Statistical inference of the generation probability of T-cell receptors from sequence repertoires

Stochastic rearrangement of germline V-, D-, and J-genes to create variable coding sequence for certain cell surface receptors is at the origin of immune system diversity. This process, known as "VDJ recombination", is implemented via a series of stochastic molecular events involving gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS Jg. 109; H. 40; S. 16161
Hauptverfasser: Murugan, Anand, Mora, Thierry, Walczak, Aleksandra M, Callan, Jr, Curtis G
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 02.10.2012
Schlagworte:
ISSN:1091-6490, 1091-6490
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Stochastic rearrangement of germline V-, D-, and J-genes to create variable coding sequence for certain cell surface receptors is at the origin of immune system diversity. This process, known as "VDJ recombination", is implemented via a series of stochastic molecular events involving gene choices and random nucleotide insertions between, and deletions from, genes. We use large sequence repertoires of the variable CDR3 region of human CD4+ T-cell receptor beta chains to infer the statistical properties of these basic biochemical events. Because any given CDR3 sequence can be produced in multiple ways, the probability distribution of hidden recombination events cannot be inferred directly from the observed sequences; we therefore develop a maximum likelihood inference method to achieve this end. To separate the properties of the molecular rearrangement mechanism from the effects of selection, we focus on nonproductive CDR3 sequences in T-cell DNA. We infer the joint distribution of the various generative events that occur when a new T-cell receptor gene is created. We find a rich picture of correlation (and absence thereof), providing insight into the molecular mechanisms involved. The generative event statistics are consistent between individuals, suggesting a universal biochemical process. Our probabilistic model predicts the generation probability of any specific CDR3 sequence by the primitive recombination process, allowing us to quantify the potential diversity of the T-cell repertoire and to understand why some sequences are shared between individuals. We argue that the use of formal statistical inference methods, of the kind presented in this paper, will be essential for quantitative understanding of the generation and evolution of diversity in the adaptive immune system.
AbstractList Stochastic rearrangement of germline V-, D-, and J-genes to create variable coding sequence for certain cell surface receptors is at the origin of immune system diversity. This process, known as "VDJ recombination", is implemented via a series of stochastic molecular events involving gene choices and random nucleotide insertions between, and deletions from, genes. We use large sequence repertoires of the variable CDR3 region of human CD4+ T-cell receptor beta chains to infer the statistical properties of these basic biochemical events. Because any given CDR3 sequence can be produced in multiple ways, the probability distribution of hidden recombination events cannot be inferred directly from the observed sequences; we therefore develop a maximum likelihood inference method to achieve this end. To separate the properties of the molecular rearrangement mechanism from the effects of selection, we focus on nonproductive CDR3 sequences in T-cell DNA. We infer the joint distribution of the various generative events that occur when a new T-cell receptor gene is created. We find a rich picture of correlation (and absence thereof), providing insight into the molecular mechanisms involved. The generative event statistics are consistent between individuals, suggesting a universal biochemical process. Our probabilistic model predicts the generation probability of any specific CDR3 sequence by the primitive recombination process, allowing us to quantify the potential diversity of the T-cell repertoire and to understand why some sequences are shared between individuals. We argue that the use of formal statistical inference methods, of the kind presented in this paper, will be essential for quantitative understanding of the generation and evolution of diversity in the adaptive immune system.
Stochastic rearrangement of germline V-, D-, and J-genes to create variable coding sequence for certain cell surface receptors is at the origin of immune system diversity. This process, known as "VDJ recombination", is implemented via a series of stochastic molecular events involving gene choices and random nucleotide insertions between, and deletions from, genes. We use large sequence repertoires of the variable CDR3 region of human CD4+ T-cell receptor beta chains to infer the statistical properties of these basic biochemical events. Because any given CDR3 sequence can be produced in multiple ways, the probability distribution of hidden recombination events cannot be inferred directly from the observed sequences; we therefore develop a maximum likelihood inference method to achieve this end. To separate the properties of the molecular rearrangement mechanism from the effects of selection, we focus on nonproductive CDR3 sequences in T-cell DNA. We infer the joint distribution of the various generative events that occur when a new T-cell receptor gene is created. We find a rich picture of correlation (and absence thereof), providing insight into the molecular mechanisms involved. The generative event statistics are consistent between individuals, suggesting a universal biochemical process. Our probabilistic model predicts the generation probability of any specific CDR3 sequence by the primitive recombination process, allowing us to quantify the potential diversity of the T-cell repertoire and to understand why some sequences are shared between individuals. We argue that the use of formal statistical inference methods, of the kind presented in this paper, will be essential for quantitative understanding of the generation and evolution of diversity in the adaptive immune system.Stochastic rearrangement of germline V-, D-, and J-genes to create variable coding sequence for certain cell surface receptors is at the origin of immune system diversity. This process, known as "VDJ recombination", is implemented via a series of stochastic molecular events involving gene choices and random nucleotide insertions between, and deletions from, genes. We use large sequence repertoires of the variable CDR3 region of human CD4+ T-cell receptor beta chains to infer the statistical properties of these basic biochemical events. Because any given CDR3 sequence can be produced in multiple ways, the probability distribution of hidden recombination events cannot be inferred directly from the observed sequences; we therefore develop a maximum likelihood inference method to achieve this end. To separate the properties of the molecular rearrangement mechanism from the effects of selection, we focus on nonproductive CDR3 sequences in T-cell DNA. We infer the joint distribution of the various generative events that occur when a new T-cell receptor gene is created. We find a rich picture of correlation (and absence thereof), providing insight into the molecular mechanisms involved. The generative event statistics are consistent between individuals, suggesting a universal biochemical process. Our probabilistic model predicts the generation probability of any specific CDR3 sequence by the primitive recombination process, allowing us to quantify the potential diversity of the T-cell repertoire and to understand why some sequences are shared between individuals. We argue that the use of formal statistical inference methods, of the kind presented in this paper, will be essential for quantitative understanding of the generation and evolution of diversity in the adaptive immune system.
