Implementation of an Enhanced Crayfish Optimization Algorithm

This paper presents an enhanced crayfish optimization algorithm (ECOA). The ECOA includes four improvement strategies. Firstly, the Halton sequence was used to improve the population initialization of the crayfish optimization algorithm. Furthermore, the quasi opposition-based learning strategy is i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biomimetics (Basel, Switzerland) Ročník 9; číslo 6; s. 341
Hlavní autoři: Zhang, Yi, Liu, Pengtao, Li, Yanhong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 04.06.2024
MDPI
Témata:
ISSN:2313-7673, 2313-7673
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper presents an enhanced crayfish optimization algorithm (ECOA). The ECOA includes four improvement strategies. Firstly, the Halton sequence was used to improve the population initialization of the crayfish optimization algorithm. Furthermore, the quasi opposition-based learning strategy is introduced to generate the opposite solution of the population, increasing the algorithm’s searching ability. Thirdly, the elite factor guides the predation stage to avoid blindness in this stage. Finally, the fish aggregation device effect is introduced to increase the ability of the algorithm to jump out of the local optimal. This paper performed tests on the widely used IEEE CEC2019 test function set to verify the validity of the proposed ECOA method. The experimental results show that the proposed ECOA has a faster convergence speed, greater performance stability, and a stronger ability to jump out of local optimal compared with other popular algorithms. Finally, the ECOA was applied to two real-world engineering optimization problems, verifying its ability to solve practical optimization problems and its superiority compared to other algorithms.
AbstractList This paper presents an enhanced crayfish optimization algorithm (ECOA). The ECOA includes four improvement strategies. Firstly, the Halton sequence was used to improve the population initialization of the crayfish optimization algorithm. Furthermore, the quasi opposition-based learning strategy is introduced to generate the opposite solution of the population, increasing the algorithm’s searching ability. Thirdly, the elite factor guides the predation stage to avoid blindness in this stage. Finally, the fish aggregation device effect is introduced to increase the ability of the algorithm to jump out of the local optimal. This paper performed tests on the widely used IEEE CEC2019 test function set to verify the validity of the proposed ECOA method. The experimental results show that the proposed ECOA has a faster convergence speed, greater performance stability, and a stronger ability to jump out of local optimal compared with other popular algorithms. Finally, the ECOA was applied to two real-world engineering optimization problems, verifying its ability to solve practical optimization problems and its superiority compared to other algorithms.
This paper presents an enhanced crayfish optimization algorithm (ECOA). The ECOA includes four improvement strategies. Firstly, the Halton sequence was used to improve the population initialization of the crayfish optimization algorithm. Furthermore, the quasi opposition-based learning strategy is introduced to generate the opposite solution of the population, increasing the algorithm's searching ability. Thirdly, the elite factor guides the predation stage to avoid blindness in this stage. Finally, the fish aggregation device effect is introduced to increase the ability of the algorithm to jump out of the local optimal. This paper performed tests on the widely used IEEE CEC2019 test function set to verify the validity of the proposed ECOA method. The experimental results show that the proposed ECOA has a faster convergence speed, greater performance stability, and a stronger ability to jump out of local optimal compared with other popular algorithms. Finally, the ECOA was applied to two real-world engineering optimization problems, verifying its ability to solve practical optimization problems and its superiority compared to other algorithms.This paper presents an enhanced crayfish optimization algorithm (ECOA). The ECOA includes four improvement strategies. Firstly, the Halton sequence was used to improve the population initialization of the crayfish optimization algorithm. Furthermore, the quasi opposition-based learning strategy is introduced to generate the opposite solution of the population, increasing the algorithm's searching ability. Thirdly, the elite factor guides the predation stage to avoid blindness in this stage. Finally, the fish aggregation device effect is introduced to increase the ability of the algorithm to jump out of the local optimal. This paper performed tests on the widely used IEEE CEC2019 test function set to verify the validity of the proposed ECOA method. The experimental results show that the proposed ECOA has a faster convergence speed, greater performance stability, and a stronger ability to jump out of local optimal compared with other popular algorithms. Finally, the ECOA was applied to two real-world engineering optimization problems, verifying its ability to solve practical optimization problems and its superiority compared to other algorithms.
Author Li, Yanhong
Liu, Pengtao
Zhang, Yi
AuthorAffiliation 2 Jilin Provincial Department of Human Resources and Social Security, Changchun 130000, China
1 College of Electrical and Computer Science, Jilin Jianzhu University, Changchun 130000, China; lpt1203@hotmail.com
AuthorAffiliation_xml – name: 2 Jilin Provincial Department of Human Resources and Social Security, Changchun 130000, China
– name: 1 College of Electrical and Computer Science, Jilin Jianzhu University, Changchun 130000, China; lpt1203@hotmail.com
Author_xml – sequence: 1
  givenname: Yi
  orcidid: 0000-0001-6077-7565
  surname: Zhang
  fullname: Zhang, Yi
– sequence: 2
  givenname: Pengtao
  surname: Liu
  fullname: Liu, Pengtao
– sequence: 3
  givenname: Yanhong
  surname: Li
  fullname: Li, Yanhong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38921221$$D View this record in MEDLINE/PubMed
BookMark eNp9kktr3DAURkVJaR7NH-iiGLrJZlK9rMeilDCkyUAgm3YtrmVpRoMtTSVPIP31VeqkJCl0JSGde_h0r47RQUzRIfSB4HPGNP7chTSG0U3BFo0FZpy8QUeUEbaQQrKDZ_tDdFrKFmNMtGg5x-_QIVOaEkrJEfqyGneDG12cYAopNsk3EJvLuIFoXd8sM9z7UDbN7W4KY_g1QxfDOuUwbcb36K2HobjTx_UE_fh2-X15vbi5vVotL24Wlms5LVwLUoNU0GsBjnpPCBU9ceCFYy13orU945RaaK3vuJKAQRAldU3srejZCVrN3j7B1uxyGCHfmwTB_DlIeW0g11YMzmDurRRYYttZLpjrBGgtGAfLVCs8rq6vs2u370bX2_r0DMML6cubGDZmne5MDY2JUqoazh4NOf3cuzKZMRTrhgGiS_tiGJaUas4Eq-inV-g27XOsvZopqbCmlfr4PNLfLE9jqoCaAZtTKdl5Y8M8sJowDIZg8_ApzL-fopbSV6VP9v8U_QYfNr3V
CitedBy_id crossref_primary_10_1007_s10462_024_11069_7
crossref_primary_10_1016_j_pce_2025_104067
crossref_primary_10_1016_j_optlaseng_2025_109088
crossref_primary_10_1038_s41598_025_11129_0
crossref_primary_10_1038_s41598_025_86956_2
crossref_primary_10_3390_biomimetics10060411
crossref_primary_10_1007_s13042_025_02641_w
crossref_primary_10_3390_biomimetics10040218
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/biomimetics9060341
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
Download PDF from ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2313-7673
ExternalDocumentID oai_doaj_org_article_04fc76070cbc463eb6a99634ac3856f0
PMC11201888
38921221
10_3390_biomimetics9060341
Genre Journal Article
GrantInformation_xml – fundername: the Science and Technology Development Project of Jilin Province
  grantid: 20220203190SF
– fundername: Science and Technology Development Project of Jilin Province
  grantid: 20220203190SF
GroupedDBID 53G
8FE
8FH
AADQD
AAFWJ
AAYXX
ABDBF
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
LK8
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c497t-e5a79a78ad96ae2ff1126d1eaf6e354e65cd3422ca5cfb487a0a61879196fc6d3
IEDL.DBID M7P
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001254566500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2313-7673
IngestDate Tue Oct 14 19:07:57 EDT 2025
Tue Nov 04 02:05:27 EST 2025
Fri Sep 05 07:08:56 EDT 2025
Fri Jul 25 11:53:42 EDT 2025
Thu Apr 03 07:08:21 EDT 2025
Tue Nov 18 20:50:30 EST 2025
Sat Nov 29 07:15:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Halton sequence
crayfish optimization algorithm
IEEE CEC2019
fish device aggregation effect
quasi opposition-based learning
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-e5a79a78ad96ae2ff1126d1eaf6e354e65cd3422ca5cfb487a0a61879196fc6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6077-7565
OpenAccessLink https://www.proquest.com/docview/3072278092?pq-origsite=%requestingapplication%
PMID 38921221
PQID 3072278092
PQPubID 2055439
ParticipantIDs doaj_primary_oai_doaj_org_article_04fc76070cbc463eb6a99634ac3856f0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11201888
proquest_miscellaneous_3072294363
proquest_journals_3072278092
pubmed_primary_38921221
crossref_citationtrail_10_3390_biomimetics9060341
crossref_primary_10_3390_biomimetics9060341
PublicationCentury 2000
PublicationDate 20240604
PublicationDateYYYYMMDD 2024-06-04
PublicationDate_xml – month: 6
  year: 2024
  text: 20240604
  day: 4
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Biomimetics (Basel, Switzerland)
PublicationTitleAlternate Biomimetics (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
SSID ssj0001965440
Score 2.3328087
Snippet This paper presents an enhanced crayfish optimization algorithm (ECOA). The ECOA includes four improvement strategies. Firstly, the Halton sequence was used to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 341
SubjectTerms Accuracy
Algorithms
Competition
crayfish optimization algorithm
Design engineering
Experiments
fish device aggregation effect
Food
Foraging behavior
Halton sequence
Heat
IEEE CEC2019
Linear programming
Optimization algorithms
Predation
quasi opposition-based learning
Temperature
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYELAsojUCojIS4oamI7tnPgsFSteiocQOotmvjBBjXeaneL1H_P2HFXuwXRC9fYlsYzY89MPPMNIe9RrE0tPZSGG1YK5UwJaLVLy62zramNzc0m1Pm5vrhov261-oo5YRM88MS4o0p4oyQqpumNkNz1EtBF5wIM1430KVqvVLsVTP2cQF8aIaqpSoZjXH8Uq9mHMRYGrtpKVlzUO5YoAfb_zcu8myy5ZX1On5DH2W2ks4ncp-SBC8_I_ixgyDze0A80JXKmP-T75FNC_B1zUVGgC08h0JMwT4_99HgJN35YzekXvC3GXIZJZ5c_FsthPR-fk--nJ9-Oz8rcJaE0olXr0jWgWlAabCvBMe9jUZCtHXjpeCOcbIzlgjEDjfE9xidQgYw9xpFH3kjLX5C9sAjuFaGMqdowXBJ_bXCt-77XGtdZBdoBh4LUtxzrTIYQj50sLjsMJSKXuz-5XJCPmzVXE4DGP2d_joLYzIzg1-kDqkSXVaK7TyUKcnArxi6fyFWHd1ms-q1aVpB3m2E8S_GBBIJbXOc5uHPJC_JykvqGEnTs0MozpFDv6MMOqbsjYZgnvG4USFVrrV__j829IY8Y-lUpW00ckL318tq9JQ_Nr_WwWh6mU_AbtfcQBg
  priority: 102
  providerName: Directory of Open Access Journals
Title Implementation of an Enhanced Crayfish Optimization Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/38921221
https://www.proquest.com/docview/3072278092
https://www.proquest.com/docview/3072294363
https://pubmed.ncbi.nlm.nih.gov/PMC11201888
https://doaj.org/article/04fc76070cbc463eb6a99634ac3856f0
Volume 9
WOSCitedRecordID wos001254566500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: M7P
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: BENPR
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: PIMPY
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Nb9Mw9IltHLgwYDA6RmUkxAVFS2LHcQ4IdVMnOFAiBFI5RY4_1kpLMpoOaf-eZ9ftKKBduPpDefH78HvP7wPgNaI1S7iVkaIqjVhuVCTx1o401UYXKlE6NJvIJxMxnRZlcLj1IaxyLRO9oNadcj7yE6RFl7UZF-n7qx-R6xrlXldDC40d2HNVElIfulfe-lgKnjEWr3JlKFr3Jy6nfd649MC-iHlMWbJ1H_my_f_SNf8MmfztDjrf_1_oH8HDoH2S0YpcHsM90z6Bg1GLlndzQ94QHw_qHe0H8M4XDm5CblJLOktkS8btzMcMkLOFvLHzfkY-o9BpQjYnGV1e4GeXs-YpfDsffz37EIVmC5FiRb6MTCbzQuZC6oJLk1rrcot0YqTlhmbM8ExpytJUyUzZGs0cGUvuWpXjIVvFNX0Gu23XmudA8E8TleIW5yGhQtR1LQTu07kURlI5gGR95JUKlchdQ4zLCi0Sh6bqbzQN4O1mz9WqDsedq08dJjcrXQ1tP9AtLqrAklXMrMo5ijxVK8apqblE448yqajIuI0HcLzGZRUYu69uETmAV5tpZEn3ziJb012HNfjnnA7gcEU2G0hQP0RlIUUIxRZBbYG6PdPOZ77sNyIkToQQR3fD9QIepKh4-XA2dgy7y8W1eQn31c_lvF8MYSefiiHsnY4n5Zeh90AMPdPgWPnxU_n9Fy7EI38
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJceJVHoICRgAuKmsSO4xwqtJRWXbVd9lCkcgqOY3dXapKySUH7p_iNjPPYsoB664FrbEe25_N4bM83A_AaxRr63EhXURW4LNLKlbhruxnNdBYrX2VdsoloPBYnJ_FkDX72XBjrVtnrxEZRZ6Wyd-RbiEXL2vTi4P35N9dmjbKvq30KjRYWB3rxA49s1fboI8r3TRDs7R7v7LtdVgFXsTiqXR3KKJaRkFnMpQ6MsSSazNfScE1DpnmoMsqCQMlQmRTteelJbnNyI1aN4hnF_96AdWbBPoD1yeho8uXyVifmIWNey86hNPa2LIt-lltCYhV73KPMX9kBm0QB_7Ju_3TS_G3X27v7v83XPbjT2ddk2C6I-7CmiwewMSxkXeYL8pY0Hq_NU8IGbDehkfOOfVWQ0hBZkN1i2nhFkJ25XJhZNSWfUK3mHV-VDM9OcZj1NH8In69lII9gUJSFfgIEZ9ZXATaxd0BUiDRNhcB2WSSFllQ64PciTlQXa92m_DhL8MxlYZH8DQsH3i3bnLeRRq6s_cEiZ1nTRglvPpTz06RTOonHjIo4KnWVKsapTrnE4y1lUlERcuM5sNljJ-lUV5VcAseBV8tiVDr2JUkWurzo6uDIOXXgcQvTZU_QAkZzKMAeihUAr3R1taSYTZvA5igQzxdCPL26Xy_h1v7x0WFyOBofPIPbAZqZjfMe24RBPb_Qz-Gm-l7PqvmLbnkS-HrdCP8FMgx-Yw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aHUJcxsf4KAwwEnBBURPbcZzDhMq2impQegBpnDLHsddKS7K1Haj_Gn8dz6nbUUC77cA1tiPb7-fnZ_v93gN4hWKNI2FVoJmmAU-MDhTu2kHBClOkOtKFTzaRDAby6CgdbsDPJRfGuVUudWKjqItauzvyDmLRsTbDlHasd4sY7vfenZ0HLoOUe2ldptNYQOTQzH_g8W26299HWb-mtHfwZe9D4DMMBJqnySwwsUpSlUhVpEIZaq0j1BSRUVYYFnMjYl0wTqlWsbY52vYqVMLl50bcWi0Khv-9AZtoknPags1h_9Pw2-UNTypizsMFU4exNOw4Rv24dOTEaRqKkPFobTdskgb8y9L902Hztx2wd-d_nru7sOXtbtJdLJR7sGGq-7DdrdSsLufkDWk8YZsnhm3YbUIml56VVZHaElWRg2rUeEuQvYma2_F0RD6jui09j5V0T09wmLNR-QC-XstAHkKrqivzGAjOcqQpNnF3Q0zKPM-lxHZFoqRRTLUhWoo70z4Gu0sFcprhWcxBJPsbIm14u2pztohAcmXt9w5Fq5ouenjzoZ6cZF4ZZSG3OhGo7HWuuWAmFwqPvYwrzWQsbNiGnSWOMq_SptkliNrwclWMysi9MKnK1Be-Do5csDY8WkB21RO0jNFMothDuQbmta6ul1TjURPwHAUSRlLKJ1f36wXcQlhnH_uDw6dwm6L12fj08R1ozSYX5hnc1N9n4-nkuV-pBI6vG-C_ABvqhyM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+an+Enhanced+Crayfish+Optimization+Algorithm&rft.jtitle=Biomimetics+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Yi&rft.au=Liu%2C+Pengtao&rft.au=Li%2C+Yanhong&rft.date=2024-06-04&rft.pub=MDPI+AG&rft.eissn=2313-7673&rft.volume=9&rft.issue=6&rft.spage=341&rft_id=info:doi/10.3390%2Fbiomimetics9060341&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-7673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-7673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-7673&client=summon