Spiking neural networks for cortical neuronal spike train decoding

Recent investigation of cortical coding and computation indicates that temporal coding is probably a more biologically plausible scheme used by neurons than the rate coding used commonly in most published work. We propose and demonstrate in this letter that spiking neural networks (SNN), consisting...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computation Ročník 22; číslo 4; s. 1060
Hlavní autoři: Fang, Huijuan, Wang, Yongji, He, Jiping
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.04.2010
Témata:
ISSN:1530-888X, 1530-888X
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recent investigation of cortical coding and computation indicates that temporal coding is probably a more biologically plausible scheme used by neurons than the rate coding used commonly in most published work. We propose and demonstrate in this letter that spiking neural networks (SNN), consisting of spiking neurons that propagate information by the timing of spikes, are a better alternative to the coding scheme based on spike frequency (histogram) alone. The SNN model analyzes cortical neural spike trains directly without losing temporal information for generating more reliable motor command for cortically controlled prosthetics. In this letter, we compared the temporal pattern classification result from the SNN approach with results generated from firing-rate-based approaches: conventional artificial neural networks, support vector machines, and linear regression. The results show that the SNN algorithm can achieve higher classification accuracy and identify the spiking activity related to movement control earlier than the other methods. Both are desirable characteristics for fast neural information processing and reliable control command pattern recognition for neuroprosthetic applications.
AbstractList Recent investigation of cortical coding and computation indicates that temporal coding is probably a more biologically plausible scheme used by neurons than the rate coding used commonly in most published work. We propose and demonstrate in this letter that spiking neural networks (SNN), consisting of spiking neurons that propagate information by the timing of spikes, are a better alternative to the coding scheme based on spike frequency (histogram) alone. The SNN model analyzes cortical neural spike trains directly without losing temporal information for generating more reliable motor command for cortically controlled prosthetics. In this letter, we compared the temporal pattern classification result from the SNN approach with results generated from firing-rate-based approaches: conventional artificial neural networks, support vector machines, and linear regression. The results show that the SNN algorithm can achieve higher classification accuracy and identify the spiking activity related to movement control earlier than the other methods. Both are desirable characteristics for fast neural information processing and reliable control command pattern recognition for neuroprosthetic applications.
Recent investigation of cortical coding and computation indicates that temporal coding is probably a more biologically plausible scheme used by neurons than the rate coding used commonly in most published work. We propose and demonstrate in this letter that spiking neural networks (SNN), consisting of spiking neurons that propagate information by the timing of spikes, are a better alternative to the coding scheme based on spike frequency (histogram) alone. The SNN model analyzes cortical neural spike trains directly without losing temporal information for generating more reliable motor command for cortically controlled prosthetics. In this letter, we compared the temporal pattern classification result from the SNN approach with results generated from firing-rate-based approaches: conventional artificial neural networks, support vector machines, and linear regression. The results show that the SNN algorithm can achieve higher classification accuracy and identify the spiking activity related to movement control earlier than the other methods. Both are desirable characteristics for fast neural information processing and reliable control command pattern recognition for neuroprosthetic applications.Recent investigation of cortical coding and computation indicates that temporal coding is probably a more biologically plausible scheme used by neurons than the rate coding used commonly in most published work. We propose and demonstrate in this letter that spiking neural networks (SNN), consisting of spiking neurons that propagate information by the timing of spikes, are a better alternative to the coding scheme based on spike frequency (histogram) alone. The SNN model analyzes cortical neural spike trains directly without losing temporal information for generating more reliable motor command for cortically controlled prosthetics. In this letter, we compared the temporal pattern classification result from the SNN approach with results generated from firing-rate-based approaches: conventional artificial neural networks, support vector machines, and linear regression. The results show that the SNN algorithm can achieve higher classification accuracy and identify the spiking activity related to movement control earlier than the other methods. Both are desirable characteristics for fast neural information processing and reliable control command pattern recognition for neuroprosthetic applications.
Author Wang, Yongji
Fang, Huijuan
He, Jiping
Author_xml – sequence: 1
  givenname: Huijuan
  surname: Fang
  fullname: Fang, Huijuan
  email: huijuan.fang@gmail.com
  organization: Key Laboratory for Image Processing and Intelligent Control of Education Ministry of China, Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, China. huijuan.fang@gmail.com
– sequence: 2
  givenname: Yongji
  surname: Wang
  fullname: Wang, Yongji
– sequence: 3
  givenname: Jiping
  surname: He
  fullname: He, Jiping
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19922291$$D View this record in MEDLINE/PubMed
BookMark eNpNj0tLxDAUhYOMOA_9BYJ056rjTZo06VKH8QEDLlRwV_Kq1GmTmrSI_96gI7i553D57j2cJZo57yxC5xjWGJfkylnt1wSgWmPIQeRCsCO0wKyAZMXr7J-fo2WM7wBQYmAnaI6rihBS4QW6eRrafeveMmenILsk46cP-5g1PmTah7HVP9speJdMTLTNxiBbl5mUb9LpKTpuZBft2UFX6OV2-7y5z3ePdw-b612uacXHNI2hyiiiVaFpKQyrhOENqFIaJTAlJRTEaMk15bIQXCrJqBCUNmVjrRFkhS5__w7Bf0w2jnXfRm27Tjrrp1jzouCQSrFEXhzISfXW1ENoexm-6r_a5BuzvV4H
CitedBy_id crossref_primary_10_3389_fnins_2017_00044
crossref_primary_10_1109_ACCESS_2023_3269598
crossref_primary_10_1016_j_neunet_2014_04_001
crossref_primary_10_1007_s10489_020_02017_3
crossref_primary_10_1016_j_ifacol_2018_12_075
crossref_primary_10_1016_S1004_9541_12_60611_9
crossref_primary_10_1088_1741_2560_10_3_036008
crossref_primary_10_1016_j_bspc_2024_106745
crossref_primary_10_1016_j_conb_2014_01_004
crossref_primary_10_1002_aelm_202300565
crossref_primary_10_1186_s13640_015_0059_4
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1162/neco.2009.10-08-885
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Computer Science
EISSN 1530-888X
ExternalDocumentID 19922291
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.4S
.DC
0R~
123
36B
4.4
41~
53G
6IK
AAJGR
AALMD
AAYOK
ABAZT
ABDBF
ABDNZ
ABEFU
ABIVO
ABJNI
ACGFO
ACUHS
ACYGS
ADIYS
ADMLS
AEGXH
AEILP
AENEX
AFHIN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVWKF
AZFZN
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAG
CGR
COF
CS3
CUY
CVF
DU5
EAP
EAS
EBC
EBD
EBS
ECM
ECS
EDO
EIF
EJD
EMB
EMK
EMOBN
EPL
EPS
EST
ESX
F5P
FEDTE
FNEHJ
HVGLF
HZ~
H~9
I-F
IPLJI
JAVBF
MCG
MINIK
MKJ
NPM
O9-
OCL
P2P
PK0
PQQKQ
RMI
SV3
TUS
WG8
WH7
XJE
ZWS
7X8
ABVLG
AMVHM
ID FETCH-LOGICAL-c497t-c4dd4bdb2cb3c468d598d7f0b6adb81426032dca7c47a387aba548844f6feed82
IEDL.DBID 7X8
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000275367000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-888X
IngestDate Thu Sep 04 17:23:14 EDT 2025
Wed Feb 19 01:47:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-c4dd4bdb2cb3c468d598d7f0b6adb81426032dca7c47a387aba548844f6feed82
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19922291
PQID 733702915
PQPubID 23479
ParticipantIDs proquest_miscellaneous_733702915
pubmed_primary_19922291
PublicationCentury 2000
PublicationDate 2010-04-01
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural computation
PublicationTitleAlternate Neural Comput
PublicationYear 2010
SSID ssj0006105
Score 2.0730653
Snippet Recent investigation of cortical coding and computation indicates that temporal coding is probably a more biologically plausible scheme used by neurons than...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1060
SubjectTerms Action Potentials - physiology
Animals
Cerebral Cortex - cytology
Computer Simulation
Cues
Eye Movements - physiology
Functional Laterality
Hand Strength - physiology
Macaca mulatta
Models, Neurological
Nerve Net - physiology
Neural Networks (Computer)
Neurons - physiology
Nonlinear Dynamics
Photic Stimulation
Reaction Time - physiology
Title Spiking neural networks for cortical neuronal spike train decoding
URI https://www.ncbi.nlm.nih.gov/pubmed/19922291
https://www.proquest.com/docview/733702915
Volume 22
WOSCitedRecordID wos000275367000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4BZWChvCkveWCNGj8SOxMCRMVCVQmQskV-xFKXtJDC7-ccpzAhBpZbHEuOded7fboP4FpznVEvfeIUpquicCIx3rvEKGutqmuZ-bQjm5DTqSrLYtZjc9oeVrl-E7uH2i1sqJGPJecyZQXNbpZvSSCNCs3VnkFjEwYcI5mg1LL8GRaeRwQj2nSaYKJX9kOHaM7GDeZ2cVhlhHMplf0eYnauZjL85yH3YLePMcltVIp92KibAxiu-RtIb86HcPe8nIdKOQlDLXFDEyHhLcFAlmBW2pW5u8UQrpMWv65JxylBHP5Z8HpH8Dp5eLl_THpOhcSKQq5QOieMM8wabkWuXFYoJ31qcu2MomFePWfOammF1FxJbTTmNEoIn3t0p4odw1azaOpTIFb6XFItMOnIhTdUec0cRcGEM1TIEZD1JVWos6ERoZt68dFW39c0gpN40dUyztaoAhqW4dLZ35vPYSe28gOM5gIGHu21voRt-7mat-9XnS6gnM6evgDbgcBT
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spiking+neural+networks+for+cortical+neuronal+spike+train+decoding&rft.jtitle=Neural+computation&rft.au=Fang%2C+Huijuan&rft.au=Wang%2C+Yongji&rft.au=He%2C+Jiping&rft.date=2010-04-01&rft.issn=1530-888X&rft.eissn=1530-888X&rft.volume=22&rft.issue=4&rft.spage=1060&rft_id=info:doi/10.1162%2Fneco.2009.10-08-885&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-888X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-888X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-888X&client=summon