Using Deep Neural Network Approach for Multiple-Class Assessment of Digital Mammography

According to the Health Promotion Administration in the Ministry of Health and Welfare statistics in Taiwan, over ten thousand women have breast cancer every year. Mammography is widely used to detect breast cancer. However, it is limited by the operator’s technique, the cooperation of the subjects,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Healthcare (Basel) Ročník 10; číslo 12; s. 2382
Hlavní autori: Hsu, Shih-Yen, Wang, Chi-Yuan, Kao, Yi-Kai, Liu, Kuo-Ying, Lin, Ming-Chia, Yeh, Li-Ren, Wang, Yi-Ming, Chen, Chih-I, Kao, Feng-Chen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 27.11.2022
MDPI
Predmet:
ISSN:2227-9032, 2227-9032
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract According to the Health Promotion Administration in the Ministry of Health and Welfare statistics in Taiwan, over ten thousand women have breast cancer every year. Mammography is widely used to detect breast cancer. However, it is limited by the operator’s technique, the cooperation of the subjects, and the subjective interpretation by the physician. It results in inconsistent identification. Therefore, this study explores the use of a deep neural network algorithm for the classification of mammography images. In the experimental design, a retrospective study was used to collect imaging data from actual clinical cases. The mammography images were collected and classified according to the breast image reporting and data-analyzing system (BI-RADS). In terms of model building, a fully convolutional dense connection network (FC-DCN) is used for the network backbone. All the images were obtained through image preprocessing, a data augmentation method, and transfer learning technology to build a mammography image classification model. The research results show the model’s accuracy, sensitivity, and specificity were 86.37%, 100%, and 72.73%, respectively. Based on the FC-DCN model framework, it can effectively reduce the number of training parameters and successfully obtain a reasonable image classification model for mammography.
AbstractList According to the Health Promotion Administration in the Ministry of Health and Welfare statistics in Taiwan, over ten thousand women have breast cancer every year. Mammography is widely used to detect breast cancer. However, it is limited by the operator’s technique, the cooperation of the subjects, and the subjective interpretation by the physician. It results in inconsistent identification. Therefore, this study explores the use of a deep neural network algorithm for the classification of mammography images. In the experimental design, a retrospective study was used to collect imaging data from actual clinical cases. The mammography images were collected and classified according to the breast image reporting and data-analyzing system (BI-RADS). In terms of model building, a fully convolutional dense connection network (FC-DCN) is used for the network backbone. All the images were obtained through image preprocessing, a data augmentation method, and transfer learning technology to build a mammography image classification model. The research results show the model’s accuracy, sensitivity, and specificity were 86.37%, 100%, and 72.73%, respectively. Based on the FC-DCN model framework, it can effectively reduce the number of training parameters and successfully obtain a reasonable image classification model for mammography.
According to the Health Promotion Administration in the Ministry of Health and Welfare statistics in Taiwan, over ten thousand women have breast cancer every year. Mammography is widely used to detect breast cancer. However, it is limited by the operator's technique, the cooperation of the subjects, and the subjective interpretation by the physician. It results in inconsistent identification. Therefore, this study explores the use of a deep neural network algorithm for the classification of mammography images. In the experimental design, a retrospective study was used to collect imaging data from actual clinical cases. The mammography images were collected and classified according to the breast image reporting and data-analyzing system (BI-RADS). In terms of model building, a fully convolutional dense connection network (FC-DCN) is used for the network backbone. All the images were obtained through image preprocessing, a data augmentation method, and transfer learning technology to build a mammography image classification model. The research results show the model's accuracy, sensitivity, and specificity were 86.37%, 100%, and 72.73%, respectively. Based on the FC-DCN model framework, it can effectively reduce the number of training parameters and successfully obtain a reasonable image classification model for mammography.According to the Health Promotion Administration in the Ministry of Health and Welfare statistics in Taiwan, over ten thousand women have breast cancer every year. Mammography is widely used to detect breast cancer. However, it is limited by the operator's technique, the cooperation of the subjects, and the subjective interpretation by the physician. It results in inconsistent identification. Therefore, this study explores the use of a deep neural network algorithm for the classification of mammography images. In the experimental design, a retrospective study was used to collect imaging data from actual clinical cases. The mammography images were collected and classified according to the breast image reporting and data-analyzing system (BI-RADS). In terms of model building, a fully convolutional dense connection network (FC-DCN) is used for the network backbone. All the images were obtained through image preprocessing, a data augmentation method, and transfer learning technology to build a mammography image classification model. The research results show the model's accuracy, sensitivity, and specificity were 86.37%, 100%, and 72.73%, respectively. Based on the FC-DCN model framework, it can effectively reduce the number of training parameters and successfully obtain a reasonable image classification model for mammography.
Audience Academic
Author Chen, Chih-I
Lin, Ming-Chia
Hsu, Shih-Yen
Liu, Kuo-Ying
Wang, Chi-Yuan
Yeh, Li-Ren
Kao, Yi-Kai
Wang, Yi-Ming
Kao, Feng-Chen
AuthorAffiliation 13 Department of Orthopedics, E-DA Hospital, Kaohsiung City 82445, Taiwan
5 Department of Nuclear Medicine, E-DA Hospital, I-Shou University, Kaohsiung City 82445, Taiwan
7 Department of Medical Imaging and Radiology, Shu-Zen College of Medicine and Management, Kaohsiung City 82144, Taiwan
14 Department of Orthopedics, Dachang Hospital, Kaohsiung City 82445, Taiwan
8 Department of Critical Care Medicine, E-DA Hospital, I-Shou University, Kaohsiung City 82445, Taiwan
10 Division of General Medicine Surgery, Department of Surgery, E-DA Hospital, Kaohsiung City 82445, Taiwan
12 The School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung City 82445, Taiwan
6 Department of Anesthesiology, E-DA Cancer Hospital, I-Shou University, Kaohsiung City 82445, Taiwan
4 Department of Radiology, E-DA Cancer Hospital, I-Shou University, Kaohsiung City 82445, Taiwan
1 Department of Information Engineering, I-Shou University, Kaohsiung City 84001, Taiwan
11 School of Medicine, College of Med
AuthorAffiliation_xml – name: 11 School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
– name: 3 Division of Colorectal Surgery, Department of Surgery, E-DA Hospital, Kaohsiung City 82445, Taiwan
– name: 9 Division of Colon and Rectal Surgery, Department of Surgery, E-DA Hospital, Kaohsiung City 82445, Taiwan
– name: 4 Department of Radiology, E-DA Cancer Hospital, I-Shou University, Kaohsiung City 82445, Taiwan
– name: 8 Department of Critical Care Medicine, E-DA Hospital, I-Shou University, Kaohsiung City 82445, Taiwan
– name: 13 Department of Orthopedics, E-DA Hospital, Kaohsiung City 82445, Taiwan
– name: 12 The School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung City 82445, Taiwan
– name: 7 Department of Medical Imaging and Radiology, Shu-Zen College of Medicine and Management, Kaohsiung City 82144, Taiwan
– name: 10 Division of General Medicine Surgery, Department of Surgery, E-DA Hospital, Kaohsiung City 82445, Taiwan
– name: 14 Department of Orthopedics, Dachang Hospital, Kaohsiung City 82445, Taiwan
– name: 2 Department of Medical Imaging and Radiological Science, I-Shou University, Kaohsiung City 82445, Taiwan
– name: 6 Department of Anesthesiology, E-DA Cancer Hospital, I-Shou University, Kaohsiung City 82445, Taiwan
– name: 1 Department of Information Engineering, I-Shou University, Kaohsiung City 84001, Taiwan
– name: 5 Department of Nuclear Medicine, E-DA Hospital, I-Shou University, Kaohsiung City 82445, Taiwan
Author_xml – sequence: 1
  givenname: Shih-Yen
  orcidid: 0000-0002-1175-0531
  surname: Hsu
  fullname: Hsu, Shih-Yen
– sequence: 2
  givenname: Chi-Yuan
  surname: Wang
  fullname: Wang, Chi-Yuan
– sequence: 3
  givenname: Yi-Kai
  orcidid: 0000-0002-6399-7712
  surname: Kao
  fullname: Kao, Yi-Kai
– sequence: 4
  givenname: Kuo-Ying
  surname: Liu
  fullname: Liu, Kuo-Ying
– sequence: 5
  givenname: Ming-Chia
  surname: Lin
  fullname: Lin, Ming-Chia
– sequence: 6
  givenname: Li-Ren
  surname: Yeh
  fullname: Yeh, Li-Ren
– sequence: 7
  givenname: Yi-Ming
  surname: Wang
  fullname: Wang, Yi-Ming
– sequence: 8
  givenname: Chih-I
  surname: Chen
  fullname: Chen, Chih-I
– sequence: 9
  givenname: Feng-Chen
  surname: Kao
  fullname: Kao, Feng-Chen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36553906$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1vFSEUhompsfXaP-DCTOLGzVQ-ZhjYmNzcWm3S1o2NS0KZwwyVGUaY0fTfl5vWftkIi0PgeV845_Aa7YxhBITeEnzAmMQfe9B-7o2OQDChlAn6Au1RSptSYkZ3Hqx30X5KlzgPSZhg9Su0y3hdZxO-h36cJzd2xSHAVJzBErXPYf4T4s9iPU0xaNMXNsTidPGzmzyUG69TKtYpQUoDjHMRbHHoOjdn5akehtBFPfVXb9BLq32C_du4QudHn79vvpYn374cb9YnpalkM5ctBVMLLjG0bVMJA9KCkbWljZaWcY0voNFWGKKxYAww5rrlmAjaVsRKK9kKfbrxnZaLAVqTX5RzUFN0g45XKminHp-Mrldd-K1k04gql2eFPtwaxPBrgTSrwSUD3usRwpIUbWpBSCVZldH3T9DLsMQxp7elOBeSMn5PddqDcqMN-V6zNVXrpqo4k0TWmTp4hsqzhcGZ3Grr8v4jwbuHid5l-LeVGaA3gIkhpQj2DiFYbb-M-vfLZJF4IjK5k7ML22I5_z_pNU7jyK8
CitedBy_id crossref_primary_10_1007_s00521_024_09721_y
crossref_primary_10_3390_bioengineering12080885
crossref_primary_10_1016_j_health_2023_100298
Cites_doi 10.1016/j.procs.2015.07.341
10.1109/CBMS49503.2020.00096
10.1007/s40747-021-00474-y
10.1016/j.compmedimag.2007.02.002
10.3109/01443615.2014.935717
10.1148/radiol.2021203555
10.7150/ijbs.58855
10.1148/radiol.2019191542
10.1001/jamanetworkopen.2020.0265
10.1007/s11517-022-02582-4
10.1007/s10462-019-09716-5
10.1007/s10911-006-9018-0
10.1155/2020/7695207
10.1109/CVPR.2018.00745
10.1016/j.ejrad.2009.08.024
10.1007/978-3-662-03939-7
10.3390/biology11010015
10.1109/ACCESS.2019.2902863
10.1016/j.media.2021.102204
10.1007/s10278-018-0098-3
10.3390/app8122365
10.1201/9781003217091-8
10.1007/978-981-19-1018-0_32
10.1109/CBMS49503.2020.00119
10.1111/1754-9485.13261
10.1155/2013/872676
10.1109/ISPA54004.2022.9786351
10.1093/jnci/djy222
10.3390/s21144854
10.2214/AJR.13.12072
10.36548/jaicn.2021.1.003
10.1073/pnas.1913841117
10.3390/app10051878
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
3V.
7RV
7XB
8C1
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
KB0
M2O
MBDVC
NAPCQ
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.3390/healthcare10122382
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Central (purchase pre-March 2016)
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
Nursing & Allied Health Database (Alumni Edition)
ProQuest research library
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central
Health Research Premium Collection
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Public Health
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

PubMed
CrossRef
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7RV
  name: Nursing & Allied Health Database
  url: https://search.proquest.com/nahs
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 2227-9032
ExternalDocumentID PMC9778490
A744639195
36553906
10_3390_healthcare10122382
Genre Journal Article
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID 53G
5VS
7RV
8C1
8FI
8FJ
8G5
AAFWJ
AAHBH
AAYXX
ABUWG
ADBBV
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DIK
DWQXO
EIHBH
FYUFA
GNUQQ
GUQSH
GX1
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
NAPCQ
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
RNS
RPM
UKHRP
3V.
ALIPV
GROUPED_DOAJ
NPM
7XB
8FK
COVID
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c497t-d2ec58690edd748ce9fec95f27a9f36a0be7af8c1a0833e006ad60182d41f9f93
IEDL.DBID BENPR
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000902528300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-9032
IngestDate Tue Nov 04 02:06:56 EST 2025
Thu Oct 02 06:22:52 EDT 2025
Sun Nov 30 04:46:06 EST 2025
Sat Nov 29 14:14:12 EST 2025
Tue Nov 04 18:36:59 EST 2025
Thu Jan 02 22:54:48 EST 2025
Sat Nov 29 07:17:29 EST 2025
Tue Nov 18 21:58:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords mammography
classification
deep neural network
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-d2ec58690edd748ce9fec95f27a9f36a0be7af8c1a0833e006ad60182d41f9f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1175-0531
0000-0002-6399-7712
OpenAccessLink https://www.proquest.com/docview/2756689236?pq-origsite=%requestingapplication%
PMID 36553906
PQID 2756689236
PQPubID 2032390
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9778490
proquest_miscellaneous_2758114934
proquest_journals_2756689236
gale_infotracmisc_A744639195
gale_infotracacademiconefile_A744639195
pubmed_primary_36553906
crossref_primary_10_3390_healthcare10122382
crossref_citationtrail_10_3390_healthcare10122382
PublicationCentury 2000
PublicationDate 20221127
PublicationDateYYYYMMDD 2022-11-27
PublicationDate_xml – month: 11
  year: 2022
  text: 20221127
  day: 27
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Healthcare (Basel)
PublicationTitleAlternate Healthcare (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_36
Gallagher (ref_7) 2020; 117
ref_12
ref_33
(ref_20) 2021; 300
ref_31
Kontos (ref_17) 2019; 293
ref_30
Yang (ref_32) 2021; 73
Priya (ref_35) 2022; 8
Huang (ref_14) 2021; 17
ref_37
Setiawan (ref_8) 2015; 59
Norman (ref_13) 2019; 32
Sadaf (ref_11) 2011; 77
Suen (ref_34) 2019; 7
Broeders (ref_18) 2019; 111
ref_25
Qiu (ref_9) 2017; 25
ref_23
ref_22
Khodjaeva (ref_2) 2021; 2
ref_21
Doi (ref_10) 2007; 31
Balasubramaniam (ref_15) 2021; 3
Chlap (ref_16) 2021; 65
ref_29
ref_28
ref_27
Murtaza (ref_3) 2020; 53
ref_26
Schaffter (ref_19) 2020; 3
Wang (ref_24) 2022; 60
Sehgal (ref_5) 2006; 11
Brem (ref_6) 2015; 204
Ho (ref_1) 2015; 35
ref_4
References_xml – volume: 59
  start-page: 92
  year: 2015
  ident: ref_8
  article-title: Mammogram classification using law’s texture energy measure and neural networks
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.07.341
– ident: ref_31
  doi: 10.1109/CBMS49503.2020.00096
– volume: 8
  start-page: 3121x3129
  year: 2022
  ident: ref_35
  article-title: A federated approach for detecting the chest diseases using DenseNet for multi-label classification
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-021-00474-y
– volume: 31
  start-page: 198
  year: 2007
  ident: ref_10
  article-title: Computer-aided diagnosis in medical imaging: Historical review, current status and future potential
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2007.02.002
– volume: 35
  start-page: 60
  year: 2015
  ident: ref_1
  article-title: Mortality of breast cancer in Taiwan, 1971–2010: Temporal changes and an age-period-cohort analysis
  publication-title: J. Obstet. Gynaecol.
  doi: 10.3109/01443615.2014.935717
– volume: 300
  start-page: 57
  year: 2021
  ident: ref_20
  article-title: AI-based strategies to reduce workload in breast cancer screening with mammography and tomosynthesis: A retrospective evaluation
  publication-title: Radiology
  doi: 10.1148/radiol.2021203555
– volume: 17
  start-page: 1581
  year: 2021
  ident: ref_14
  article-title: Artificial intelligence in the diagnosis of COVID-19: Challenges and perspectives
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.58855
– volume: 293
  start-page: 47
  year: 2019
  ident: ref_17
  article-title: Can AI help make screening mammography “lean”?
  publication-title: Radiology
  doi: 10.1148/radiol.2019191542
– volume: 3
  start-page: e200265
  year: 2020
  ident: ref_19
  article-title: Evaluation of combined artificial intelligence and radiologist assessment to interpret screening mammograms
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2020.0265
– volume: 60
  start-page: 2051
  year: 2022
  ident: ref_24
  article-title: Learning multi-frequency features in convolutional network for mammography classification
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-022-02582-4
– volume: 53
  start-page: 1655
  year: 2020
  ident: ref_3
  article-title: Deep learning-based breast cancer classification through medical imaging modalities: State of the art and research challenges
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-019-09716-5
– volume: 11
  start-page: 113
  year: 2006
  ident: ref_5
  article-title: A review of breast ultrasound
  publication-title: J. Mammary Gland. Biol. Neoplasia
  doi: 10.1007/s10911-006-9018-0
– ident: ref_21
– ident: ref_33
  doi: 10.1155/2020/7695207
– ident: ref_29
  doi: 10.1109/CVPR.2018.00745
– volume: 77
  start-page: 457
  year: 2011
  ident: ref_11
  article-title: Performance of computer-aided detection applied to full-field digital mammography in detection of breast cancers
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2009.08.024
– ident: ref_28
  doi: 10.1007/978-3-662-03939-7
– ident: ref_23
  doi: 10.3390/biology11010015
– volume: 25
  start-page: 751
  year: 2017
  ident: ref_9
  article-title: A new approach to develop computer-aided diagnosis scheme of breast mass classification using deep learning technology
  publication-title: J. X-ray Sci. Technol.
– volume: 7
  start-page: 61018
  year: 2019
  ident: ref_34
  article-title: TensorFlow-based automatic personality recognition used in asynchronous video interviews
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2902863
– ident: ref_4
– volume: 73
  start-page: 102204
  year: 2021
  ident: ref_32
  article-title: MommiNet-v2: Mammographic multi-view mass identification networks
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102204
– volume: 32
  start-page: 471
  year: 2019
  ident: ref_13
  article-title: Applying densely connected convolutional neural networks for staging osteoarthritis severity from plain radiographs
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-018-0098-3
– ident: ref_27
  doi: 10.3390/app8122365
– ident: ref_36
  doi: 10.1201/9781003217091-8
– ident: ref_37
  doi: 10.1007/978-981-19-1018-0_32
– ident: ref_30
  doi: 10.1109/CBMS49503.2020.00119
– volume: 65
  start-page: 545
  year: 2021
  ident: ref_16
  article-title: A review of medical image data augmentation techniques for deep learning applications
  publication-title: J. Med. Imaging Radiat. Oncol.
  doi: 10.1111/1754-9485.13261
– ident: ref_12
  doi: 10.1155/2013/872676
– ident: ref_22
  doi: 10.1109/ISPA54004.2022.9786351
– volume: 2
  start-page: 540
  year: 2021
  ident: ref_2
  article-title: Magnetic-resonance imaging in the diagnosis of breast cancer and its metastasis to the spinal column
  publication-title: Sci. Prog.
– volume: 111
  start-page: 916
  year: 2019
  ident: ref_18
  article-title: Stand-alone artificial intelligence for breast cancer detection in mammography: Comparison with 101 radiologists
  publication-title: JNCI J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djy222
– ident: ref_25
  doi: 10.3390/s21144854
– volume: 204
  start-page: 234
  year: 2015
  ident: ref_6
  article-title: Screening breast ultrasound: Past, present, and future
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.13.12072
– volume: 3
  start-page: 34
  year: 2021
  ident: ref_15
  article-title: Artificial intelligence algorithm with SVM classification using dermascopic images for melanoma diagnosis
  publication-title: J. Artif. Intell. Capsul. Netw.
  doi: 10.36548/jaicn.2021.1.003
– volume: 117
  start-page: 2092
  year: 2020
  ident: ref_7
  article-title: Imaging breast cancer using hyperpolarized carbon-13 MRI
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1913841117
– ident: ref_26
  doi: 10.3390/app10051878
SSID ssj0000913835
Score 2.2165656
Snippet According to the Health Promotion Administration in the Ministry of Health and Welfare statistics in Taiwan, over ten thousand women have breast cancer every...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2382
SubjectTerms Accuracy
Artificial intelligence
Asymmetry
Breast cancer
Calcification
Classification
Cysts
Deep learning
Design
Health aspects
Magnetic resonance imaging
Mammography
Methods
Mortality
Neural networks
Patients
Radiation
Technology application
Tumors
Ultrasonic imaging
Title Using Deep Neural Network Approach for Multiple-Class Assessment of Digital Mammography
URI https://www.ncbi.nlm.nih.gov/pubmed/36553906
https://www.proquest.com/docview/2756689236
https://www.proquest.com/docview/2758114934
https://pubmed.ncbi.nlm.nih.gov/PMC9778490
Volume 10
WOSCitedRecordID wos000902528300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: 7RV
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest research library
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: M2O
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: 8C1
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-9032
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913835
  issn: 2227-9032
  databaseCode: PIMPY
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xjgckxPimbExGQuIBWatjJ7afUPcleGipJj7KU5Q6NquE0rJ2_P3cJW7WgLQXXiJZ9iUXnc--s-9-B_BGG19oZwSnSyKuSnRYZyEzfFC6gdfBUihgXWxCj8dmOrWTeOC2imGVmzWxXqjLhaMz8iOCKc8MmiPZ--UvTlWj6HY1ltDYgV1CKlM92D0-G08u2lMWQr1EG6PJlpHo3x9dtmFVhGyV1Ah8WzvS3-vy1sbUDZrc2oXO9_6X_4fwINqfbNhMmEdwx1eP4X5zeMeanKQn8K0OJGCn3i8ZoXcgwbgJF2fDiEHO0NhloxiNyOvSmmzYonyyRWCn8x9UkISNCvx2g4v9FL6cn30--cBjBQbulNVrXibepVSzypelVsZ5G7yzaUh0YYPMisHM6yIYJwq05KRHDS5K9PBMUioRbLDyGfSqReVfANPSC2d1kklnlJLeBOULY2ZJiS6NSVUfxEYKuYvw5FQl42eObgpJLv9Xcn1419IsG3COW0e_JeHmpLn4ZlfEBATkjzCw8qFG11haYdM-HHRGosa5bvdGxHnU-FV-I98-vG67iZKi2Cq_uK7HGPQ_rcS_fd7MppZvmaUp8o3UujPP2gGEA97tqeaXNR44mvBG2cHL29nah3sJpW4IwRN9AL311bV_BXfd7_V8dXUIO_riKz2nBp_mRBxGVcLWKPmErcnH0eT7H0-0KnI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQkkxPuxUMBIIA7IamInsX1AaMVStWp3hVCB3lKvY9OVUHbpbkH8KX4jM3mxAam3Hjjbjuzky3jG_uYbgOdKe6ucjjldEvGkwIB1GjLNo8JFXgVDVMCq2ISaTPTRkXm_Ab_aXBiiVbY2sTLUxdzRGfk2yZRnGt2R7M3iG6eqUXS72pbQqGGx73_-wJBt-XpvhN_3hRA77w7f7vKmqgB3iVErXgjvUqrD5ItCJdp5E7wzaRDKmiAzG029skG72KJ3Ij2i0hYYtWhRJHEwgcSX0ORfQjseE4VMffjUnemQxiZ6NHVujpQm2j7pSFykoyUqvb-1_e_vXWBtG-xTNNf2vJ0b_9vbugnXG--aDevf4RZs-PI2XKuPJlmdcXUHPlc0CTbyfsFImwQHTGoyPBs2CusMXXk2briWvCocyoadhimbBzaafaFyK2xsca216vdd-Hgha7sHm-W89A-AKeljZ5TIpNNJIr0OibdaT0WBAZtOkwHE7VfPXSO-TjVAvuYYhBFS8n-RMoBX3ZhFLT1ybu-XBKac7BI-2dkmvQLnRwpf-VBh4C9NbNIBbPV6oj1x_eYWUnljz5b5HzwN4FnXTCOJo1f6-VnVR2N0bSSu9n6N3m7eMktTnDeOVj1cdx1I5bzfUs5OKrVzDFB0YqKH50_rKVzZPRwf5Ad7k_1HcFVQkkocc6G2YHN1euYfw2X3fTVbnj6pflkGxxeN-t937IKJ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VBSEkxDd0oYCRQByQtYntxPYBoVWXFVXpqgcQvYWsY9OVquzS3YL4a_w6ZvLFBqTeeuBsO7KTl_GM_eYNwAttfK6diTldEnFVYMA6C6nhUeEir4MlKmBVbEJPp-b42B5twa82F4Zola1NrAx1sXB0Rj4kmfLUoDuSDkNDizgaT94uv3GqIEU3rW05jRoiB_7nDwzfVm_2x_itXwoxefdx7z1vKgxwp6xe80J4l1BNJl8UWhnnbfDOJkHo3AaZ5tHM6zwYF-foqUiPCM0LjGCMKFQcbCAhJjT_V7REFFOW-l7cne-Q3iZ6N3WejpQ2Gp50hC7S1BKV9t_GXvj3jrCxJfbpmhv73-TW__zmbsPNxutmo_o3uQNbvrwLN-ojS1ZnYt2DzxV9go29XzLSLMEB05okz0aN8jpDF58dNhxMXhUUZaNO25QtAhvPv1IZFnaY41prNfD78OlS1vYAtstF6XeAaeljZ7VIpTNKSW-C8rkxM1FgIGcSNYC4RUDmGlF2qg1ymmFwRqjJ_kXNAF53Y5a1JMmFvV8RsDKyV_hklzdpFzg_Uv7KRlop9FJjmwxgt9cT7YzrN7fwyho7t8r-YGsAz7tmGkncvdIvzqs-BqNuK3G1D2skd_OWaZLgvHG07mG860Dq5_2Wcn5SqaBj4GKUjR5dPK1ncA3Bnn3Ynx48huuCclfimAu9C9vrs3P_BK667-v56uxp9fcy-HLZoP8NDd-K5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Deep+Neural+Network+Approach+for+Multiple-Class+Assessment+of+Digital+Mammography&rft.jtitle=Healthcare+%28Basel%29&rft.au=Hsu%2C+Shih-Yen&rft.au=Wang%2C+Chi-Yuan&rft.au=Kao%2C+Yi-Kai&rft.au=Liu%2C+Kuo-Ying&rft.date=2022-11-27&rft.issn=2227-9032&rft.eissn=2227-9032&rft.volume=10&rft.issue=12&rft_id=info:doi/10.3390%2Fhealthcare10122382&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9032&client=summon