SDA: a data-driven algorithm that detects functional states applied to the EEG of Guhyasamaja meditation

The study presents a novel approach designed to detect time-continuous states in time-series data, called the State-Detecting Algorithm (SDA). The SDA operates on unlabeled data and detects optimal change-points among intrinsic functional states in time-series data based on an ensemble of Ward'...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in neuroinformatics Jg. 17; S. 1301718
Hauptverfasser: Mikhaylets, Ekaterina, Razorenova, Alexandra M., Chernyshev, Vsevolod, Syrov, Nikolay, Yakovlev, Lev, Boytsova, Julia, Kokurina, Elena, Zhironkina, Yulia, Medvedev, Svyatoslav, Kaplan, Alexander
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland Frontiers Research Foundation 29.01.2024
Frontiers Media S.A
Schlagworte:
ISSN:1662-5196, 1662-5196
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!