophical Transactions of the Royal Society of London, Series A 1952; A 244:312-324.
Annaland MS, Deen NG, Kuipers JAM. Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method. Chemical Engineering Science 2005; 60(11):2999-3011. DOI: 10.1016/j.ces.2005.01.031.
Chen T, Minev PD, Nandakumar K. A projection scheme for incompressible multiphase flow using adaptive Eulerian grid. International Journal for Numerical Methods in Fluids 2001; 45(1):1-19. DOI: 10.1002/fld.591.
Wadell H. Sphericity and roundness of rock particles. Journal of Geology 1933; 41:310-331.
Unverdi SO, Tryggvason G. A front-tracking method for viscous, incompressible, multi-fluid flows. Journal of Computational Physics 1992; 100(1):25-37. DOI: 10.1016/0021-9991(92)90307-K.
Ye T, Shyy W, Chung JN. A fixed-grid, sharp-interface method for bubble dynamics and phase change. Journal of Computational Physics 2001; 174(2):781-815. DOI: 10.1006/jcph.2001.6938.
Turek S. On discrete projection methods for the incompressible Navier-Stokes equations: an algorithmical approach. Computer Methods in Applied Mechanics and Engineering 1997; 143(3-4):271-288. DOI: 10.1016/ S0045-7825(96)01155-3.
Scardovelli1 R, Zaleski S. Direct numerical simulation of free-surface and interfacial flow. Annual Review of Fluid Mechanics 1999; 31:567-603. DOI: 10.1146/annurev.fluid.31.1.567.
Norman CE, Miksis MJ. Dynamics of a gas bubble rising in an inclined channel at finite Reynolds number. Physics of Fluids 2005; 17(2):022102. DOI: 10.1063/1.1842220.
Esmaeeli A, Tryggvason G. Direct numerical simulations of bubbly flows. Part 1: low Reynolds number arrays. Journal of Fluid Mechanics 1998; 377:313-345.
Kuzmin D, Turek S. High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter. Journal of Computational Physics 2004; 198(1):131-158. DOI: 10.1016/j.jcp.2004.01.015.
Dziuk G. An algorithm for evolutionary surfaces. Numerische Mathematik 1991; 58:603-611.
Hysing S. A new implicit surface tension implementation for interfacial flows. International Journal for Numerical Methods in Fluids 2006; 51(6):659-672. DOI: 10.1002/fld.1147.
Ganesan S, Matthies G, Tobiska L. On spurious velocities in incompressible flow problems with interfaces. Computer Methods in Applied Mechanics and Engineering 2007; 196(7):1193-1202. DOI: 10.1016/j.cma.2006.08.018.
Bonometti T, Magnaudet J. An interface-capturing method for incompressible two-phase flows. Validation and application to bubble dynamics. International Journal of Multiphase Flow 2007; 33(2):109-133. DOI: 10.1016/j.ijmultiphaseflow.2006.07.003.
Turek S. Efficient Solvers for Incompressible Flow Problems, An Algorithmic and Computational Approach. Lecture Notes in Computational Science and Engineering, vol. 6. Springer: Berlin, 1999.
Bhaga D, Weber ME. Bubbles in viscous liquids: shapes, wakes and velocities. Journal of Fluid Mechanics 1981; 105:61-85. DOI: 10.1017/S002211208100311X.
Bänsch E. Finite element discretization of the Navier-Stokes equations with a free capillary surface. Numerische Mathematik 2001; 88(2):203-235. DOI: 10.1007/s002110000225.
Ruschak KJ. A method for incorporating free boundaries with surface tension in finite element fluid-flow simulators. International Journal for Numerical Methods in Engineering 1980; 15(5):639-648. DOI: 10.1002/nme.1620150502.
John V, Matthies G. MooNMD-a program package based on mapped finite element methods. Computing and Visualization in Science 2004; 6(2-3):163-170. DOI: 10.1007/s00791-003-0120-1.
Hron J, Turek S. In Proposal for Numerical Benchmarking of Fluid-Structure Interaction Between an Elastic Object and Laminar Incompressible Flow, Bungartz H-J, Schäfer M (eds), Lecture Notes in Computational Science and Engineering, Fluid-Structure Interaction-Modelling, Simulation, Optimization, vol. 53. Springer: Berlin, 2006; 371-385. ISBN 3-540-34595-7.
Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 1988; 79(1):12-49. DOI: 10.1016/0021-9991(88)90002-2.
Sussman M, Puckett EG. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. Journal of Computational Physics 2000; 162(2):301-337. DOI: 10.1006/jcph.2000.6537.
Girault V, Raviart PA. Finite Element Methods for Navier-Stokes Equations. Springer: Berlin, 1986.
Chen L, Garimella SV, Reizes JA, Leonardi E. The development of a bubble rising in a viscous liquid. Journal of Fluid Mechanics 1999; 387:61-96.
John V, Matthies G. Higher-order finite element discretizations in a benchmark problem for incompressible flows. International Journal for Numerical Methods in Fluids 2001; 37(8):885-903. DOI: 10.1002/fld.195.
Clift R, Grace JR, Weber ME. Bubbles, Drops and Particles. Academic Press: New York, 1978.
2006; 52
1991; 58
1933; 41
2006; 51
2006; 56
1992; 100
1998
2004; 3
1996; 52
1952
2007
2004; 6
1996
2006
1988; 79
2005
1981; 105
2004
2005; 60
2003
1999; 387
2001; 88
2001; 45
2007; 33
1998; 377
1978
1999
2004; 198
1980; 15
2001; 174
2001
2002; 40
1997; 341
1997; 143
2007; 196
1986
2000; 162
1999; 31
2001; 37
2005; 17
Parolini N (e_1_2_1_37_2) 2005
Hooper R (e_1_2_1_8_2) 2001
e_1_2_1_41_2
e_1_2_1_40_2
e_1_2_1_22_2
e_1_2_1_45_2
e_1_2_1_23_2
e_1_2_1_44_2
e_1_2_1_20_2
e_1_2_1_43_2
Rannacher R (e_1_2_1_46_2) 2004
Shewchuk JR (e_1_2_1_47_2) 1996
e_1_2_1_21_2
e_1_2_1_42_2
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
e_1_2_1_25_2
e_1_2_1_28_2
e_1_2_1_29_2
Turek S (e_1_2_1_17_2) 1996
Turek S (e_1_2_1_18_2) 1998
Clift R (e_1_2_1_19_2) 1978
e_1_2_1_6_2
e_1_2_1_30_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_34_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_33_2
e_1_2_1_32_2
e_1_2_1_10_2
e_1_2_1_31_2
Koebe M (e_1_2_1_9_2) 2003
e_1_2_1_15_2
e_1_2_1_38_2
e_1_2_1_16_2
e_1_2_1_13_2
e_1_2_1_36_2
e_1_2_1_35_2
Hron J (e_1_2_1_14_2) 2006
e_1_2_1_39_2
References_xml – reference: Ye T, Shyy W, Chung JN. A fixed-grid, sharp-interface method for bubble dynamics and phase change. Journal of Computational Physics 2001; 174(2):781-815. DOI: 10.1006/jcph.2001.6938.
– reference: John V, Matthies G. Higher-order finite element discretizations in a benchmark problem for incompressible flows. International Journal for Numerical Methods in Fluids 2001; 37(8):885-903. DOI: 10.1002/fld.195.
– reference: Di Pietro DA, Lo Forte S, Parolini N. Mass preserving finite element implementations of the level set method. Applied Numerical Mathematics 2006; 56(9):1179-1195. DOI: 10.1016/j.apnum.2006.03.003.
– reference: Annaland MS, Dijkhuizen W, Deen NG, Kuipers JAM. Numerical simulation of behavior of gas bubbles using a 3-D front-tracking method. AIChE Journal 2006; 52(1):99-110. DOI: 10.1002/aic.10607.
– reference: Bonometti T, Magnaudet J. An interface-capturing method for incompressible two-phase flows. Validation and application to bubble dynamics. International Journal of Multiphase Flow 2007; 33(2):109-133. DOI: 10.1016/j.ijmultiphaseflow.2006.07.003.
– reference: Girault V, Raviart PA. Finite Element Methods for Navier-Stokes Equations. Springer: Berlin, 1986.
– reference: Ruschak KJ. A method for incorporating free boundaries with surface tension in finite element fluid-flow simulators. International Journal for Numerical Methods in Engineering 1980; 15(5):639-648. DOI: 10.1002/nme.1620150502.
– reference: Esmaeeli A, Tryggvason G. Direct numerical simulations of bubbly flows. Part 1: low Reynolds number arrays. Journal of Fluid Mechanics 1998; 377:313-345.
– reference: Dziuk G. An algorithm for evolutionary surfaces. Numerische Mathematik 1991; 58:603-611.
– reference: Scardovelli1 R, Zaleski S. Direct numerical simulation of free-surface and interfacial flow. Annual Review of Fluid Mechanics 1999; 31:567-603. DOI: 10.1146/annurev.fluid.31.1.567.
– reference: Martin J, Moyce W. An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philosophical Transactions of the Royal Society of London, Series A 1952; A 244:312-324.
– reference: Norman CE, Miksis MJ. Dynamics of a gas bubble rising in an inclined channel at finite Reynolds number. Physics of Fluids 2005; 17(2):022102. DOI: 10.1063/1.1842220.
– reference: Chen L, Garimella SV, Reizes JA, Leonardi E. The development of a bubble rising in a viscous liquid. Journal of Fluid Mechanics 1999; 387:61-96.
– reference: Kuzmin D, Turek S. High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter. Journal of Computational Physics 2004; 198(1):131-158. DOI: 10.1016/j.jcp.2004.01.015.
– reference: Unverdi SO, Tryggvason G. A front-tracking method for viscous, incompressible, multi-fluid flows. Journal of Computational Physics 1992; 100(1):25-37. DOI: 10.1016/0021-9991(92)90307-K.
– reference: Sussman M, Smereka P. Axisymmetric free boundary problems. Journal of Fluid Mechanics 1997; 341:269-294.
– reference: Hron J, Turek S. In Proposal for Numerical Benchmarking of Fluid-Structure Interaction Between an Elastic Object and Laminar Incompressible Flow, Bungartz H-J, Schäfer M (eds), Lecture Notes in Computational Science and Engineering, Fluid-Structure Interaction-Modelling, Simulation, Optimization, vol. 53. Springer: Berlin, 2006; 371-385. ISBN 3-540-34595-7.
– reference: Bänsch E. Finite element discretization of the Navier-Stokes equations with a free capillary surface. Numerische Mathematik 2001; 88(2):203-235. DOI: 10.1007/s002110000225.
– reference: Christon AM, Gresho PM, Sutton SB. Computational predictability of time-dependent natural convection flows in enclosures (including a benchmark solution). International Journal for Numerical Methods in Fluids 2002; 40(8):953-980. DOI: 10.1002/fld.395.
– reference: John V, Matthies G. MooNMD-a program package based on mapped finite element methods. Computing and Visualization in Science 2004; 6(2-3):163-170. DOI: 10.1007/s00791-003-0120-1.
– reference: Ganesan S, Matthies G, Tobiska L. On spurious velocities in incompressible flow problems with interfaces. Computer Methods in Applied Mechanics and Engineering 2007; 196(7):1193-1202. DOI: 10.1016/j.cma.2006.08.018.
– reference: Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 1988; 79(1):12-49. DOI: 10.1016/0021-9991(88)90002-2.
– reference: Turek S. Efficient Solvers for Incompressible Flow Problems, An Algorithmic and Computational Approach. Lecture Notes in Computational Science and Engineering, vol. 6. Springer: Berlin, 1999.
– reference: Turek S. On discrete projection methods for the incompressible Navier-Stokes equations: an algorithmical approach. Computer Methods in Applied Mechanics and Engineering 1997; 143(3-4):271-288. DOI: 10.1016/ S0045-7825(96)01155-3.
– reference: Annaland MS, Deen NG, Kuipers JAM. Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method. Chemical Engineering Science 2005; 60(11):2999-3011. DOI: 10.1016/j.ces.2005.01.031.
– reference: Chen T, Minev PD, Nandakumar K. A projection scheme for incompressible multiphase flow using adaptive Eulerian grid. International Journal for Numerical Methods in Fluids 2001; 45(1):1-19. DOI: 10.1002/fld.591.
– reference: Clift R, Grace JR, Weber ME. Bubbles, Drops and Particles. Academic Press: New York, 1978.
– reference: Sussman M, Puckett EG. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. Journal of Computational Physics 2000; 162(2):301-337. DOI: 10.1006/jcph.2000.6537.
– reference: Bhaga D, Weber ME. Bubbles in viscous liquids: shapes, wakes and velocities. Journal of Fluid Mechanics 1981; 105:61-85. DOI: 10.1017/S002211208100311X.
– reference: Hysing S. A new implicit surface tension implementation for interfacial flows. International Journal for Numerical Methods in Fluids 2006; 51(6):659-672. DOI: 10.1002/fld.1147.
– reference: Wadell H. Sphericity and roundness of rock particles. Journal of Geology 1933; 41:310-331.
– volume: 31
  start-page: 567
  year: 1999
  end-page: 603
  article-title: Direct numerical simulation of free‐surface and interfacial flow
  publication-title: Annual Review of Fluid Mechanics
– volume: 100
  start-page: 25
  issue: 1
  year: 1992
  end-page: 37
  article-title: A front‐tracking method for viscous, incompressible, multi‐fluid flows
  publication-title: Journal of Computational Physics
– year: 2005
– volume: 45
  start-page: 1
  issue: 1
  year: 2001
  end-page: 19
  article-title: A projection scheme for incompressible multiphase flow using adaptive Eulerian grid
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 198
  start-page: 131
  issue: 1
  year: 2004
  end-page: 158
  article-title: High‐resolution FEM–TVD schemes based on a fully multidimensional flux limiter
  publication-title: Journal of Computational Physics
– year: 2001
– start-page: 312
  year: 1952
  end-page: 324
  article-title: An experimental study of the collapse of liquid columns on a rigid horizontal plane
  publication-title: Philosophical Transactions of the Royal Society of London, Series A
– year: 2007
– volume: 105
  start-page: 61
  year: 1981
  end-page: 85
  article-title: Bubbles in viscous liquids: shapes, wakes and velocities
  publication-title: Journal of Fluid Mechanics
– year: 2003
– start-page: 371
  year: 2006
  end-page: 385
– volume: 17
  start-page: 022102
  issue: 2
  year: 2005
  article-title: Dynamics of a gas bubble rising in an inclined channel at finite Reynolds number
  publication-title: Physics of Fluids
– volume: 6
  start-page: 163
  issue: 2–3
  year: 2004
  end-page: 170
  article-title: MooNMD—a program package based on mapped finite element methods
  publication-title: Computing and Visualization in Science
– volume: 33
  start-page: 109
  issue: 2
  year: 2007
  end-page: 133
  article-title: An interface‐capturing method for incompressible two‐phase flows. Validation and application to bubble dynamics
  publication-title: International Journal of Multiphase Flow
– volume: 377
  start-page: 313
  year: 1998
  end-page: 345
  article-title: Direct numerical simulations of bubbly flows. Part 1: low Reynolds number arrays
  publication-title: Journal of Fluid Mechanics
– volume: 79
  start-page: 12
  issue: 1
  year: 1988
  end-page: 49
  article-title: Fronts propagating with curvature‐dependent speed: algorithms based on Hamilton–Jacobi formulations
  publication-title: Journal of Computational Physics
– year: 1998
– volume: 341
  start-page: 269
  year: 1997
  end-page: 294
  article-title: Axisymmetric free boundary problems
  publication-title: Journal of Fluid Mechanics
– volume: 60
  start-page: 2999
  issue: 11
  year: 2005
  end-page: 3011
  article-title: Numerical simulation of gas bubbles behaviour using a three‐dimensional volume of fluid method
  publication-title: Chemical Engineering Science
– start-page: 417
  year: 2005
  end-page: 427
– volume: 143
  start-page: 271
  issue: 3–4
  year: 1997
  end-page: 288
  article-title: On discrete projection methods for the incompressible Navier–Stokes equations: an algorithmical approach
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 52
  start-page: 99
  issue: 1
  year: 2006
  end-page: 110
  article-title: Numerical simulation of behavior of gas bubbles using a 3‐D front‐tracking method
  publication-title: AIChE Journal
– year: 1986
– volume: 52
  start-page: 547
  year: 1996
  end-page: 566
– volume: 41
  start-page: 310
  year: 1933
  end-page: 331
  article-title: Sphericity and roundness of rock particles
  publication-title: Journal of Geology
– volume: 58
  start-page: 603
  year: 1991
  end-page: 611
  article-title: An algorithm for evolutionary surfaces
  publication-title: Numerische Mathematik
– volume: 40
  start-page: 953
  issue: 8
  year: 2002
  end-page: 980
  article-title: Computational predictability of time‐dependent natural convection flows in enclosures (including a benchmark solution)
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 88
  start-page: 203
  issue: 2
  year: 2001
  end-page: 235
  article-title: Finite element discretization of the Navier–Stokes equations with a free capillary surface
  publication-title: Numerische Mathematik
– volume: 174
  start-page: 781
  issue: 2
  year: 2001
  end-page: 815
  article-title: A fixed‐grid, sharp‐interface method for bubble dynamics and phase change
  publication-title: Journal of Computational Physics
– year: 2006
– year: 2004
– volume: 15
  start-page: 639
  issue: 5
  year: 1980
  end-page: 648
  article-title: A method for incorporating free boundaries with surface tension in finite element fluid‐flow simulators
  publication-title: International Journal for Numerical Methods in Engineering
– start-page: 22
  end-page: 31
– volume: 162
  start-page: 301
  issue: 2
  year: 2000
  end-page: 337
  article-title: A coupled level set and volume‐of‐fluid method for computing 3D and axisymmetric incompressible two‐phase flows
  publication-title: Journal of Computational Physics
– volume: 37
  start-page: 885
  issue: 8
  year: 2001
  end-page: 903
  article-title: Higher‐order finite element discretizations in a benchmark problem for incompressible flows
  publication-title: International Journal for Numerical Methods in Fluids
– year: 1978
– volume: 51
  start-page: 659
  issue: 6
  year: 2006
  end-page: 672
  article-title: A new implicit surface tension implementation for interfacial flows
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 56
  start-page: 1179
  issue: 9
  year: 2006
  end-page: 1195
  article-title: Mass preserving finite element implementations of the level set method
  publication-title: Applied Numerical Mathematics
– volume: 387
  start-page: 61
  year: 1999
  end-page: 96
  article-title: The development of a bubble rising in a viscous liquid
  publication-title: Journal of Fluid Mechanics
– volume: 196
  start-page: 1193
  issue: 7
  year: 2007
  end-page: 1202
  article-title: On spurious velocities in incompressible flow problems with interfaces
  publication-title: Computer Methods in Applied Mechanics and Engineering
– start-page: 203
  year: 1996
  end-page: 222
– year: 1999
– volume: 3
  start-page: 155
  year: 2004
  end-page: 182
– ident: e_1_2_1_24_2
  doi: 10.1002/fld.591
– ident: e_1_2_1_35_2
  doi: 10.1016/ S0045‐7825(96)01155‐3
– ident: e_1_2_1_44_2
  doi: 10.1007/BF01385643
– volume-title: Bubbles, Drops and Particles
  year: 1978
  ident: e_1_2_1_19_2
– ident: e_1_2_1_30_2
  doi: 10.1007/978-3-642-58393-3
– ident: e_1_2_1_25_2
  doi: 10.1063/1.1842220
– start-page: 417
  volume-title: Applied and Industrial Mathematics in Italy, Proceedings of SIMAI 2004
  year: 2005
  ident: e_1_2_1_37_2
– ident: e_1_2_1_7_2
  doi: 10.1017/S0022112098003176
– ident: e_1_2_1_42_2
  doi: 10.1007/978-3-642-61623-5
– ident: e_1_2_1_28_2
  doi: 10.1017/S0022112097005570
– ident: e_1_2_1_5_2
– ident: e_1_2_1_21_2
  doi: 10.1098/rsta.1952.0006
– start-page: 371
  volume-title: Proposal for Numerical Benchmarking of Fluid–Structure Interaction Between an Elastic Object and Laminar Incompressible Flow
  year: 2006
  ident: e_1_2_1_14_2
– ident: e_1_2_1_40_2
  doi: 10.1016/j.apnum.2006.03.003
– ident: e_1_2_1_36_2
– ident: e_1_2_1_2_2
  doi: 10.1016/j.ces.2005.01.031
– ident: e_1_2_1_39_2
– start-page: 203
  volume-title: Applied Computational Geometry: Towards Geometric Engineering
  year: 1996
  ident: e_1_2_1_47_2
  doi: 10.1007/BFb0014497
– ident: e_1_2_1_10_2
  doi: 10.1146/annurev.fluid.31.1.567
– ident: e_1_2_1_6_2
  doi: 10.1017/S0022112099004449
– start-page: 155
  volume-title: Encyclopedia of Computational Mechanics
  year: 2004
  ident: e_1_2_1_46_2
– ident: e_1_2_1_45_2
  doi: 10.1002/nme.1620150502
– ident: e_1_2_1_38_2
– ident: e_1_2_1_3_2
  doi: 10.1002/aic.10607
– volume-title: Proceedings of ENUMATH
  year: 1998
  ident: e_1_2_1_18_2
– ident: e_1_2_1_13_2
  doi: 10.1002/fld.395
– start-page: 547
  volume-title: Flow Simulation with High‐Performance Computers II (Notes on Numerical Fluid Mechanics)
  year: 1996
  ident: e_1_2_1_17_2
– volume-title: Computational Methods in Multiphase Flow
  year: 2001
  ident: e_1_2_1_8_2
– ident: e_1_2_1_43_2
  doi: 10.1016/j.cma.2006.08.018
– ident: e_1_2_1_26_2
  doi: 10.1006/jcph.2000.6537
– ident: e_1_2_1_16_2
– volume-title: FEDSM2003‐45154 in Proceedings of the 2003 ASME Joint U.S.–European Fluids Engineering Conference
  year: 2003
  ident: e_1_2_1_9_2
– ident: e_1_2_1_20_2
  doi: 10.1017/S002211208100311X
– ident: e_1_2_1_15_2
  doi: 10.1002/fld.195
– ident: e_1_2_1_23_2
– ident: e_1_2_1_11_2
  doi: 10.1016/0021‐9991(92)90307‐K
– ident: e_1_2_1_22_2
  doi: 10.1007/s002110000225
– ident: e_1_2_1_32_2
  doi: 10.1016/j.jcp.2004.01.015
– ident: e_1_2_1_27_2
  doi: 10.1086/624040
– ident: e_1_2_1_33_2
  doi: 10.1002/fld.1147
– ident: e_1_2_1_34_2
– ident: e_1_2_1_4_2
  doi: 10.1016/j.ijmultiphaseflow.2006.07.003
– ident: e_1_2_1_41_2
  doi: 10.1007/s00791‐003‐0120‐1
– ident: e_1_2_1_12_2
  doi: 10.1006/jcph.2001.6938
– ident: e_1_2_1_29_2
  doi: 10.1016/0021‐9991(88)90002‐2
– ident: e_1_2_1_31_2
SSID ssj0009283
Score 2.4617794
Snippet Benchmark configurations for quantitative validation and comparison of incompressible interfacial flow codes, which model two‐dimensional bubbles rising in...
Benchmark configurations for quantitative validation and comparison of incompressible interfacial flow codes, which model two‐dimensional bubbles rising in...
Benchmark configurations for quantitative validation and comparison of incompressible interfacial flow codes, which model two-dimensional bubbles rising in...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1259
SubjectTerms ALE
Benchmarking
Bubbles
Computational fluid dynamics
Computational methods in fluid dynamics
Drops and bubbles
Exact sciences and technology
finite-element method
Fluid dynamics
Fluid flow
Fundamental areas of phenomenology (including applications)
level set method
Mathematical models
Monitors
multiphase flow
Nonhomogeneous flows
Numerical analysis
numerical simulation
Physics
rising bubble
Two dimensional
Title Quantitative benchmark computations of two-dimensional bubble dynamics
URI https://api.istex.fr/ark:/67375/WNG-BSX2SQQ3-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.1934
https://www.proquest.com/docview/1770278325
https://www.proquest.com/docview/896186386
Volume 60
WOSCitedRecordID wos000268287500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0363
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009283
  issn: 0271-2091
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9MwGH4FLQd2YDBAK7DJSAhOYYntxMkR2MoOU0UZg94sf4ppJUVNCxz5CfxGfgmv47RbJSYhccrltWK9X34S288D8Cy1tDTWs8SkLk24M1hSeW4TqxmuR8qFu5mt2IQYjcrJpHrXnaoMd2EiP8T6h1uojLZfhwJXujm4JA31U_sS0Qe_CX2Kact70D98Pzw7uaTcpZGEk4oMc6HKVtSzKT1Yjd1YjPrBrz_C4UjVoH98FLbYQJ5X8Wu7AA23_2fqd-FOBzvJq5gn9-CGq3dgu4OgpCvwZge2rvAT3ofj8VLV7S007IlEo83nL2p-QUwrBRH_9ZGZJ4vvs98_f9kgFBBJPoheaj11xEa9--YBnA2PPrw5TjrphcTwquSJpVw7hcVaCER0JXeZQ6BVaMq80wjK09JnqeMIHqkqbcWsYBhcy_FrjlU-M-wh9OpZ7XaBuKqwhc9wXOF4XhqVGe5TZal2IsjeDODFKgbSdLzkQR5jKiOjMpXoLhncNYCna8uvkYvjLzbP2zCuDdAr4eyayOWn0Vv5-nRCT8djJj8OYH8jzusBFHNFYN_Dt60CL7Hkwj6Kqt1s2chMiLBfy2g-AHKNTRmUdLC3FTihNhWunbEcnhyG56N_NXwMt-OWVmhxT6C3mC_dHtwy3xbnzXy_q4I__tYMWQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4aLRLwwGAM0QHDSAiesiW2cxNPwChFlIqyDfpmOb5oEyWdmhZ45CfwG_klHMdJt0pMQuIpL8eKdW7-YsffB_Ak1DRT2rJAhSYMuFFYUnGsA10wXI-kcXcza7GJdDTKJpP8wwY8b-_CeH6I1Yabq4y6X7sCdxvS--esoXaq9xB-8CvQ5ZhFcQe6Bx_7x8Nzzl3qWThpGmEy5FHLPRvS_Xbs2mrUdY794f6OlBU6yHplizXoeRHA1itQf_O_5n4LbjbAk7zwmXIbNky5BZsNCCVNiVdbcOMCQ-EdGIyXsqzvoWFXJAXanHyV8y9E1WIQfrePzCxZfJ_9_vlLO6kAT_NBimVRTA3RXvG-2obj_uujV4OgEV8IFM8zHmjKCyOxXJMUMV3GTWQQaiUFZdYUCMvDzEah4Qgfqcx0znTKMLya4_ccy22k2F3olLPS3ANi8kQnNsJxieFxpmSkuA2lpoVJnfBND561QRCqYSZ3AhlT4TmVqUB3CeeuHjxeWZ55No6_2Dyt47gyQK-4v9fSWHwevREvDyf0cDxm4lMPdtcCvRpAMVlS7Hz4tjbyAovOnaTI0syWlYjS1J3YMhr3gFxikzktHczLBCdU58KlMxb94YF77vyr4SO4Njh6PxTDt6N39-G6P-ByDe8BdBbzpXkIV9W3xWk1321K4g8ANRBJ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4aK0LwwGBsWrkMIyF4Ckts5yaegBKGqKqVMeib5fgiEF06NS3wyE_gN_JLOI6TbpWYhMRTXo4V69z8Jba_D-BxqGmmtGWBCk0YcKOwpOJYB7pkuB5J4-5mNmIT6WiUTSb50QY87-7CeH6I1Q83VxlNv3YFbs60PThnDbVT_QzhB78CPR7nCVZlb_C-OBmec-5Sz8JJ0wiTIY867tmQHnRj11ajnnPsD3c6UtboIOuVLdag50UA26xAxdZ_zf0W3GyBJ3nhM-U2bJhqG7ZaEEraEq-34cYFhsI7cDheyqq5h4ZdkZRo8_lUzr8S1YhB-L99ZGbJ4vvs989f2kkFeJoPUi7LcmqI9or39Q6cFK8_vDoMWvGFQPE844GmvDQSyzVJEdNl3EQGoVZSUmZNibA8zGwUGo7wkcpM50ynDMOrOX7PsdxGiu3CZjWrzB4Qkyc6sRGOSwyPMyUjxW0oNS1N6oRv-vC0C4JQLTO5E8iYCs-pTAW6Szh39eHRyvLMs3H8xeZJE8eVAXrFnV5LY_Fp9Ea8PJ7Q4_GYiY992F8L9GoAxWRJsfPh27rICyw6t5MiKzNb1iJKU7djy2jcB3KJTea0dLC7JTihJhcunbEohgP3vPuvhg_h2tGgEMO3o3f34Lrf33L97j5sLuZL8wCuqm-LL_V8v62IP3WTD8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+benchmark+computations+of+two-dimensional+bubble+dynamics&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Hysing%2C+S&rft.au=Turek%2C+S&rft.au=Kuzmin%2C+D&rft.au=Parolini%2C+N&rft.date=2009-08-20&rft.issn=1097-0363&rft.volume=60&rft.issue=11&rft.spage=1259&rft.epage=1288&rft_id=info:doi/10.1002%2Ffld.1934&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon