Adversarial Attacks on Medical Segmentation Model via Transformation of Feature Statistics

Deep learning-based segmentation models have made a profound impact on medical procedures, with U-Net based computed tomography (CT) segmentation models exhibiting remarkable performance. Yet, even with these advances, these models are found to be vulnerable to adversarial attacks, a problem that eq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences Jg. 14; H. 6; S. 2576
Hauptverfasser: Lee, Woonghee, Ju, Mingeon, Sim, Yura, Jung, Young Kul, Kim, Tae Hyung, Kim, Younghoon
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.03.2024
Schlagworte:
ISSN:2076-3417, 2076-3417
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Deep learning-based segmentation models have made a profound impact on medical procedures, with U-Net based computed tomography (CT) segmentation models exhibiting remarkable performance. Yet, even with these advances, these models are found to be vulnerable to adversarial attacks, a problem that equally affects automatic CT segmentation models. Conventional adversarial attacks typically rely on adding noise or perturbations, leading to a compromise between the success rate of the attack and its perceptibility. In this study, we challenge this paradigm and introduce a novel generation of adversarial attacks aimed at deceiving both the target segmentation model and medical practitioners. Our approach aims to deceive a target model by altering the texture statistics of an organ while retaining its shape. We employ a real-time style transfer method, known as the texture reformer, which uses adaptive instance normalization (AdaIN) to change the statistics of an image’s feature.To induce transformation, we modify the AdaIN, which typically aligns the source and target image statistics. Through rigorous experiments, we demonstrate the effectiveness of our approach. Our adversarial samples successfully pass as realistic in blind tests conducted with physicians, surpassing the effectiveness of contemporary techniques. This innovative methodology not only offers a robust tool for benchmarking and validating automated CT segmentation systems but also serves as a potent mechanism for data augmentation, thereby enhancing model generalization. This dual capability significantly bolsters advancements in the field of deep learning-based medical and healthcare segmentation models.
AbstractList Deep learning-based segmentation models have made a profound impact on medical procedures, with U-Net based computed tomography (CT) segmentation models exhibiting remarkable performance. Yet, even with these advances, these models are found to be vulnerable to adversarial attacks, a problem that equally affects automatic CT segmentation models. Conventional adversarial attacks typically rely on adding noise or perturbations, leading to a compromise between the success rate of the attack and its perceptibility. In this study, we challenge this paradigm and introduce a novel generation of adversarial attacks aimed at deceiving both the target segmentation model and medical practitioners. Our approach aims to deceive a target model by altering the texture statistics of an organ while retaining its shape. We employ a real-time style transfer method, known as the texture reformer, which uses adaptive instance normalization (AdaIN) to change the statistics of an image’s feature.To induce transformation, we modify the AdaIN, which typically aligns the source and target image statistics. Through rigorous experiments, we demonstrate the effectiveness of our approach. Our adversarial samples successfully pass as realistic in blind tests conducted with physicians, surpassing the effectiveness of contemporary techniques. This innovative methodology not only offers a robust tool for benchmarking and validating automated CT segmentation systems but also serves as a potent mechanism for data augmentation, thereby enhancing model generalization. This dual capability significantly bolsters advancements in the field of deep learning-based medical and healthcare segmentation models.
Audience Academic
Author Ju, Mingeon
Jung, Young Kul
Sim, Yura
Kim, Younghoon
Kim, Tae Hyung
Lee, Woonghee
Author_xml – sequence: 1
  givenname: Woonghee
  orcidid: 0000-0001-7850-9913
  surname: Lee
  fullname: Lee, Woonghee
– sequence: 2
  givenname: Mingeon
  orcidid: 0009-0004-5453-3731
  surname: Ju
  fullname: Ju, Mingeon
– sequence: 3
  givenname: Yura
  surname: Sim
  fullname: Sim, Yura
– sequence: 4
  givenname: Young Kul
  orcidid: 0000-0002-6566-1382
  surname: Jung
  fullname: Jung, Young Kul
– sequence: 5
  givenname: Tae Hyung
  orcidid: 0000-0002-7747-4293
  surname: Kim
  fullname: Kim, Tae Hyung
– sequence: 6
  givenname: Younghoon
  orcidid: 0000-0002-3049-035X
  surname: Kim
  fullname: Kim, Younghoon
BookMark eNptUctqHDEQHIIDcRyf_AMDOYa19Vo9jouJH-CQg52LL6JXai3azIw2ktaQv482ExMnWH1QU11VNF3vu6MpTdh1Z5Scc27IBex2VBDJlkq-6Y4ZUXLBBVVHL_p33WkpW9KeoVxTctw9rvwT5gI5wtCvagX3vfRp6r-gj65B97gZcapQ4wFMHof-KUL_kGEqIeVxHqTQXyHUfcb-_sAtNbryoXsbYCh4-uc_6b5dfX64vFncfb2-vVzdLZwwqi7WVFHB0YhApV8GhcITBCeIkdpos3TrtUHOlFJUMyckKI9cYZDggRN0_KS7nX19gq3d5ThC_mkTRPsbSHljIbeFBrSA3qMwwTgvhTdcexoUGAhcSyEYa14fZ69dTj_2WKrdpn2e2vqWGa05M1TTv6wNNNM4hVQzuDEWZ1dKayY4paSxzl9htfI4RteyC7Hh_wjoLHA5lZIxWBfnyzdhHCwl9hC0fRF003z6T_N8gNfYvwAICKn2
CitedBy_id crossref_primary_10_1145_3702638
crossref_primary_10_1109_ACCESS_2024_3522961
Cites_doi 10.1007/978-3-319-24574-4_28
10.1109/ACCESS.2021.3116265
10.1109/CVPR46437.2021.00788
10.24963/ijcai.2021/112
10.1038/s41592-021-01249-6
10.1007/978-3-030-32778-1_10
10.1109/CVPR.2019.00453
10.1007/978-3-658-25326-4_7
10.1109/CVPR.2017.17
10.1016/j.cmpb.2022.107333
10.1109/TIP.2020.2973510
10.1109/WACV51458.2022.00181
10.1109/ICCV.2017.167
10.1016/j.techfore.2021.121127
10.1148/rg.256055018
10.1109/CVPR52688.2022.02007
10.1109/WACV48630.2021.00113
10.3390/app11094233
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app14062576
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest
ProQuest One Community College
ProQuest Central Korea
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Statistics
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_aedde49f9cd64d938d1f7a9af3864422
A788243110
10_3390_app14062576
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c497t-b17143e94f16d5f7e4d0eac409689895cbb9e32777182c46a7de37ef6ada30ec3
IEDL.DBID PIMPY
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001191326500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 19:05:13 EDT 2025
Mon Jun 30 14:44:08 EDT 2025
Tue Nov 11 11:08:58 EST 2025
Tue Nov 04 18:23:25 EST 2025
Sat Nov 29 07:14:47 EST 2025
Tue Nov 18 22:34:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-b17143e94f16d5f7e4d0eac409689895cbb9e32777182c46a7de37ef6ada30ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-5453-3731
0000-0002-3049-035X
0000-0001-7850-9913
0000-0002-6566-1382
0000-0002-7747-4293
OpenAccessLink https://www.proquest.com/publiccontent/docview/2988329181?pq-origsite=%requestingapplication%
PQID 2988329181
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_aedde49f9cd64d938d1f7a9af3864422
proquest_journals_2988329181
gale_infotracmisc_A788243110
gale_infotracacademiconefile_A788243110
crossref_citationtrail_10_3390_app14062576
crossref_primary_10_3390_app14062576
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Edlund (ref_8) 2021; 18
ref_14
ref_13
ref_12
ref_11
Habijan (ref_7) 2021; 9
ref_10
Aguirre (ref_20) 2005; 25
ref_31
Zuo (ref_4) 2021; 173
ref_30
ref_19
ref_18
ref_17
Zhou (ref_1) 2020; 29
ref_16
ref_15
ref_25
ref_24
ref_23
ref_22
ref_21
ref_3
ref_2
ref_29
ref_28
ref_27
ref_26
ref_9
ref_5
ref_6
References_xml – ident: ref_30
– ident: ref_3
– ident: ref_28
  doi: 10.1007/978-3-319-24574-4_28
– volume: 9
  start-page: 133365
  year: 2021
  ident: ref_7
  article-title: Training on polar image transformations improves biomedical image segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3116265
– ident: ref_26
– ident: ref_24
  doi: 10.1109/CVPR46437.2021.00788
– ident: ref_11
– ident: ref_2
  doi: 10.24963/ijcai.2021/112
– ident: ref_16
– volume: 18
  start-page: 1038
  year: 2021
  ident: ref_8
  article-title: LIVECell—A large-scale dataset for label-free live cell segmentation
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01249-6
– ident: ref_14
  doi: 10.1007/978-3-030-32778-1_10
– ident: ref_18
– ident: ref_25
  doi: 10.1109/CVPR.2019.00453
– ident: ref_6
  doi: 10.1007/978-3-658-25326-4_7
– ident: ref_21
– ident: ref_12
  doi: 10.1109/CVPR.2017.17
– ident: ref_9
  doi: 10.1016/j.cmpb.2022.107333
– volume: 29
  start-page: 4516
  year: 2020
  ident: ref_1
  article-title: One-pass multi-task networks with cross-task guided attention for brain tumor segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2973510
– ident: ref_10
  doi: 10.1109/WACV51458.2022.00181
– ident: ref_31
– ident: ref_29
– ident: ref_22
  doi: 10.1109/ICCV.2017.167
– ident: ref_27
– volume: 173
  start-page: 121127
  year: 2021
  ident: ref_4
  article-title: Curvature-based feature selection with application in classifying electronic health records
  publication-title: Technol. Forecast. Soc. Chang.
  doi: 10.1016/j.techfore.2021.121127
– volume: 25
  start-page: 1501
  year: 2005
  ident: ref_20
  article-title: Abdominal wall hernias: Imaging features, complications, and diagnostic pitfalls at multi–detector row CT
  publication-title: Radiographics
  doi: 10.1148/rg.256055018
– ident: ref_5
  doi: 10.1109/CVPR52688.2022.02007
– ident: ref_15
– ident: ref_23
  doi: 10.1109/WACV48630.2021.00113
– ident: ref_17
– ident: ref_19
– ident: ref_13
  doi: 10.3390/app11094233
SSID ssj0000913810
Score 2.3039277
Snippet Deep learning-based segmentation models have made a profound impact on medical procedures, with U-Net based computed tomography (CT) segmentation models...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2576
SubjectTerms adversarial attacks
computed tomography (CT) segmentation
CT imaging
data augmentation
Deep learning
deep learning-based segmentation
Medical research
Medical screening
Methods
realistic adversarial samples
Standard deviation
Statistics
Tomography
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5EPOhBfOL6IgfBBxTbpNs0x1UUTyKoIF5CmocIuiu7q7_fmTRKFxQvXpM5pJN5fEM63wAcmMY5pxqeWQSrWSlCkSknbFZxI4xASCedicMm5PV1_fCgbjqjvuifsJYeuFXcqfHogKUKyrqqdErUrgjSKBNEjamcx-ibS9UppmIMVgVRV7UNeQLrenoPxlqiInw9k4IiU_9v8TgmmcsVWE7okA3aU63CnB-uwVKHM3ANVpM3TthRoow-XofHOFd5Ysia2GA6pcZ5Nhqy9AzDbv3Ta2oywkUafsM-ng2766BW3BgFRojwfewZYdCWwnkD7i8v7s6vsjQ1IbOlktOsiSPNvSpDUbl-kL50OUZXrOMqGhXZt02jvOBSYlbitqyMdF5IHyrjjMi9FZswPxwN_RYwwZ3sO6GIg7m0tcfajBCTxcTncxmKHpx8KVLbRClOky1eNJYWpHXd0XoPDr6F31omjZ_FzuhGvkWI_jouoFHoZBT6L6PowSHdpyYnxQNZk3oN8LOI7koPsPDnCJ2KvAe7M5LoXHZ2-8sidHLuieaqxjioEBtt_8dhd2CRI1Jqf2zbhfnp-N3vwYL9wHse70e7_gQODf1k
  priority: 102
  providerName: Directory of Open Access Journals
Title Adversarial Attacks on Medical Segmentation Model via Transformation of Feature Statistics
URI https://www.proquest.com/docview/2988329181
https://doaj.org/article/aedde49f9cd64d938d1f7a9af3864422
Volume 14
WOSCitedRecordID wos001191326500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NbxMxEB2VhAMc6AdUBNrIh0oFpFV37c16farSqhUciCJapMLF8vqjqlSyJUn7-5nZddJEopy4rn3wasYzb2zPewAHpnLOqYonFsFqkouQJcoJmxTcCCMQ0klnGrEJORqVV1dqHNujZ_FZ5SImNoG6ZXumd9sYhI9cbenE_IirEl1RYXo6vvudkIYU3bVGQY1n0CXirbQD3fGXr-MfyzMX4sAss7Rt0xNY7dMtMVYYBaHutcTU8Pc_FaWb1HO--X8XvQWvIgRlw9ZntmHDT3bg5Qox4Q5sxy0_Yx8iL_XH1_CzEW-eGXJZNpzPqTuf1RMW73rYhb_-FTuZ8CMp7LCHG8MuV6AxDtSBEey8n3pGQLfliX4D38_PLk8_J1GaIbG5kvOkanTTvcpDVrhBkD53KYZwLBYL0qMc2KpSXnApMfVxmxdGOi-kD4VxRqTeil3oTOqJfwtMcCcHTigies5t6bEAJFhmMbv6VIasB58WdtE28paTfMatxvqFjKhXjNiDg-Xku5au4-_TTsjAyynEsd18qKfXOm5ZbTyG_lwFZV2ROyVKlwVplAmiRBDJeQ8OyT00RQJckDWxoQF_izi19FCiqyM-y9Ie7K3NxB1s14cX3qNjBJnpR2d59-_h9_CCI9Bq38XtQWc-vff78Nw-oAWnfeienI3G3_rNWUM_bog_5GoaFQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aHRLjAdgAURjghyE-pIjETuP4AaHyMa3aVlWiSBsvxrGdaRI0o-2G-FP8Ru5NnNJKwNseeI2tKImP7z03ts8B2DGFc04VPLJIVqNUlEmknLBRxo0wAimddKY2m5DDYX50pEZr8LM9C0PbKtuYWAdqV1n6R_6SqxzBpzAhvT77FpFrFK2uthYaDSz2_Y_vWLLNXg3e4fg-4Xz3_fjtXhRcBSKbKjmPitry26u0TDLXK6VPXYzRB-ucjKwUe7YolBdcSoza3KaZkc4L6cvMOCNibwXe9wqspwj2uAPro8Hh6HjxV4dUNvMkbg4CCqFiWofGGiYjXr-S-mqHgL_lgTq57d783z7LLbgRaDTrN7jfhDU_2YLrS-KKW7AZwtaMPQva2s9vw6fagHpmaNqx_nxOCgOsmrCwXsU--JOv4TQWXiSXIHZxath4id5jQ1Uyos7nU8-IrDda13fg46W88V3oTKqJvwdMcCd7TigSq05t7rGIJWppkSH4WJZJF160I69t0F4nC5AvGmswgolegkkXdhadzxrJkT93e0MQWnQhnfD6QjU90SHsaOMxfaWqVNZlqVMid0kpjTKlyJEIc96FpwRATdEMH8iacCgDX4t0wXRf4nRFjpnEXdhe6YlRyK42t_jUIQrO9G9w3v9382O4tjc-PNAHg-H-A9jgSBybfX7b0JlPz_1DuGovcDSnj8KEY_D5ssH8C0AqaZs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aHULwAGyAKAzwwxAfUrTETuP4AaHCqKgGVSWGNHgxjj8mJGhG2w3x1_h13Ju4pZWAtz3wGltREh_fe25snwOwayrnnKp4YpGsJrkIWaKcsEnBjTACKZ10pjGbkKNReXSkxhvwc3EWhrZVLmJiE6hdbekf-R5XJYJPYULaC3FbxHh_8PzkW0IOUrTSurDTaCFy4H98x_Jt9my4j2P9kPPBq8OXr5PoMJDYXMl5UjX2317lIStcL0ifuxQjEdY8Bdkq9mxVKS-4lBjBuc0LI50X0ofCOCNSbwXe9wJsSvLv7cDmePh2_GH5h4cUN8ssbQ8FCqFSWpPGeqYgjr-WBhu3gL_lhCbRDa79z5_oOlyN9Jr12_mwBRt-sg1XVkQXt2ErhrMZexw1t5_cgI-NMfXM0HRk_fmclAdYPWFxHYu988df4yktvEjuQezss2GHK7QfG-rAiFKfTj0jEt9qYN-E9-fyxregM6kn_jYwwZ3sOaFIxDq3pcfiliinRebgUxmyLjxdoEDbqMlO1iBfNNZmBBm9Apku7C47n7RSJH_u9oLgtOxC-uHNhXp6rGM40sZjWstVUNYVuVOidFmQRpkgSiTInHfhEYFRU5TDB7ImHtbA1yK9MN2XOI2Re2ZpF3bWemJ0suvNC6zqGB1n-jdQ7_y7-QFcQgTrN8PRwV24zJFPttv_dqAzn576e3DRnuFgTu_Hucfg03lj-Re8lXJk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adversarial+Attacks+on+Medical+Segmentation+Model+via+Transformation+of+Feature+Statistics&rft.jtitle=Applied+sciences&rft.au=Lee%2C+Woonghee&rft.au=Ju%2C+Mingeon&rft.au=Sim%2C+Yura&rft.au=Young%2C+Kul+Jung&rft.date=2024-03-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=14&rft.issue=6&rft.spage=2576&rft_id=info:doi/10.3390%2Fapp14062576&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon