Implementation of an Enhanced Crayfish Optimization Algorithm
This paper presents an enhanced crayfish optimization algorithm (ECOA). The ECOA includes four improvement strategies. Firstly, the Halton sequence was used to improve the population initialization of the crayfish optimization algorithm. Furthermore, the quasi opposition-based learning strategy is i...
Uloženo v:
| Vydáno v: | Biomimetics (Basel, Switzerland) Ročník 9; číslo 6; s. 341 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
04.06.2024
MDPI |
| Témata: | |
| ISSN: | 2313-7673, 2313-7673 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper presents an enhanced crayfish optimization algorithm (ECOA). The ECOA includes four improvement strategies. Firstly, the Halton sequence was used to improve the population initialization of the crayfish optimization algorithm. Furthermore, the quasi opposition-based learning strategy is introduced to generate the opposite solution of the population, increasing the algorithm’s searching ability. Thirdly, the elite factor guides the predation stage to avoid blindness in this stage. Finally, the fish aggregation device effect is introduced to increase the ability of the algorithm to jump out of the local optimal. This paper performed tests on the widely used IEEE CEC2019 test function set to verify the validity of the proposed ECOA method. The experimental results show that the proposed ECOA has a faster convergence speed, greater performance stability, and a stronger ability to jump out of local optimal compared with other popular algorithms. Finally, the ECOA was applied to two real-world engineering optimization problems, verifying its ability to solve practical optimization problems and its superiority compared to other algorithms. |
|---|---|
| AbstractList | This paper presents an enhanced crayfish optimization algorithm (ECOA). The ECOA includes four improvement strategies. Firstly, the Halton sequence was used to improve the population initialization of the crayfish optimization algorithm. Furthermore, the quasi opposition-based learning strategy is introduced to generate the opposite solution of the population, increasing the algorithm’s searching ability. Thirdly, the elite factor guides the predation stage to avoid blindness in this stage. Finally, the fish aggregation device effect is introduced to increase the ability of the algorithm to jump out of the local optimal. This paper performed tests on the widely used IEEE CEC2019 test function set to verify the validity of the proposed ECOA method. The experimental results show that the proposed ECOA has a faster convergence speed, greater performance stability, and a stronger ability to jump out of local optimal compared with other popular algorithms. Finally, the ECOA was applied to two real-world engineering optimization problems, verifying its ability to solve practical optimization problems and its superiority compared to other algorithms. This paper presents an enhanced crayfish optimization algorithm (ECOA). The ECOA includes four improvement strategies. Firstly, the Halton sequence was used to improve the population initialization of the crayfish optimization algorithm. Furthermore, the quasi opposition-based learning strategy is introduced to generate the opposite solution of the population, increasing the algorithm's searching ability. Thirdly, the elite factor guides the predation stage to avoid blindness in this stage. Finally, the fish aggregation device effect is introduced to increase the ability of the algorithm to jump out of the local optimal. This paper performed tests on the widely used IEEE CEC2019 test function set to verify the validity of the proposed ECOA method. The experimental results show that the proposed ECOA has a faster convergence speed, greater performance stability, and a stronger ability to jump out of local optimal compared with other popular algorithms. Finally, the ECOA was applied to two real-world engineering optimization problems, verifying its ability to solve practical optimization problems and its superiority compared to other algorithms.This paper presents an enhanced crayfish optimization algorithm (ECOA). The ECOA includes four improvement strategies. Firstly, the Halton sequence was used to improve the population initialization of the crayfish optimization algorithm. Furthermore, the quasi opposition-based learning strategy is introduced to generate the opposite solution of the population, increasing the algorithm's searching ability. Thirdly, the elite factor guides the predation stage to avoid blindness in this stage. Finally, the fish aggregation device effect is introduced to increase the ability of the algorithm to jump out of the local optimal. This paper performed tests on the widely used IEEE CEC2019 test function set to verify the validity of the proposed ECOA method. The experimental results show that the proposed ECOA has a faster convergence speed, greater performance stability, and a stronger ability to jump out of local optimal compared with other popular algorithms. Finally, the ECOA was applied to two real-world engineering optimization problems, verifying its ability to solve practical optimization problems and its superiority compared to other algorithms. |
| Author | Li, Yanhong Liu, Pengtao Zhang, Yi |
| AuthorAffiliation | 2 Jilin Provincial Department of Human Resources and Social Security, Changchun 130000, China 1 College of Electrical and Computer Science, Jilin Jianzhu University, Changchun 130000, China; lpt1203@hotmail.com |
| AuthorAffiliation_xml | – name: 2 Jilin Provincial Department of Human Resources and Social Security, Changchun 130000, China – name: 1 College of Electrical and Computer Science, Jilin Jianzhu University, Changchun 130000, China; lpt1203@hotmail.com |
| Author_xml | – sequence: 1 givenname: Yi orcidid: 0000-0001-6077-7565 surname: Zhang fullname: Zhang, Yi – sequence: 2 givenname: Pengtao surname: Liu fullname: Liu, Pengtao – sequence: 3 givenname: Yanhong surname: Li fullname: Li, Yanhong |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38921221$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktr3DAURkVJaR7NH-iiGLrJZlK9rMeilDCkyUAgm3YtrmVpRoMtTSVPIP31VeqkJCl0JSGde_h0r47RQUzRIfSB4HPGNP7chTSG0U3BFo0FZpy8QUeUEbaQQrKDZ_tDdFrKFmNMtGg5x-_QIVOaEkrJEfqyGneDG12cYAopNsk3EJvLuIFoXd8sM9z7UDbN7W4KY_g1QxfDOuUwbcb36K2HobjTx_UE_fh2-X15vbi5vVotL24Wlms5LVwLUoNU0GsBjnpPCBU9ceCFYy13orU945RaaK3vuJKAQRAldU3srejZCVrN3j7B1uxyGCHfmwTB_DlIeW0g11YMzmDurRRYYttZLpjrBGgtGAfLVCs8rq6vs2u370bX2_r0DMML6cubGDZmne5MDY2JUqoazh4NOf3cuzKZMRTrhgGiS_tiGJaUas4Eq-inV-g27XOsvZopqbCmlfr4PNLfLE9jqoCaAZtTKdl5Y8M8sJowDIZg8_ApzL-fopbSV6VP9v8U_QYfNr3V |
| CitedBy_id | crossref_primary_10_1007_s10462_024_11069_7 crossref_primary_10_1016_j_pce_2025_104067 crossref_primary_10_1016_j_optlaseng_2025_109088 crossref_primary_10_1038_s41598_025_11129_0 crossref_primary_10_1038_s41598_025_86956_2 crossref_primary_10_3390_biomimetics10060411 crossref_primary_10_1007_s13042_025_02641_w crossref_primary_10_3390_biomimetics10040218 |
| ContentType | Journal Article |
| Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/biomimetics9060341 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database Download PDF from ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 2313-7673 |
| ExternalDocumentID | oai_doaj_org_article_04fc76070cbc463eb6a99634ac3856f0 PMC11201888 38921221 10_3390_biomimetics9060341 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: the Science and Technology Development Project of Jilin Province grantid: 20220203190SF – fundername: Science and Technology Development Project of Jilin Province grantid: 20220203190SF |
| GroupedDBID | 53G 8FE 8FH AADQD AAFWJ AAYXX ABDBF ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC LK8 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM NPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c497t-e5a79a78ad96ae2ff1126d1eaf6e354e65cd3422ca5cfb487a0a61879196fc6d3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001254566500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2313-7673 |
| IngestDate | Tue Oct 14 19:07:57 EDT 2025 Tue Nov 04 02:05:27 EST 2025 Fri Sep 05 07:08:56 EDT 2025 Fri Jul 25 11:53:42 EDT 2025 Thu Apr 03 07:08:21 EDT 2025 Tue Nov 18 20:50:30 EST 2025 Sat Nov 29 07:15:29 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Halton sequence crayfish optimization algorithm IEEE CEC2019 fish device aggregation effect quasi opposition-based learning |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c497t-e5a79a78ad96ae2ff1126d1eaf6e354e65cd3422ca5cfb487a0a61879196fc6d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6077-7565 |
| OpenAccessLink | https://www.proquest.com/docview/3072278092?pq-origsite=%requestingapplication% |
| PMID | 38921221 |
| PQID | 3072278092 |
| PQPubID | 2055439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_04fc76070cbc463eb6a99634ac3856f0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11201888 proquest_miscellaneous_3072294363 proquest_journals_3072278092 pubmed_primary_38921221 crossref_citationtrail_10_3390_biomimetics9060341 crossref_primary_10_3390_biomimetics9060341 |
| PublicationCentury | 2000 |
| PublicationDate | 20240604 |
| PublicationDateYYYYMMDD | 2024-06-04 |
| PublicationDate_xml | – month: 6 year: 2024 text: 20240604 day: 4 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Biomimetics (Basel, Switzerland) |
| PublicationTitleAlternate | Biomimetics (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| SSID | ssj0001965440 |
| Score | 2.3328087 |
| Snippet | This paper presents an enhanced crayfish optimization algorithm (ECOA). The ECOA includes four improvement strategies. Firstly, the Halton sequence was used to... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 341 |
| SubjectTerms | Accuracy Algorithms Competition crayfish optimization algorithm Design engineering Experiments fish device aggregation effect Food Foraging behavior Halton sequence Heat IEEE CEC2019 Linear programming Optimization algorithms Predation quasi opposition-based learning Temperature |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYELAsojUCojIS4oamI7tnPgsFSteiocQOotmvjBBjXeaneL1H_P2HFXuwXRC9fYlsYzY89MPPMNIe9RrE0tPZSGG1YK5UwJaLVLy62zramNzc0m1Pm5vrhov261-oo5YRM88MS4o0p4oyQqpumNkNz1EtBF5wIM1430KVqvVLsVTP2cQF8aIaqpSoZjXH8Uq9mHMRYGrtpKVlzUO5YoAfb_zcu8myy5ZX1On5DH2W2ks4ncp-SBC8_I_ixgyDze0A80JXKmP-T75FNC_B1zUVGgC08h0JMwT4_99HgJN35YzekXvC3GXIZJZ5c_FsthPR-fk--nJ9-Oz8rcJaE0olXr0jWgWlAabCvBMe9jUZCtHXjpeCOcbIzlgjEDjfE9xidQgYw9xpFH3kjLX5C9sAjuFaGMqdowXBJ_bXCt-77XGtdZBdoBh4LUtxzrTIYQj50sLjsMJSKXuz-5XJCPmzVXE4DGP2d_joLYzIzg1-kDqkSXVaK7TyUKcnArxi6fyFWHd1ms-q1aVpB3m2E8S_GBBIJbXOc5uHPJC_JykvqGEnTs0MozpFDv6MMOqbsjYZgnvG4USFVrrV__j829IY8Y-lUpW00ckL318tq9JQ_Nr_WwWh6mU_AbtfcQBg priority: 102 providerName: Directory of Open Access Journals |
| Title | Implementation of an Enhanced Crayfish Optimization Algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38921221 https://www.proquest.com/docview/3072278092 https://www.proquest.com/docview/3072294363 https://pubmed.ncbi.nlm.nih.gov/PMC11201888 https://doaj.org/article/04fc76070cbc463eb6a99634ac3856f0 |
| Volume | 9 |
| WOSCitedRecordID | wos001254566500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: M7P dateStart: 20161201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: BENPR dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: PIMPY dateStart: 20161201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Nb9Mw9IltHLgwYDA6RmUkxAVFS2LHcQ4IdVMnOFAiBFI5RY4_1kpLMpoOaf-eZ9ftKKBduPpDefH78HvP7wPgNaI1S7iVkaIqjVhuVCTx1o401UYXKlE6NJvIJxMxnRZlcLj1IaxyLRO9oNadcj7yE6RFl7UZF-n7qx-R6xrlXldDC40d2HNVElIfulfe-lgKnjEWr3JlKFr3Jy6nfd649MC-iHlMWbJ1H_my_f_SNf8MmfztDjrf_1_oH8HDoH2S0YpcHsM90z6Bg1GLlndzQ94QHw_qHe0H8M4XDm5CblJLOktkS8btzMcMkLOFvLHzfkY-o9BpQjYnGV1e4GeXs-YpfDsffz37EIVmC5FiRb6MTCbzQuZC6oJLk1rrcot0YqTlhmbM8ExpytJUyUzZGs0cGUvuWpXjIVvFNX0Gu23XmudA8E8TleIW5yGhQtR1LQTu07kURlI5gGR95JUKlchdQ4zLCi0Sh6bqbzQN4O1mz9WqDsedq08dJjcrXQ1tP9AtLqrAklXMrMo5ijxVK8apqblE448yqajIuI0HcLzGZRUYu69uETmAV5tpZEn3ziJb012HNfjnnA7gcEU2G0hQP0RlIUUIxRZBbYG6PdPOZ77sNyIkToQQR3fD9QIepKh4-XA2dgy7y8W1eQn31c_lvF8MYSefiiHsnY4n5Zeh90AMPdPgWPnxU_n9Fy7EI38 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJceJVHoICRgAuKmsSO4xwqtJRWXbVd9lCkcgqOY3dXapKySUH7p_iNjPPYsoB664FrbEe25_N4bM83A_AaxRr63EhXURW4LNLKlbhruxnNdBYrX2VdsoloPBYnJ_FkDX72XBjrVtnrxEZRZ6Wyd-RbiEXL2vTi4P35N9dmjbKvq30KjRYWB3rxA49s1fboI8r3TRDs7R7v7LtdVgFXsTiqXR3KKJaRkFnMpQ6MsSSazNfScE1DpnmoMsqCQMlQmRTteelJbnNyI1aN4hnF_96AdWbBPoD1yeho8uXyVifmIWNey86hNPa2LIt-lltCYhV73KPMX9kBm0QB_7Ju_3TS_G3X27v7v83XPbjT2ddk2C6I-7CmiwewMSxkXeYL8pY0Hq_NU8IGbDehkfOOfVWQ0hBZkN1i2nhFkJ25XJhZNSWfUK3mHV-VDM9OcZj1NH8In69lII9gUJSFfgIEZ9ZXATaxd0BUiDRNhcB2WSSFllQ64PciTlQXa92m_DhL8MxlYZH8DQsH3i3bnLeRRq6s_cEiZ1nTRglvPpTz06RTOonHjIo4KnWVKsapTrnE4y1lUlERcuM5sNljJ-lUV5VcAseBV8tiVDr2JUkWurzo6uDIOXXgcQvTZU_QAkZzKMAeihUAr3R1taSYTZvA5igQzxdCPL26Xy_h1v7x0WFyOBofPIPbAZqZjfMe24RBPb_Qz-Gm-l7PqvmLbnkS-HrdCP8FMgx-Yw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aHUJcxsf4KAwwEnBBURPbcZzDhMq2impQegBpnDLHsddKS7K1Haj_Gn8dz6nbUUC77cA1tiPb7-fnZ_v93gN4hWKNI2FVoJmmAU-MDhTu2kHBClOkOtKFTzaRDAby6CgdbsDPJRfGuVUudWKjqItauzvyDmLRsTbDlHasd4sY7vfenZ0HLoOUe2ldptNYQOTQzH_g8W26299HWb-mtHfwZe9D4DMMBJqnySwwsUpSlUhVpEIZaq0j1BSRUVYYFnMjYl0wTqlWsbY52vYqVMLl50bcWi0Khv-9AZtoknPags1h_9Pw2-UNTypizsMFU4exNOw4Rv24dOTEaRqKkPFobTdskgb8y9L902Hztx2wd-d_nru7sOXtbtJdLJR7sGGq-7DdrdSsLufkDWk8YZsnhm3YbUIml56VVZHaElWRg2rUeEuQvYma2_F0RD6jui09j5V0T09wmLNR-QC-XstAHkKrqivzGAjOcqQpNnF3Q0zKPM-lxHZFoqRRTLUhWoo70z4Gu0sFcprhWcxBJPsbIm14u2pztohAcmXt9w5Fq5ouenjzoZ6cZF4ZZSG3OhGo7HWuuWAmFwqPvYwrzWQsbNiGnSWOMq_SptkliNrwclWMysi9MKnK1Be-Do5csDY8WkB21RO0jNFMothDuQbmta6ul1TjURPwHAUSRlLKJ1f36wXcQlhnH_uDw6dwm6L12fj08R1ozSYX5hnc1N9n4-nkuV-pBI6vG-C_ABvqhyM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+an+Enhanced+Crayfish+Optimization+Algorithm&rft.jtitle=Biomimetics+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Yi&rft.au=Liu%2C+Pengtao&rft.au=Li%2C+Yanhong&rft.date=2024-06-04&rft.pub=MDPI+AG&rft.eissn=2313-7673&rft.volume=9&rft.issue=6&rft.spage=341&rft_id=info:doi/10.3390%2Fbiomimetics9060341&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-7673&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-7673&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-7673&client=summon |