SDA: a data-driven algorithm that detects functional states applied to the EEG of Guhyasamaja meditation
The study presents a novel approach designed to detect time-continuous states in time-series data, called the State-Detecting Algorithm (SDA). The SDA operates on unlabeled data and detects optimal change-points among intrinsic functional states in time-series data based on an ensemble of Ward'...
Uložené v:
| Vydané v: | Frontiers in neuroinformatics Ročník 17; s. 1301718 |
|---|---|
| Hlavní autori: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
Frontiers Research Foundation
29.01.2024
Frontiers Media S.A |
| Predmet: | |
| ISSN: | 1662-5196, 1662-5196 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!