Author Walczak, Aleksandra M
Mora, Thierry
Murugan, Anand
Callan, Jr, Curtis G
Author_xml – sequence: 1
  givenname: Anand
  surname: Murugan
  fullname: Murugan, Anand
  organization: Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544, USA
– sequence: 2
  givenname: Thierry
  surname: Mora
  fullname: Mora, Thierry
– sequence: 3
  givenname: Aleksandra M
  surname: Walczak
  fullname: Walczak, Aleksandra M
– sequence: 4
  givenname: Curtis G
  surname: Callan, Jr
  fullname: Callan, Jr, Curtis G
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22988065$$D View this record in MEDLINE/PubMed
BookMark eNpNULtOwzAUtVARfcDMhjyypNhO3NgjqiggVWKgzJHjXINRYgfbHfr3uFAklvvQeejozNHEeQcIXVOypKQu70an4pIyymrOKZFnaJYnLVaVJJN_9xTNY_wkhEguyAWaMiaFICs-Q-o1qWRjslr12DoDAZwG7A1OH4DfwUHIuHd4DL5Vre1tOhzRXaGh73EADWPyIWIT_IAjfO1_9AFGCMnbAPESnRvVR7g67QV62zzs1k_F9uXxeX2_LXQl61QYLUsOkoEhFa8kMNNR01a0q4lQBqqSi1awDORPCsU6XXai45JVGmhXrtgC3f765qQ5RUzNYOMxpHLg97GhJMtJrklk6s2Jum8H6Jox2EGFQ_NXC_sGlOZonA
CitedBy_id crossref_primary_10_1038_s41586_023_06218_x
crossref_primary_10_1038_nbt_4296
crossref_primary_10_1073_pnas_1700241114
crossref_primary_10_1111_sji_13375
crossref_primary_10_1093_bib_bbad038
crossref_primary_10_1016_j_molimm_2021_08_009
crossref_primary_10_1073_pnas_1809642115
crossref_primary_10_1051_jbio_2017033
crossref_primary_10_1371_journal_pbio_3002465
crossref_primary_10_1111_bjh_16230
crossref_primary_10_1016_j_coisb_2018_09_005
crossref_primary_10_1038_s42256_025_01085_9
crossref_primary_10_1016_j_smim_2023_101810
crossref_primary_10_15252_embj_201796881
crossref_primary_10_1016_j_jtbi_2015_10_016
crossref_primary_10_1111_imm_13256
crossref_primary_10_1371_journal_pone_0169464
crossref_primary_10_1186_s12865_019_0300_5
crossref_primary_10_3389_fimmu_2024_1321603
crossref_primary_10_1371_journal_pcbi_1004409
crossref_primary_10_7554_eLife_73475
crossref_primary_10_15252_embj_201489643
crossref_primary_10_1016_j_coisb_2016_12_014
crossref_primary_10_7554_eLife_49900
crossref_primary_10_1073_pnas_1319389111
crossref_primary_10_1093_ecco_jcc_jjz179
crossref_primary_10_1371_journal_pbio_3000314
crossref_primary_10_1586_17512433_2013_811814
crossref_primary_10_1073_pnas_2104367118
crossref_primary_10_1146_annurev_immunol_042718_041757
crossref_primary_10_3389_fimmu_2018_01618
crossref_primary_10_4049_jimmunol_1700485
crossref_primary_10_3389_fimmu_2022_851868
crossref_primary_10_1038_s41467_018_02832_w
crossref_primary_10_3389_fimmu_2022_797640
crossref_primary_10_1088_1751_8121_acf101
crossref_primary_10_1161_CIRCRESAHA_124_323661
crossref_primary_10_7554_eLife_33050
crossref_primary_10_1093_bib_bbz092
crossref_primary_10_1111_imr_12696
crossref_primary_10_1073_pnas_2318599121
crossref_primary_10_1007_s00018_019_03378_w
crossref_primary_10_1186_s13073_018_0577_7
crossref_primary_10_1007_s00251_017_1049_8
crossref_primary_10_1073_pnas_2023141118
crossref_primary_10_1038_nature24473
crossref_primary_10_1186_s13059_021_02313_2
crossref_primary_10_4049_jimmunol_1700594
crossref_primary_10_1093_bib_bbw138
crossref_primary_10_1186_s12859_015_0613_1
crossref_primary_10_3389_fimmu_2022_858057
crossref_primary_10_1016_j_immuni_2014_07_007
crossref_primary_10_1146_annurev_immunol_042617_053238
crossref_primary_10_1016_j_smim_2022_101702
crossref_primary_10_1038_s41598_018_24367_2
crossref_primary_10_1038_s41587_021_00989_2
crossref_primary_10_3389_fimmu_2019_02159
crossref_primary_10_1016_j_isci_2023_106937
crossref_primary_10_3389_fimmu_2021_599133
crossref_primary_10_1073_pnas_1312146110
crossref_primary_10_1016_j_molimm_2019_09_019
crossref_primary_10_4049_jimmunol_1500215
crossref_primary_10_1016_j_smim_2014_09_003
crossref_primary_10_3390_ijms21218324
crossref_primary_10_1016_j_str_2016_06_014
crossref_primary_10_1038_s41592_021_01201_8
crossref_primary_10_1109_TIT_2020_3030569
crossref_primary_10_1038_s42256_023_00781_8
crossref_primary_10_3390_pathogens9080650
crossref_primary_10_1073_pnas_2311348121
crossref_primary_10_1172_JCI158122
crossref_primary_10_3389_fimmu_2022_915366
crossref_primary_10_1186_s12864_016_2799_7
crossref_primary_10_1088_1478_3975_aa7366
crossref_primary_10_3389_fimmu_2023_1181825
crossref_primary_10_1016_j_isci_2021_102311
crossref_primary_10_1371_journal_pgen_1009301
crossref_primary_10_1093_nar_gkaf250
crossref_primary_10_1016_j_jaut_2017_04_002
crossref_primary_10_7554_eLife_53704
crossref_primary_10_1371_journal_pone_0141561
crossref_primary_10_7554_eLife_81274
crossref_primary_10_3389_fimmu_2017_00430
crossref_primary_10_1084_jem_20181003
crossref_primary_10_1371_journal_pcbi_1012724
crossref_primary_10_1016_j_coi_2013_07_001
crossref_primary_10_1016_j_jmb_2025_169205
crossref_primary_10_1016_j_bbih_2021_100312
crossref_primary_10_1016_j_csbj_2020_07_008
crossref_primary_10_1186_s12979_021_00231_2
crossref_primary_10_1016_j_cmet_2019_09_010
crossref_primary_10_1103_PhysRevE_106_014406
crossref_primary_10_1103_PhysRevX_13_041033
crossref_primary_10_7554_eLife_90681
crossref_primary_10_1016_j_immuno_2025_100058
crossref_primary_10_1038_bmt_2016_148
crossref_primary_10_1016_j_jim_2018_10_003
crossref_primary_10_1016_j_physrep_2020_01_001
crossref_primary_10_1039_C9ME00071B
crossref_primary_10_1073_pnas_1409572111
crossref_primary_10_1371_journal_pcbi_1011664
crossref_primary_10_7554_eLife_61393
crossref_primary_10_1093_nar_gkac190
crossref_primary_10_1111_imr_12664
crossref_primary_10_3389_fimmu_2018_02115
crossref_primary_10_1111_imr_12665
crossref_primary_10_1016_j_cels_2023_11_004
crossref_primary_10_1016_j_cels_2024_11_006
crossref_primary_10_1177_1535370216669610
crossref_primary_10_7554_eLife_69157
crossref_primary_10_1021_acs_molpharmaceut_4c01502
crossref_primary_10_26508_lsa_201800221
crossref_primary_10_3389_fimmu_2025_1603730
crossref_primary_10_1111_imm_12244
crossref_primary_10_1093_rheumatology_kex517
crossref_primary_10_1111_imm_13299
crossref_primary_10_1038_s41467_024_47461_8
crossref_primary_10_1093_bib_bbaf246
crossref_primary_10_1016_j_sbi_2018_03_019
crossref_primary_10_1038_s43586_023_00284_1
crossref_primary_10_1016_j_it_2014_09_004
crossref_primary_10_1038_s43587_021_00029_3
crossref_primary_10_3390_v13091786
crossref_primary_10_1016_j_ccell_2024_05_005
crossref_primary_10_1016_j_crhy_2015_09_004
crossref_primary_10_1073_pnas_2213264120
crossref_primary_10_1371_journal_pcbi_1006874
crossref_primary_10_1371_journal_pcbi_1010167
crossref_primary_10_1186_gm502
crossref_primary_10_1111_imr_12654
crossref_primary_10_1038_s41423_020_0468_x
crossref_primary_10_1038_s41467_017_01925_2
crossref_primary_10_1038_s41598_017_13070_3
crossref_primary_10_7554_eLife_86181
crossref_primary_10_1111_tri_13475
crossref_primary_10_1038_s41375_023_01935_8
crossref_primary_10_7554_eLife_81622
crossref_primary_10_1007_s00251_019_01139_4
crossref_primary_10_1101_gr_170753_113
crossref_primary_10_1016_j_jtbi_2019_01_025
crossref_primary_10_1146_annurev_immunol_041015_055325
crossref_primary_10_1007_s00251_016_0929_7
crossref_primary_10_1084_jem_20221220
crossref_primary_10_3389_fimmu_2015_00644
crossref_primary_10_7554_eLife_22057
crossref_primary_10_1073_pnas_1512977112
crossref_primary_10_3389_fimmu_2019_00299
crossref_primary_10_7554_eLife_68605
crossref_primary_10_1371_journal_pcbi_1005572
crossref_primary_10_1038_s41587_020_0656_3
crossref_primary_10_1038_nbt_3979
crossref_primary_10_1038_s41598_023_46637_4
crossref_primary_10_7554_eLife_85145
crossref_primary_10_1016_j_ijid_2021_10_033
crossref_primary_10_1016_j_jmoldx_2023_02_002
crossref_primary_10_3938_jkps_73_1908
crossref_primary_10_1103_14j1_wrh5
crossref_primary_10_3390_info8010024
crossref_primary_10_1186_s12859_017_1853_z
crossref_primary_10_7554_eLife_38358
crossref_primary_10_1088_1751_8121_50_3_035602
crossref_primary_10_1073_pnas_1713863114
crossref_primary_10_1002_eji_202249975
crossref_primary_10_1007_s11538_023_01190_z
crossref_primary_10_3389_fimmu_2016_00089
crossref_primary_10_4049_jimmunol_1800091
crossref_primary_10_1016_j_it_2015_09_006
crossref_primary_10_3389_fimmu_2015_00413
crossref_primary_10_3389_fimmu_2020_604464
crossref_primary_10_7554_eLife_23156
crossref_primary_10_1189_jlb_6A0215_071RR
crossref_primary_10_7554_eLife_46935
crossref_primary_10_1073_pnas_1421827112
crossref_primary_10_1073_pnas_1601012113
crossref_primary_10_1093_gigascience_giad074
crossref_primary_10_3389_fimmu_2018_00224
crossref_primary_10_3389_fimmu_2018_01038
crossref_primary_10_3389_fimmu_2018_01435
crossref_primary_10_1111_imm_12857
crossref_primary_10_1371_journal_pcbi_1004870
crossref_primary_10_3390_ijms252312591
crossref_primary_10_1371_journal_pcbi_1008394
crossref_primary_10_1038_s41586_024_08508_4
crossref_primary_10_1111_imm_12057
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1212755109
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 22988065
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ADXHL
ID FETCH-LOGICAL-c497t-fc935e92ef04549e2fd1fb41d708afe4358b8249e8af98a2dc3d8d5924ce1d362
IEDL.DBID 7X8
ISICitedReferencesCount 210
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000309611400047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Sun Aug 24 03:02:18 EDT 2025
Thu Apr 03 06:59:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 40
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-fc935e92ef04549e2fd1fb41d708afe4358b8249e8af98a2dc3d8d5924ce1d362
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.pnas.org/content/pnas/109/40/16161.full.pdf
PMID 22988065
PQID 1082405518
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1082405518
pubmed_primary_22988065
PublicationCentury 2000
PublicationDate 2012-10-02
PublicationDateYYYYMMDD 2012-10-02
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
References 9745202 - Immunol Today. 1998 Sep;19(9):395-404
21854230 - Annu Rev Genet. 2011;45:167-202
19541912 - Genome Res. 2009 Oct;19(10):1817-24
20811043 - Sci Transl Med. 2010 Sep 1;2(47):47ra64
21383244 - J Immunol. 2011 Apr 1;186(7):4285-94
19423829 - Science. 2009 May 8;324(5928):807-10
10542151 - Science. 1999 Oct 29;286(5441):958-61
20974936 - Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19414-9
11870614 - Eur J Immunol. 2002 Mar;32(3):701-9
19706884 - Blood. 2009 Nov 5;114(19):4099-107
20212159 - Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5405-10
8524303 - Mol Cell Biol. 1996 Jan;16(1):258-69
20192759 - Annu Rev Biochem. 2010;79:181-211
18301425 - Nat Rev Immunol. 2008 Mar;8(3):231-8
10843387 - Immunity. 2000 May;12(5):547-56
20691907 - Cell. 2010 Aug 6;142(3):496-496.e1
11696602 - J Exp Med. 2001 Nov 5;194(9):1385-90
17129612 - Immunol Lett. 2007 Jan 15;108(1):45-51
21249354 - Immunogenetics. 2011 May;63(5):259-65
15262823 - Bioinformatics. 2004 Aug 4;20 Suppl 1:i379-85
2590942 - Cell. 1989 Dec 1;59(5):859-70
References_xml – reference: 17129612 - Immunol Lett. 2007 Jan 15;108(1):45-51
– reference: 20691907 - Cell. 2010 Aug 6;142(3):496-496.e1
– reference: 2590942 - Cell. 1989 Dec 1;59(5):859-70
– reference: 20974936 - Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19414-9
– reference: 21249354 - Immunogenetics. 2011 May;63(5):259-65
– reference: 18301425 - Nat Rev Immunol. 2008 Mar;8(3):231-8
– reference: 10843387 - Immunity. 2000 May;12(5):547-56
– reference: 20811043 - Sci Transl Med. 2010 Sep 1;2(47):47ra64
– reference: 19706884 - Blood. 2009 Nov 5;114(19):4099-107
– reference: 10542151 - Science. 1999 Oct 29;286(5441):958-61
– reference: 21854230 - Annu Rev Genet. 2011;45:167-202
– reference: 21383244 - J Immunol. 2011 Apr 1;186(7):4285-94
– reference: 15262823 - Bioinformatics. 2004 Aug 4;20 Suppl 1:i379-85
– reference: 8524303 - Mol Cell Biol. 1996 Jan;16(1):258-69
– reference: 19423829 - Science. 2009 May 8;324(5928):807-10
– reference: 19541912 - Genome Res. 2009 Oct;19(10):1817-24
– reference: 11870614 - Eur J Immunol. 2002 Mar;32(3):701-9
– reference: 20212159 - Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5405-10
– reference: 20192759 - Annu Rev Biochem. 2010;79:181-211
– reference: 9745202 - Immunol Today. 1998 Sep;19(9):395-404
– reference: 11696602 - J Exp Med. 2001 Nov 5;194(9):1385-90
SSID ssj0009580
Score 2.5285375
Snippet Stochastic rearrangement of germline V-, D-, and J-genes to create variable coding sequence for certain cell surface receptors is at the origin of immune...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 16161
SubjectTerms Adaptive Immunity - genetics
Algorithms
Antibody Diversity - genetics
Base Sequence
CD4-Positive T-Lymphocytes - metabolism
Computational Biology - methods
Genes, T-Cell Receptor beta - genetics
Humans
Likelihood Functions
Models, Biological
Molecular Sequence Data
Sequence Alignment
Sequence Analysis, DNA
V(D)J Recombination - genetics
Title Statistical inference of the generation probability of T-cell receptors from sequence repertoires
URI https://www.ncbi.nlm.nih.gov/pubmed/22988065
https://www.proquest.com/docview/1082405518
Volume 109
WOSCitedRecordID wos000309611400047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qevCirs_1RQQPegi2abpJTiLi4sVlDwp7K2ke4qWt21Xw3zvTB3oSwUugbVrSZDL5Jpn5hpALMHTGIncxS21kwECxKTNWGZY2UZkRQHTbJpuQ06maz_Ws23CrO7fKXic2itqVFvfIYXYrWHyQP-ymemOYNQpPV7sUGqtkkACUQamWc_WDdFe1bAQ6ZmOho57aRybXVWFqZFbgEj4Z_YIvm3VmsvXfFm6TzQ5h0ttWJIZkxRc7ZNjN4ZpedkTTV7vEINJsiJqh_msf-UfLQAEV0pemHo4bxawzLZ_3Jz59YrjdT0FX-gqT9VCMUaG9Uzbcr_xiWYIurffI8-T-6e6BdSkXmBVaLlmwOkm95j4gNZ_2PLg45CJ2MlImeMBWKoe_1B6utDLc2cQpl4IRZ33sYDHcJ2tFWfhDQoV1zulEyCTXUEiVBxuEHQuTJ1YEPSLnfTdmINLYcFP48r3OvjtyRA7asciqlnsj41wrPAs--sPbx2QD4A1vXO_4CRkEmND-lKzbD-jbxVkjK1BOZ49f7JzKqA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+inference+of+the+generation+probability+of+T-cell+receptors+from+sequence+repertoires&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Murugan%2C+Anand&rft.au=Mora%2C+Thierry&rft.au=Walczak%2C+Aleksandra+M&rft.au=Callan%2C+Jr%2C+Curtis+G&rft.date=2012-10-02&rft.eissn=1091-6490&rft.volume=109&rft.issue=40&rft.spage=16161&rft_id=info:doi/10.1073%2Fpnas.1212755109&rft_id=info%3Apmid%2F22988065&rft_id=info%3Apmid%2F22988065&rft.externalDocID=22988065
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon