Statistical inference of the generation probability of T-cell receptors from sequence repertoires
Stochastic rearrangement of germline V-, D-, and J-genes to create variable coding sequence for certain cell surface receptors is at the origin of immune system diversity. This process, known as "VDJ recombination", is implemented via a series of stochastic molecular events involving gene...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS Jg. 109; H. 40; S. 16161 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
02.10.2012
|
| Schlagworte: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Stochastic rearrangement of germline V-, D-, and J-genes to create variable coding sequence for certain cell surface receptors is at the origin of immune system diversity. This process, known as "VDJ recombination", is implemented via a series of stochastic molecular events involving gene choices and random nucleotide insertions between, and deletions from, genes. We use large sequence repertoires of the variable CDR3 region of human CD4+ T-cell receptor beta chains to infer the statistical properties of these basic biochemical events. Because any given CDR3 sequence can be produced in multiple ways, the probability distribution of hidden recombination events cannot be inferred directly from the observed sequences; we therefore develop a maximum likelihood inference method to achieve this end. To separate the properties of the molecular rearrangement mechanism from the effects of selection, we focus on nonproductive CDR3 sequences in T-cell DNA. We infer the joint distribution of the various generative events that occur when a new T-cell receptor gene is created. We find a rich picture of correlation (and absence thereof), providing insight into the molecular mechanisms involved. The generative event statistics are consistent between individuals, suggesting a universal biochemical process. Our probabilistic model predicts the generation probability of any specific CDR3 sequence by the primitive recombination process, allowing us to quantify the potential diversity of the T-cell repertoire and to understand why some sequences are shared between individuals. We argue that the use of formal statistical inference methods, of the kind presented in this paper, will be essential for quantitative understanding of the generation and evolution of diversity in the adaptive immune system. |
|---|---|
| AbstractList | Stochastic rearrangement of germline V-, D-, and J-genes to create variable coding sequence for certain cell surface receptors is at the origin of immune system diversity. This process, known as "VDJ recombination", is implemented via a series of stochastic molecular events involving gene choices and random nucleotide insertions between, and deletions from, genes. We use large sequence repertoires of the variable CDR3 region of human CD4+ T-cell receptor beta chains to infer the statistical properties of these basic biochemical events. Because any given CDR3 sequence can be produced in multiple ways, the probability distribution of hidden recombination events cannot be inferred directly from the observed sequences; we therefore develop a maximum likelihood inference method to achieve this end. To separate the properties of the molecular rearrangement mechanism from the effects of selection, we focus on nonproductive CDR3 sequences in T-cell DNA. We infer the joint distribution of the various generative events that occur when a new T-cell receptor gene is created. We find a rich picture of correlation (and absence thereof), providing insight into the molecular mechanisms involved. The generative event statistics are consistent between individuals, suggesting a universal biochemical process. Our probabilistic model predicts the generation probability of any specific CDR3 sequence by the primitive recombination process, allowing us to quantify the potential diversity of the T-cell repertoire and to understand why some sequences are shared between individuals. We argue that the use of formal statistical inference methods, of the kind presented in this paper, will be essential for quantitative understanding of the generation and evolution of diversity in the adaptive immune system. Stochastic rearrangement of germline V-, D-, and J-genes to create variable coding sequence for certain cell surface receptors is at the origin of immune system diversity. This process, known as "VDJ recombination", is implemented via a series of stochastic molecular events involving gene choices and random nucleotide insertions between, and deletions from, genes. We use large sequence repertoires of the variable CDR3 region of human CD4+ T-cell receptor beta chains to infer the statistical properties of these basic biochemical events. Because any given CDR3 sequence can be produced in multiple ways, the probability distribution of hidden recombination events cannot be inferred directly from the observed sequences; we therefore develop a maximum likelihood inference method to achieve this end. To separate the properties of the molecular rearrangement mechanism from the effects of selection, we focus on nonproductive CDR3 sequences in T-cell DNA. We infer the joint distribution of the various generative events that occur when a new T-cell receptor gene is created. We find a rich picture of correlation (and absence thereof), providing insight into the molecular mechanisms involved. The generative event statistics are consistent between individuals, suggesting a universal biochemical process. Our probabilistic model predicts the generation probability of any specific CDR3 sequence by the primitive recombination process, allowing us to quantify the potential diversity of the T-cell repertoire and to understand why some sequences are shared between individuals. We argue that the use of formal statistical inference methods, of the kind presented in this paper, will be essential for quantitative understanding of the generation and evolution of diversity in the adaptive immune system.Stochastic rearrangement of germline V-, D-, and J-genes to create variable coding sequence for certain cell surface receptors is at the origin of immune system diversity. This process, known as "VDJ recombination", is implemented via a series of stochastic molecular events involving gene choices and random nucleotide insertions between, and deletions from, genes. We use large sequence repertoires of the variable CDR3 region of human CD4+ T-cell receptor beta chains to infer the statistical properties of these basic biochemical events. Because any given CDR3 sequence can be produced in multiple ways, the probability distribution of hidden recombination events cannot be inferred directly from the observed sequences; we therefore develop a maximum likelihood inference method to achieve this end. To separate the properties of the molecular rearrangement mechanism from the effects of selection, we focus on nonproductive CDR3 sequences in T-cell DNA. We infer the joint distribution of the various generative events that occur when a new T-cell receptor gene is created. We find a rich picture of correlation (and absence thereof), providing insight into the molecular mechanisms involved. The generative event statistics are consistent between individuals, suggesting a universal biochemical process. Our probabilistic model predicts the generation probability of any specific CDR3 sequence by the primitive recombination process, allowing us to quantify the potential diversity of the T-cell repertoire and to understand why some sequences are shared between individuals. We argue that the use of formal statistical inference methods, of the kind presented in this paper, will be essential for quantitative understanding of the generation and evolution of diversity in the adaptive immune system. |
| Author | Walczak, Aleksandra M Mora, Thierry Murugan, Anand Callan, Jr, Curtis G |
| Author_xml | – sequence: 1 givenname: Anand surname: Murugan fullname: Murugan, Anand organization: Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544, USA – sequence: 2 givenname: Thierry surname: Mora fullname: Mora, Thierry – sequence: 3 givenname: Aleksandra M surname: Walczak fullname: Walczak, Aleksandra M – sequence: 4 givenname: Curtis G surname: Callan, Jr fullname: Callan, Jr, Curtis G |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22988065$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNULtOwzAUtVARfcDMhjyypNhO3NgjqiggVWKgzJHjXINRYgfbHfr3uFAklvvQeejozNHEeQcIXVOypKQu70an4pIyymrOKZFnaJYnLVaVJJN_9xTNY_wkhEguyAWaMiaFICs-Q-o1qWRjslr12DoDAZwG7A1OH4DfwUHIuHd4DL5Vre1tOhzRXaGh73EADWPyIWIT_IAjfO1_9AFGCMnbAPESnRvVR7g67QV62zzs1k_F9uXxeX2_LXQl61QYLUsOkoEhFa8kMNNR01a0q4lQBqqSi1awDORPCsU6XXai45JVGmhXrtgC3f765qQ5RUzNYOMxpHLg97GhJMtJrklk6s2Jum8H6Jox2EGFQ_NXC_sGlOZonA |
| CitedBy_id | crossref_primary_10_1038_s41586_023_06218_x crossref_primary_10_1038_nbt_4296 crossref_primary_10_1073_pnas_1700241114 crossref_primary_10_1111_sji_13375 crossref_primary_10_1093_bib_bbad038 crossref_primary_10_1016_j_molimm_2021_08_009 crossref_primary_10_1073_pnas_1809642115 crossref_primary_10_1051_jbio_2017033 crossref_primary_10_1371_journal_pbio_3002465 crossref_primary_10_1111_bjh_16230 crossref_primary_10_1016_j_coisb_2018_09_005 crossref_primary_10_1038_s42256_025_01085_9 crossref_primary_10_1016_j_smim_2023_101810 crossref_primary_10_15252_embj_201796881 crossref_primary_10_1016_j_jtbi_2015_10_016 crossref_primary_10_1111_imm_13256 crossref_primary_10_1371_journal_pone_0169464 crossref_primary_10_1186_s12865_019_0300_5 crossref_primary_10_3389_fimmu_2024_1321603 crossref_primary_10_1371_journal_pcbi_1004409 crossref_primary_10_7554_eLife_73475 crossref_primary_10_15252_embj_201489643 crossref_primary_10_1016_j_coisb_2016_12_014 crossref_primary_10_7554_eLife_49900 crossref_primary_10_1073_pnas_1319389111 crossref_primary_10_1093_ecco_jcc_jjz179 crossref_primary_10_1371_journal_pbio_3000314 crossref_primary_10_1586_17512433_2013_811814 crossref_primary_10_1073_pnas_2104367118 crossref_primary_10_1146_annurev_immunol_042718_041757 crossref_primary_10_3389_fimmu_2018_01618 crossref_primary_10_4049_jimmunol_1700485 crossref_primary_10_3389_fimmu_2022_851868 crossref_primary_10_1038_s41467_018_02832_w crossref_primary_10_3389_fimmu_2022_797640 crossref_primary_10_1088_1751_8121_acf101 crossref_primary_10_1161_CIRCRESAHA_124_323661 crossref_primary_10_7554_eLife_33050 crossref_primary_10_1093_bib_bbz092 crossref_primary_10_1111_imr_12696 crossref_primary_10_1073_pnas_2318599121 crossref_primary_10_1007_s00018_019_03378_w crossref_primary_10_1186_s13073_018_0577_7 crossref_primary_10_1007_s00251_017_1049_8 crossref_primary_10_1073_pnas_2023141118 crossref_primary_10_1038_nature24473 crossref_primary_10_1186_s13059_021_02313_2 crossref_primary_10_4049_jimmunol_1700594 crossref_primary_10_1093_bib_bbw138 crossref_primary_10_1186_s12859_015_0613_1 crossref_primary_10_3389_fimmu_2022_858057 crossref_primary_10_1016_j_immuni_2014_07_007 crossref_primary_10_1146_annurev_immunol_042617_053238 crossref_primary_10_1016_j_smim_2022_101702 crossref_primary_10_1038_s41598_018_24367_2 crossref_primary_10_1038_s41587_021_00989_2 crossref_primary_10_3389_fimmu_2019_02159 crossref_primary_10_1016_j_isci_2023_106937 crossref_primary_10_3389_fimmu_2021_599133 crossref_primary_10_1073_pnas_1312146110 crossref_primary_10_1016_j_molimm_2019_09_019 crossref_primary_10_4049_jimmunol_1500215 crossref_primary_10_1016_j_smim_2014_09_003 crossref_primary_10_3390_ijms21218324 crossref_primary_10_1016_j_str_2016_06_014 crossref_primary_10_1038_s41592_021_01201_8 crossref_primary_10_1109_TIT_2020_3030569 crossref_primary_10_1038_s42256_023_00781_8 crossref_primary_10_3390_pathogens9080650 crossref_primary_10_1073_pnas_2311348121 crossref_primary_10_1172_JCI158122 crossref_primary_10_3389_fimmu_2022_915366 crossref_primary_10_1186_s12864_016_2799_7 crossref_primary_10_1088_1478_3975_aa7366 crossref_primary_10_3389_fimmu_2023_1181825 crossref_primary_10_1016_j_isci_2021_102311 crossref_primary_10_1371_journal_pgen_1009301 crossref_primary_10_1093_nar_gkaf250 crossref_primary_10_1016_j_jaut_2017_04_002 crossref_primary_10_7554_eLife_53704 crossref_primary_10_1371_journal_pone_0141561 crossref_primary_10_7554_eLife_81274 crossref_primary_10_3389_fimmu_2017_00430 crossref_primary_10_1084_jem_20181003 crossref_primary_10_1371_journal_pcbi_1012724 crossref_primary_10_1016_j_coi_2013_07_001 crossref_primary_10_1016_j_jmb_2025_169205 crossref_primary_10_1016_j_bbih_2021_100312 crossref_primary_10_1016_j_csbj_2020_07_008 crossref_primary_10_1186_s12979_021_00231_2 crossref_primary_10_1016_j_cmet_2019_09_010 crossref_primary_10_1103_PhysRevE_106_014406 crossref_primary_10_1103_PhysRevX_13_041033 crossref_primary_10_7554_eLife_90681 crossref_primary_10_1016_j_immuno_2025_100058 crossref_primary_10_1038_bmt_2016_148 crossref_primary_10_1016_j_jim_2018_10_003 crossref_primary_10_1016_j_physrep_2020_01_001 crossref_primary_10_1039_C9ME00071B crossref_primary_10_1073_pnas_1409572111 crossref_primary_10_1371_journal_pcbi_1011664 crossref_primary_10_7554_eLife_61393 crossref_primary_10_1093_nar_gkac190 crossref_primary_10_1111_imr_12664 crossref_primary_10_3389_fimmu_2018_02115 crossref_primary_10_1111_imr_12665 crossref_primary_10_1016_j_cels_2023_11_004 crossref_primary_10_1016_j_cels_2024_11_006 crossref_primary_10_1177_1535370216669610 crossref_primary_10_7554_eLife_69157 crossref_primary_10_1021_acs_molpharmaceut_4c01502 crossref_primary_10_26508_lsa_201800221 crossref_primary_10_3389_fimmu_2025_1603730 crossref_primary_10_1111_imm_12244 crossref_primary_10_1093_rheumatology_kex517 crossref_primary_10_1111_imm_13299 crossref_primary_10_1038_s41467_024_47461_8 crossref_primary_10_1093_bib_bbaf246 crossref_primary_10_1016_j_sbi_2018_03_019 crossref_primary_10_1038_s43586_023_00284_1 crossref_primary_10_1016_j_it_2014_09_004 crossref_primary_10_1038_s43587_021_00029_3 crossref_primary_10_3390_v13091786 crossref_primary_10_1016_j_ccell_2024_05_005 crossref_primary_10_1016_j_crhy_2015_09_004 crossref_primary_10_1073_pnas_2213264120 crossref_primary_10_1371_journal_pcbi_1006874 crossref_primary_10_1371_journal_pcbi_1010167 crossref_primary_10_1186_gm502 crossref_primary_10_1111_imr_12654 crossref_primary_10_1038_s41423_020_0468_x crossref_primary_10_1038_s41467_017_01925_2 crossref_primary_10_1038_s41598_017_13070_3 crossref_primary_10_7554_eLife_86181 crossref_primary_10_1111_tri_13475 crossref_primary_10_1038_s41375_023_01935_8 crossref_primary_10_7554_eLife_81622 crossref_primary_10_1007_s00251_019_01139_4 crossref_primary_10_1101_gr_170753_113 crossref_primary_10_1016_j_jtbi_2019_01_025 crossref_primary_10_1146_annurev_immunol_041015_055325 crossref_primary_10_1007_s00251_016_0929_7 crossref_primary_10_1084_jem_20221220 crossref_primary_10_3389_fimmu_2015_00644 crossref_primary_10_7554_eLife_22057 crossref_primary_10_1073_pnas_1512977112 crossref_primary_10_3389_fimmu_2019_00299 crossref_primary_10_7554_eLife_68605 crossref_primary_10_1371_journal_pcbi_1005572 crossref_primary_10_1038_s41587_020_0656_3 crossref_primary_10_1038_nbt_3979 crossref_primary_10_1038_s41598_023_46637_4 crossref_primary_10_7554_eLife_85145 crossref_primary_10_1016_j_ijid_2021_10_033 crossref_primary_10_1016_j_jmoldx_2023_02_002 crossref_primary_10_3938_jkps_73_1908 crossref_primary_10_1103_14j1_wrh5 crossref_primary_10_3390_info8010024 crossref_primary_10_1186_s12859_017_1853_z crossref_primary_10_7554_eLife_38358 crossref_primary_10_1088_1751_8121_50_3_035602 crossref_primary_10_1073_pnas_1713863114 crossref_primary_10_1002_eji_202249975 crossref_primary_10_1007_s11538_023_01190_z crossref_primary_10_3389_fimmu_2016_00089 crossref_primary_10_4049_jimmunol_1800091 crossref_primary_10_1016_j_it_2015_09_006 crossref_primary_10_3389_fimmu_2015_00413 crossref_primary_10_3389_fimmu_2020_604464 crossref_primary_10_7554_eLife_23156 crossref_primary_10_1189_jlb_6A0215_071RR crossref_primary_10_7554_eLife_46935 crossref_primary_10_1073_pnas_1421827112 crossref_primary_10_1073_pnas_1601012113 crossref_primary_10_1093_gigascience_giad074 crossref_primary_10_3389_fimmu_2018_00224 crossref_primary_10_3389_fimmu_2018_01038 crossref_primary_10_3389_fimmu_2018_01435 crossref_primary_10_1111_imm_12857 crossref_primary_10_1371_journal_pcbi_1004870 crossref_primary_10_3390_ijms252312591 crossref_primary_10_1371_journal_pcbi_1008394 crossref_primary_10_1038_s41586_024_08508_4 crossref_primary_10_1111_imm_12057 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1212755109 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 22988065 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NPM N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 ADXHL |
| ID | FETCH-LOGICAL-c497t-fc935e92ef04549e2fd1fb41d708afe4358b8249e8af98a2dc3d8d5924ce1d362 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 210 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000309611400047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Sun Aug 24 03:02:18 EDT 2025 Thu Apr 03 06:59:55 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 40 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c497t-fc935e92ef04549e2fd1fb41d708afe4358b8249e8af98a2dc3d8d5924ce1d362 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.pnas.org/content/pnas/109/40/16161.full.pdf |
| PMID | 22988065 |
| PQID | 1082405518 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1082405518 pubmed_primary_22988065 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-10-02 |
| PublicationDateYYYYMMDD | 2012-10-02 |
| PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2012 |
| References | 9745202 - Immunol Today. 1998 Sep;19(9):395-404 21854230 - Annu Rev Genet. 2011;45:167-202 19541912 - Genome Res. 2009 Oct;19(10):1817-24 20811043 - Sci Transl Med. 2010 Sep 1;2(47):47ra64 21383244 - J Immunol. 2011 Apr 1;186(7):4285-94 19423829 - Science. 2009 May 8;324(5928):807-10 10542151 - Science. 1999 Oct 29;286(5441):958-61 20974936 - Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19414-9 11870614 - Eur J Immunol. 2002 Mar;32(3):701-9 19706884 - Blood. 2009 Nov 5;114(19):4099-107 20212159 - Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5405-10 8524303 - Mol Cell Biol. 1996 Jan;16(1):258-69 20192759 - Annu Rev Biochem. 2010;79:181-211 18301425 - Nat Rev Immunol. 2008 Mar;8(3):231-8 10843387 - Immunity. 2000 May;12(5):547-56 20691907 - Cell. 2010 Aug 6;142(3):496-496.e1 11696602 - J Exp Med. 2001 Nov 5;194(9):1385-90 17129612 - Immunol Lett. 2007 Jan 15;108(1):45-51 21249354 - Immunogenetics. 2011 May;63(5):259-65 15262823 - Bioinformatics. 2004 Aug 4;20 Suppl 1:i379-85 2590942 - Cell. 1989 Dec 1;59(5):859-70 |
| References_xml | – reference: 17129612 - Immunol Lett. 2007 Jan 15;108(1):45-51 – reference: 20691907 - Cell. 2010 Aug 6;142(3):496-496.e1 – reference: 2590942 - Cell. 1989 Dec 1;59(5):859-70 – reference: 20974936 - Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19414-9 – reference: 21249354 - Immunogenetics. 2011 May;63(5):259-65 – reference: 18301425 - Nat Rev Immunol. 2008 Mar;8(3):231-8 – reference: 10843387 - Immunity. 2000 May;12(5):547-56 – reference: 20811043 - Sci Transl Med. 2010 Sep 1;2(47):47ra64 – reference: 19706884 - Blood. 2009 Nov 5;114(19):4099-107 – reference: 10542151 - Science. 1999 Oct 29;286(5441):958-61 – reference: 21854230 - Annu Rev Genet. 2011;45:167-202 – reference: 21383244 - J Immunol. 2011 Apr 1;186(7):4285-94 – reference: 15262823 - Bioinformatics. 2004 Aug 4;20 Suppl 1:i379-85 – reference: 8524303 - Mol Cell Biol. 1996 Jan;16(1):258-69 – reference: 19423829 - Science. 2009 May 8;324(5928):807-10 – reference: 19541912 - Genome Res. 2009 Oct;19(10):1817-24 – reference: 11870614 - Eur J Immunol. 2002 Mar;32(3):701-9 – reference: 20212159 - Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5405-10 – reference: 20192759 - Annu Rev Biochem. 2010;79:181-211 – reference: 9745202 - Immunol Today. 1998 Sep;19(9):395-404 – reference: 11696602 - J Exp Med. 2001 Nov 5;194(9):1385-90 |
| SSID | ssj0009580 |
| Score | 2.5285375 |
| Snippet | Stochastic rearrangement of germline V-, D-, and J-genes to create variable coding sequence for certain cell surface receptors is at the origin of immune... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 16161 |
| SubjectTerms | Adaptive Immunity - genetics Algorithms Antibody Diversity - genetics Base Sequence CD4-Positive T-Lymphocytes - metabolism Computational Biology - methods Genes, T-Cell Receptor beta - genetics Humans Likelihood Functions Models, Biological Molecular Sequence Data Sequence Alignment Sequence Analysis, DNA V(D)J Recombination - genetics |
| Title | Statistical inference of the generation probability of T-cell receptors from sequence repertoires |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22988065 https://www.proquest.com/docview/1082405518 |
| Volume | 109 |
| WOSCitedRecordID | wos000309611400047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qevCirs_1RQQPegi2abpJTiLi4sVlDwp7K2ke4qWt21Xw3zvTB3oSwUugbVrSZDL5Jpn5hpALMHTGIncxS21kwECxKTNWGZY2UZkRQHTbJpuQ06maz_Ws23CrO7fKXic2itqVFvfIYXYrWHyQP-ymemOYNQpPV7sUGqtkkACUQamWc_WDdFe1bAQ6ZmOho57aRybXVWFqZFbgEj4Z_YIvm3VmsvXfFm6TzQ5h0ttWJIZkxRc7ZNjN4ZpedkTTV7vEINJsiJqh_msf-UfLQAEV0pemHo4bxawzLZ_3Jz59YrjdT0FX-gqT9VCMUaG9Uzbcr_xiWYIurffI8-T-6e6BdSkXmBVaLlmwOkm95j4gNZ_2PLg45CJ2MlImeMBWKoe_1B6utDLc2cQpl4IRZ33sYDHcJ2tFWfhDQoV1zulEyCTXUEiVBxuEHQuTJ1YEPSLnfTdmINLYcFP48r3OvjtyRA7asciqlnsj41wrPAs--sPbx2QD4A1vXO_4CRkEmND-lKzbD-jbxVkjK1BOZ49f7JzKqA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+inference+of+the+generation+probability+of+T-cell+receptors+from+sequence+repertoires&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Murugan%2C+Anand&rft.au=Mora%2C+Thierry&rft.au=Walczak%2C+Aleksandra+M&rft.au=Callan%2C+Jr%2C+Curtis+G&rft.date=2012-10-02&rft.eissn=1091-6490&rft.volume=109&rft.issue=40&rft.spage=16161&rft_id=info:doi/10.1073%2Fpnas.1212755109&rft_id=info%3Apmid%2F22988065&rft_id=info%3Apmid%2F22988065&rft.externalDocID=22988065 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |