Using Deep Neural Network Approach for Multiple-Class Assessment of Digital Mammography
According to the Health Promotion Administration in the Ministry of Health and Welfare statistics in Taiwan, over ten thousand women have breast cancer every year. Mammography is widely used to detect breast cancer. However, it is limited by the operator’s technique, the cooperation of the subjects,...
Uložené v:
| Vydané v: | Healthcare (Basel) Ročník 10; číslo 12; s. 2382 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
27.11.2022
MDPI |
| Predmet: | |
| ISSN: | 2227-9032, 2227-9032 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | According to the Health Promotion Administration in the Ministry of Health and Welfare statistics in Taiwan, over ten thousand women have breast cancer every year. Mammography is widely used to detect breast cancer. However, it is limited by the operator’s technique, the cooperation of the subjects, and the subjective interpretation by the physician. It results in inconsistent identification. Therefore, this study explores the use of a deep neural network algorithm for the classification of mammography images. In the experimental design, a retrospective study was used to collect imaging data from actual clinical cases. The mammography images were collected and classified according to the breast image reporting and data-analyzing system (BI-RADS). In terms of model building, a fully convolutional dense connection network (FC-DCN) is used for the network backbone. All the images were obtained through image preprocessing, a data augmentation method, and transfer learning technology to build a mammography image classification model. The research results show the model’s accuracy, sensitivity, and specificity were 86.37%, 100%, and 72.73%, respectively. Based on the FC-DCN model framework, it can effectively reduce the number of training parameters and successfully obtain a reasonable image classification model for mammography. |
|---|---|
| AbstractList | According to the Health Promotion Administration in the Ministry of Health and Welfare statistics in Taiwan, over ten thousand women have breast cancer every year. Mammography is widely used to detect breast cancer. However, it is limited by the operator’s technique, the cooperation of the subjects, and the subjective interpretation by the physician. It results in inconsistent identification. Therefore, this study explores the use of a deep neural network algorithm for the classification of mammography images. In the experimental design, a retrospective study was used to collect imaging data from actual clinical cases. The mammography images were collected and classified according to the breast image reporting and data-analyzing system (BI-RADS). In terms of model building, a fully convolutional dense connection network (FC-DCN) is used for the network backbone. All the images were obtained through image preprocessing, a data augmentation method, and transfer learning technology to build a mammography image classification model. The research results show the model’s accuracy, sensitivity, and specificity were 86.37%, 100%, and 72.73%, respectively. Based on the FC-DCN model framework, it can effectively reduce the number of training parameters and successfully obtain a reasonable image classification model for mammography. According to the Health Promotion Administration in the Ministry of Health and Welfare statistics in Taiwan, over ten thousand women have breast cancer every year. Mammography is widely used to detect breast cancer. However, it is limited by the operator's technique, the cooperation of the subjects, and the subjective interpretation by the physician. It results in inconsistent identification. Therefore, this study explores the use of a deep neural network algorithm for the classification of mammography images. In the experimental design, a retrospective study was used to collect imaging data from actual clinical cases. The mammography images were collected and classified according to the breast image reporting and data-analyzing system (BI-RADS). In terms of model building, a fully convolutional dense connection network (FC-DCN) is used for the network backbone. All the images were obtained through image preprocessing, a data augmentation method, and transfer learning technology to build a mammography image classification model. The research results show the model's accuracy, sensitivity, and specificity were 86.37%, 100%, and 72.73%, respectively. Based on the FC-DCN model framework, it can effectively reduce the number of training parameters and successfully obtain a reasonable image classification model for mammography.According to the Health Promotion Administration in the Ministry of Health and Welfare statistics in Taiwan, over ten thousand women have breast cancer every year. Mammography is widely used to detect breast cancer. However, it is limited by the operator's technique, the cooperation of the subjects, and the subjective interpretation by the physician. It results in inconsistent identification. Therefore, this study explores the use of a deep neural network algorithm for the classification of mammography images. In the experimental design, a retrospective study was used to collect imaging data from actual clinical cases. The mammography images were collected and classified according to the breast image reporting and data-analyzing system (BI-RADS). In terms of model building, a fully convolutional dense connection network (FC-DCN) is used for the network backbone. All the images were obtained through image preprocessing, a data augmentation method, and transfer learning technology to build a mammography image classification model. The research results show the model's accuracy, sensitivity, and specificity were 86.37%, 100%, and 72.73%, respectively. Based on the FC-DCN model framework, it can effectively reduce the number of training parameters and successfully obtain a reasonable image classification model for mammography. |
| Audience | Academic |
| Author | Chen, Chih-I Lin, Ming-Chia Hsu, Shih-Yen Liu, Kuo-Ying Wang, Chi-Yuan Yeh, Li-Ren Kao, Yi-Kai Wang, Yi-Ming Kao, Feng-Chen |
| AuthorAffiliation | 13 Department of Orthopedics, E-DA Hospital, Kaohsiung City 82445, Taiwan 5 Department of Nuclear Medicine, E-DA Hospital, I-Shou University, Kaohsiung City 82445, Taiwan 7 Department of Medical Imaging and Radiology, Shu-Zen College of Medicine and Management, Kaohsiung City 82144, Taiwan 14 Department of Orthopedics, Dachang Hospital, Kaohsiung City 82445, Taiwan 8 Department of Critical Care Medicine, E-DA Hospital, I-Shou University, Kaohsiung City 82445, Taiwan 10 Division of General Medicine Surgery, Department of Surgery, E-DA Hospital, Kaohsiung City 82445, Taiwan 12 The School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung City 82445, Taiwan 6 Department of Anesthesiology, E-DA Cancer Hospital, I-Shou University, Kaohsiung City 82445, Taiwan 4 Department of Radiology, E-DA Cancer Hospital, I-Shou University, Kaohsiung City 82445, Taiwan 1 Department of Information Engineering, I-Shou University, Kaohsiung City 84001, Taiwan 11 School of Medicine, College of Med |
| AuthorAffiliation_xml | – name: 11 School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan – name: 3 Division of Colorectal Surgery, Department of Surgery, E-DA Hospital, Kaohsiung City 82445, Taiwan – name: 9 Division of Colon and Rectal Surgery, Department of Surgery, E-DA Hospital, Kaohsiung City 82445, Taiwan – name: 4 Department of Radiology, E-DA Cancer Hospital, I-Shou University, Kaohsiung City 82445, Taiwan – name: 8 Department of Critical Care Medicine, E-DA Hospital, I-Shou University, Kaohsiung City 82445, Taiwan – name: 13 Department of Orthopedics, E-DA Hospital, Kaohsiung City 82445, Taiwan – name: 12 The School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung City 82445, Taiwan – name: 7 Department of Medical Imaging and Radiology, Shu-Zen College of Medicine and Management, Kaohsiung City 82144, Taiwan – name: 10 Division of General Medicine Surgery, Department of Surgery, E-DA Hospital, Kaohsiung City 82445, Taiwan – name: 14 Department of Orthopedics, Dachang Hospital, Kaohsiung City 82445, Taiwan – name: 2 Department of Medical Imaging and Radiological Science, I-Shou University, Kaohsiung City 82445, Taiwan – name: 6 Department of Anesthesiology, E-DA Cancer Hospital, I-Shou University, Kaohsiung City 82445, Taiwan – name: 1 Department of Information Engineering, I-Shou University, Kaohsiung City 84001, Taiwan – name: 5 Department of Nuclear Medicine, E-DA Hospital, I-Shou University, Kaohsiung City 82445, Taiwan |
| Author_xml | – sequence: 1 givenname: Shih-Yen orcidid: 0000-0002-1175-0531 surname: Hsu fullname: Hsu, Shih-Yen – sequence: 2 givenname: Chi-Yuan surname: Wang fullname: Wang, Chi-Yuan – sequence: 3 givenname: Yi-Kai orcidid: 0000-0002-6399-7712 surname: Kao fullname: Kao, Yi-Kai – sequence: 4 givenname: Kuo-Ying surname: Liu fullname: Liu, Kuo-Ying – sequence: 5 givenname: Ming-Chia surname: Lin fullname: Lin, Ming-Chia – sequence: 6 givenname: Li-Ren surname: Yeh fullname: Yeh, Li-Ren – sequence: 7 givenname: Yi-Ming surname: Wang fullname: Wang, Yi-Ming – sequence: 8 givenname: Chih-I surname: Chen fullname: Chen, Chih-I – sequence: 9 givenname: Feng-Chen surname: Kao fullname: Kao, Feng-Chen |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36553906$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1vFSEUhompsfXaP-DCTOLGzVQ-ZhjYmNzcWm3S1o2NS0KZwwyVGUaY0fTfl5vWftkIi0PgeV845_Aa7YxhBITeEnzAmMQfe9B-7o2OQDChlAn6Au1RSptSYkZ3Hqx30X5KlzgPSZhg9Su0y3hdZxO-h36cJzd2xSHAVJzBErXPYf4T4s9iPU0xaNMXNsTidPGzmzyUG69TKtYpQUoDjHMRbHHoOjdn5akehtBFPfVXb9BLq32C_du4QudHn79vvpYn374cb9YnpalkM5ctBVMLLjG0bVMJA9KCkbWljZaWcY0voNFWGKKxYAww5rrlmAjaVsRKK9kKfbrxnZaLAVqTX5RzUFN0g45XKminHp-Mrldd-K1k04gql2eFPtwaxPBrgTSrwSUD3usRwpIUbWpBSCVZldH3T9DLsMQxp7elOBeSMn5PddqDcqMN-V6zNVXrpqo4k0TWmTp4hsqzhcGZ3Grr8v4jwbuHid5l-LeVGaA3gIkhpQj2DiFYbb-M-vfLZJF4IjK5k7ML22I5_z_pNU7jyK8 |
| CitedBy_id | crossref_primary_10_1007_s00521_024_09721_y crossref_primary_10_3390_bioengineering12080885 crossref_primary_10_1016_j_health_2023_100298 |
| Cites_doi | 10.1016/j.procs.2015.07.341 10.1109/CBMS49503.2020.00096 10.1007/s40747-021-00474-y 10.1016/j.compmedimag.2007.02.002 10.3109/01443615.2014.935717 10.1148/radiol.2021203555 10.7150/ijbs.58855 10.1148/radiol.2019191542 10.1001/jamanetworkopen.2020.0265 10.1007/s11517-022-02582-4 10.1007/s10462-019-09716-5 10.1007/s10911-006-9018-0 10.1155/2020/7695207 10.1109/CVPR.2018.00745 10.1016/j.ejrad.2009.08.024 10.1007/978-3-662-03939-7 10.3390/biology11010015 10.1109/ACCESS.2019.2902863 10.1016/j.media.2021.102204 10.1007/s10278-018-0098-3 10.3390/app8122365 10.1201/9781003217091-8 10.1007/978-981-19-1018-0_32 10.1109/CBMS49503.2020.00119 10.1111/1754-9485.13261 10.1155/2013/872676 10.1109/ISPA54004.2022.9786351 10.1093/jnci/djy222 10.3390/s21144854 10.2214/AJR.13.12072 10.36548/jaicn.2021.1.003 10.1073/pnas.1913841117 10.3390/app10051878 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION NPM 3V. 7RV 7XB 8C1 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH GNUQQ GUQSH KB0 M2O MBDVC NAPCQ PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI Q9U 7X8 5PM |
| DOI | 10.3390/healthcare10122382 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database ProQuest Central (purchase pre-March 2016) Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep Nursing & Allied Health Database (Alumni Edition) ProQuest research library Research Library (Corporate) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central Health Research Premium Collection ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Public Health ProQuest Central Basic ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7RV name: Nursing & Allied Health Database url: https://search.proquest.com/nahs sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health |
| EISSN | 2227-9032 |
| ExternalDocumentID | PMC9778490 A744639195 36553906 10_3390_healthcare10122382 |
| Genre | Journal Article |
| GeographicLocations | Taiwan |
| GeographicLocations_xml | – name: Taiwan |
| GroupedDBID | 53G 5VS 7RV 8C1 8FI 8FJ 8G5 AAFWJ AAHBH AAYXX ABUWG ADBBV AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ CCPQU CITATION DIK DWQXO EIHBH FYUFA GNUQQ GUQSH GX1 HYE IAO IHR ITC KQ8 M2O M48 MODMG M~E NAPCQ OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC RNS RPM UKHRP 3V. ALIPV GROUPED_DOAJ NPM 7XB 8FK COVID MBDVC PKEHL PQEST PQUKI Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c497t-d2ec58690edd748ce9fec95f27a9f36a0be7af8c1a0833e006ad60182d41f9f93 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000902528300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-9032 |
| IngestDate | Tue Nov 04 02:06:56 EST 2025 Thu Oct 02 06:22:52 EDT 2025 Sun Nov 30 04:46:06 EST 2025 Sat Nov 29 14:14:12 EST 2025 Tue Nov 04 18:36:59 EST 2025 Thu Jan 02 22:54:48 EST 2025 Sat Nov 29 07:17:29 EST 2025 Tue Nov 18 21:58:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | mammography classification deep neural network |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c497t-d2ec58690edd748ce9fec95f27a9f36a0be7af8c1a0833e006ad60182d41f9f93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1175-0531 0000-0002-6399-7712 |
| OpenAccessLink | https://www.proquest.com/docview/2756689236?pq-origsite=%requestingapplication% |
| PMID | 36553906 |
| PQID | 2756689236 |
| PQPubID | 2032390 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9778490 proquest_miscellaneous_2758114934 proquest_journals_2756689236 gale_infotracmisc_A744639195 gale_infotracacademiconefile_A744639195 pubmed_primary_36553906 crossref_primary_10_3390_healthcare10122382 crossref_citationtrail_10_3390_healthcare10122382 |
| PublicationCentury | 2000 |
| PublicationDate | 20221127 |
| PublicationDateYYYYMMDD | 2022-11-27 |
| PublicationDate_xml | – month: 11 year: 2022 text: 20221127 day: 27 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Healthcare (Basel) |
| PublicationTitleAlternate | Healthcare (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_36 Gallagher (ref_7) 2020; 117 ref_12 ref_33 (ref_20) 2021; 300 ref_31 Kontos (ref_17) 2019; 293 ref_30 Yang (ref_32) 2021; 73 Priya (ref_35) 2022; 8 Huang (ref_14) 2021; 17 ref_37 Setiawan (ref_8) 2015; 59 Norman (ref_13) 2019; 32 Sadaf (ref_11) 2011; 77 Suen (ref_34) 2019; 7 Broeders (ref_18) 2019; 111 ref_25 Qiu (ref_9) 2017; 25 ref_23 ref_22 Khodjaeva (ref_2) 2021; 2 ref_21 Doi (ref_10) 2007; 31 Balasubramaniam (ref_15) 2021; 3 Chlap (ref_16) 2021; 65 ref_29 ref_28 ref_27 Murtaza (ref_3) 2020; 53 ref_26 Schaffter (ref_19) 2020; 3 Wang (ref_24) 2022; 60 Sehgal (ref_5) 2006; 11 Brem (ref_6) 2015; 204 Ho (ref_1) 2015; 35 ref_4 |
| References_xml | – volume: 59 start-page: 92 year: 2015 ident: ref_8 article-title: Mammogram classification using law’s texture energy measure and neural networks publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.07.341 – ident: ref_31 doi: 10.1109/CBMS49503.2020.00096 – volume: 8 start-page: 3121x3129 year: 2022 ident: ref_35 article-title: A federated approach for detecting the chest diseases using DenseNet for multi-label classification publication-title: Complex Intell. Syst. doi: 10.1007/s40747-021-00474-y – volume: 31 start-page: 198 year: 2007 ident: ref_10 article-title: Computer-aided diagnosis in medical imaging: Historical review, current status and future potential publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2007.02.002 – volume: 35 start-page: 60 year: 2015 ident: ref_1 article-title: Mortality of breast cancer in Taiwan, 1971–2010: Temporal changes and an age-period-cohort analysis publication-title: J. Obstet. Gynaecol. doi: 10.3109/01443615.2014.935717 – volume: 300 start-page: 57 year: 2021 ident: ref_20 article-title: AI-based strategies to reduce workload in breast cancer screening with mammography and tomosynthesis: A retrospective evaluation publication-title: Radiology doi: 10.1148/radiol.2021203555 – volume: 17 start-page: 1581 year: 2021 ident: ref_14 article-title: Artificial intelligence in the diagnosis of COVID-19: Challenges and perspectives publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.58855 – volume: 293 start-page: 47 year: 2019 ident: ref_17 article-title: Can AI help make screening mammography “lean”? publication-title: Radiology doi: 10.1148/radiol.2019191542 – volume: 3 start-page: e200265 year: 2020 ident: ref_19 article-title: Evaluation of combined artificial intelligence and radiologist assessment to interpret screening mammograms publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2020.0265 – volume: 60 start-page: 2051 year: 2022 ident: ref_24 article-title: Learning multi-frequency features in convolutional network for mammography classification publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-022-02582-4 – volume: 53 start-page: 1655 year: 2020 ident: ref_3 article-title: Deep learning-based breast cancer classification through medical imaging modalities: State of the art and research challenges publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-019-09716-5 – volume: 11 start-page: 113 year: 2006 ident: ref_5 article-title: A review of breast ultrasound publication-title: J. Mammary Gland. Biol. Neoplasia doi: 10.1007/s10911-006-9018-0 – ident: ref_21 – ident: ref_33 doi: 10.1155/2020/7695207 – ident: ref_29 doi: 10.1109/CVPR.2018.00745 – volume: 77 start-page: 457 year: 2011 ident: ref_11 article-title: Performance of computer-aided detection applied to full-field digital mammography in detection of breast cancers publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2009.08.024 – ident: ref_28 doi: 10.1007/978-3-662-03939-7 – ident: ref_23 doi: 10.3390/biology11010015 – volume: 25 start-page: 751 year: 2017 ident: ref_9 article-title: A new approach to develop computer-aided diagnosis scheme of breast mass classification using deep learning technology publication-title: J. X-ray Sci. Technol. – volume: 7 start-page: 61018 year: 2019 ident: ref_34 article-title: TensorFlow-based automatic personality recognition used in asynchronous video interviews publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2902863 – ident: ref_4 – volume: 73 start-page: 102204 year: 2021 ident: ref_32 article-title: MommiNet-v2: Mammographic multi-view mass identification networks publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102204 – volume: 32 start-page: 471 year: 2019 ident: ref_13 article-title: Applying densely connected convolutional neural networks for staging osteoarthritis severity from plain radiographs publication-title: J. Digit. Imaging doi: 10.1007/s10278-018-0098-3 – ident: ref_27 doi: 10.3390/app8122365 – ident: ref_36 doi: 10.1201/9781003217091-8 – ident: ref_37 doi: 10.1007/978-981-19-1018-0_32 – ident: ref_30 doi: 10.1109/CBMS49503.2020.00119 – volume: 65 start-page: 545 year: 2021 ident: ref_16 article-title: A review of medical image data augmentation techniques for deep learning applications publication-title: J. Med. Imaging Radiat. Oncol. doi: 10.1111/1754-9485.13261 – ident: ref_12 doi: 10.1155/2013/872676 – ident: ref_22 doi: 10.1109/ISPA54004.2022.9786351 – volume: 2 start-page: 540 year: 2021 ident: ref_2 article-title: Magnetic-resonance imaging in the diagnosis of breast cancer and its metastasis to the spinal column publication-title: Sci. Prog. – volume: 111 start-page: 916 year: 2019 ident: ref_18 article-title: Stand-alone artificial intelligence for breast cancer detection in mammography: Comparison with 101 radiologists publication-title: JNCI J. Natl. Cancer Inst. doi: 10.1093/jnci/djy222 – ident: ref_25 doi: 10.3390/s21144854 – volume: 204 start-page: 234 year: 2015 ident: ref_6 article-title: Screening breast ultrasound: Past, present, and future publication-title: Am. J. Roentgenol. doi: 10.2214/AJR.13.12072 – volume: 3 start-page: 34 year: 2021 ident: ref_15 article-title: Artificial intelligence algorithm with SVM classification using dermascopic images for melanoma diagnosis publication-title: J. Artif. Intell. Capsul. Netw. doi: 10.36548/jaicn.2021.1.003 – volume: 117 start-page: 2092 year: 2020 ident: ref_7 article-title: Imaging breast cancer using hyperpolarized carbon-13 MRI publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1913841117 – ident: ref_26 doi: 10.3390/app10051878 |
| SSID | ssj0000913835 |
| Score | 2.2165656 |
| Snippet | According to the Health Promotion Administration in the Ministry of Health and Welfare statistics in Taiwan, over ten thousand women have breast cancer every... |
| SourceID | pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 2382 |
| SubjectTerms | Accuracy Artificial intelligence Asymmetry Breast cancer Calcification Classification Cysts Deep learning Design Health aspects Magnetic resonance imaging Mammography Methods Mortality Neural networks Patients Radiation Technology application Tumors Ultrasonic imaging |
| Title | Using Deep Neural Network Approach for Multiple-Class Assessment of Digital Mammography |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36553906 https://www.proquest.com/docview/2756689236 https://www.proquest.com/docview/2758114934 https://pubmed.ncbi.nlm.nih.gov/PMC9778490 |
| Volume | 10 |
| WOSCitedRecordID | wos000902528300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-9032 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 2227-9032 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: 7RV dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: eissn: 2227-9032 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: BENPR dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest research library customDbUrl: eissn: 2227-9032 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: M2O dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 2227-9032 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: 8C1 dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2227-9032 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913835 issn: 2227-9032 databaseCode: PIMPY dateStart: 20130101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xjgckxPimbExGQuIBWatjJ7afUPcleGipJj7KU5Q6NquE0rJ2_P3cJW7WgLQXXiJZ9iUXnc--s-9-B_BGG19oZwSnSyKuSnRYZyEzfFC6gdfBUihgXWxCj8dmOrWTeOC2imGVmzWxXqjLhaMz8iOCKc8MmiPZ--UvTlWj6HY1ltDYgV1CKlM92D0-G08u2lMWQr1EG6PJlpHo3x9dtmFVhGyV1Ah8WzvS3-vy1sbUDZrc2oXO9_6X_4fwINqfbNhMmEdwx1eP4X5zeMeanKQn8K0OJGCn3i8ZoXcgwbgJF2fDiEHO0NhloxiNyOvSmmzYonyyRWCn8x9UkISNCvx2g4v9FL6cn30--cBjBQbulNVrXibepVSzypelVsZ5G7yzaUh0YYPMisHM6yIYJwq05KRHDS5K9PBMUioRbLDyGfSqReVfANPSC2d1kklnlJLeBOULY2ZJiS6NSVUfxEYKuYvw5FQl42eObgpJLv9Xcn1419IsG3COW0e_JeHmpLn4ZlfEBATkjzCw8qFG11haYdM-HHRGosa5bvdGxHnU-FV-I98-vG67iZKi2Cq_uK7HGPQ_rcS_fd7MppZvmaUp8o3UujPP2gGEA97tqeaXNR44mvBG2cHL29nah3sJpW4IwRN9AL311bV_BXfd7_V8dXUIO_riKz2nBp_mRBxGVcLWKPmErcnH0eT7H0-0KnI |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQkkxPuxUMBIIA7IamInsX1AaMVStWp3hVCB3lKvY9OVUHbpbkH8KX4jM3mxAam3Hjjbjuzky3jG_uYbgOdKe6ucjjldEvGkwIB1GjLNo8JFXgVDVMCq2ISaTPTRkXm_Ab_aXBiiVbY2sTLUxdzRGfk2yZRnGt2R7M3iG6eqUXS72pbQqGGx73_-wJBt-XpvhN_3hRA77w7f7vKmqgB3iVErXgjvUqrD5ItCJdp5E7wzaRDKmiAzG029skG72KJ3Ij2i0hYYtWhRJHEwgcSX0ORfQjseE4VMffjUnemQxiZ6NHVujpQm2j7pSFykoyUqvb-1_e_vXWBtG-xTNNf2vJ0b_9vbugnXG--aDevf4RZs-PI2XKuPJlmdcXUHPlc0CTbyfsFImwQHTGoyPBs2CusMXXk2briWvCocyoadhimbBzaafaFyK2xsca216vdd-Hgha7sHm-W89A-AKeljZ5TIpNNJIr0OibdaT0WBAZtOkwHE7VfPXSO-TjVAvuYYhBFS8n-RMoBX3ZhFLT1ybu-XBKac7BI-2dkmvQLnRwpf-VBh4C9NbNIBbPV6oj1x_eYWUnljz5b5HzwN4FnXTCOJo1f6-VnVR2N0bSSu9n6N3m7eMktTnDeOVj1cdx1I5bzfUs5OKrVzDFB0YqKH50_rKVzZPRwf5Ad7k_1HcFVQkkocc6G2YHN1euYfw2X3fTVbnj6pflkGxxeN-t937IKJ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VBSEkxDd0oYCRQByQtYntxPYBoVWXFVXpqgcQvYWsY9OVquzS3YL4a_w6ZvLFBqTeeuBsO7KTl_GM_eYNwAttfK6diTldEnFVYMA6C6nhUeEir4MlKmBVbEJPp-b42B5twa82F4Zola1NrAx1sXB0Rj4kmfLUoDuSDkNDizgaT94uv3GqIEU3rW05jRoiB_7nDwzfVm_2x_itXwoxefdx7z1vKgxwp6xe80J4l1BNJl8UWhnnbfDOJkHo3AaZ5tHM6zwYF-foqUiPCM0LjGCMKFQcbCAhJjT_V7REFFOW-l7cne-Q3iZ6N3WejpQ2Gp50hC7S1BKV9t_GXvj3jrCxJfbpmhv73-TW__zmbsPNxutmo_o3uQNbvrwLN-ojS1ZnYt2DzxV9go29XzLSLMEB05okz0aN8jpDF58dNhxMXhUUZaNO25QtAhvPv1IZFnaY41prNfD78OlS1vYAtstF6XeAaeljZ7VIpTNKSW-C8rkxM1FgIGcSNYC4RUDmGlF2qg1ymmFwRqjJ_kXNAF53Y5a1JMmFvV8RsDKyV_hklzdpFzg_Uv7KRlop9FJjmwxgt9cT7YzrN7fwyho7t8r-YGsAz7tmGkncvdIvzqs-BqNuK3G1D2skd_OWaZLgvHG07mG860Dq5_2Wcn5SqaBj4GKUjR5dPK1ncA3Bnn3Ynx48huuCclfimAu9C9vrs3P_BK667-v56uxp9fcy-HLZoP8NDd-K5A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Deep+Neural+Network+Approach+for+Multiple-Class+Assessment+of+Digital+Mammography&rft.jtitle=Healthcare+%28Basel%29&rft.au=Hsu%2C+Shih-Yen&rft.au=Wang%2C+Chi-Yuan&rft.au=Kao%2C+Yi-Kai&rft.au=Liu%2C+Kuo-Ying&rft.date=2022-11-27&rft.issn=2227-9032&rft.eissn=2227-9032&rft.volume=10&rft.issue=12&rft_id=info:doi/10.3390%2Fhealthcare10122382&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9032&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9032&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9032&client=summon |