A new fusion of whale optimizer algorithm with Kapur’s entropy for multi-threshold image segmentation: analysis and validations

The separation of an object from other objects or the background by selecting the optimal threshold values remains a challenge in the field of image segmentation. Threshold segmentation is one of the most popular image segmentation techniques. The traditional methods for finding the optimum threshol...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Artificial intelligence review Ročník 55; číslo 8; s. 6389 - 6459
Hlavní autori: Abdel-Basset, Mohamed, Mohamed, Reda, Abouhawwash, Mohamed
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Springer 01.12.2022
Springer Nature B.V
Springer Netherlands
Predmet:
ISSN:0269-2821, 1573-7462
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The separation of an object from other objects or the background by selecting the optimal threshold values remains a challenge in the field of image segmentation. Threshold segmentation is one of the most popular image segmentation techniques. The traditional methods for finding the optimum threshold are computationally expensive, tedious, and may be inaccurate. Hence, this paper proposes an Improved Whale Optimization Algorithm (IWOA) based on Kapur's entropy for solving multi-threshold segmentation of the gray level image. Also, IWOA supports its performance using linearly convergence increasing and local minima avoidance technique (LCMA), and ranking-based updating method (RUM). LCMA technique accelerates the convergence speed of the solutions toward the optimal solution and tries to avoid the local minima problem that may fall within the optimization process. To do that, it updates randomly the positions of the worst solutions to be near to the best solution and at the same time randomly within the search space according to a certain probability to avoid stuck into local minima. Because of the randomization process used in LCMA for updating the solutions toward the best solutions, a huge number of the solutions around the best are skipped. Therefore, the RUM is used to replace the unbeneficial solution with a novel updating scheme to cover this problem. We compare IWOA with another seven algorithms using a set of well-known test images. We use several performance measures, such as fitness values, Peak Signal to Noise Ratio, Structured Similarity Index Metric, Standard Deviation, and CPU time.
AbstractList The separation of an object from other objects or the background by selecting the optimal threshold values remains a challenge in the field of image segmentation. Threshold segmentation is one of the most popular image segmentation techniques. The traditional methods for finding the optimum threshold are computationally expensive, tedious, and may be inaccurate. Hence, this paper proposes an Improved Whale Optimization Algorithm (IWOA) based on Kapur’s entropy for solving multi-threshold segmentation of the gray level image. Also, IWOA supports its performance using linearly convergence increasing and local minima avoidance technique (LCMA), and ranking-based updating method (RUM). LCMA technique accelerates the convergence speed of the solutions toward the optimal solution and tries to avoid the local minima problem that may fall within the optimization process. To do that, it updates randomly the positions of the worst solutions to be near to the best solution and at the same time randomly within the search space according to a certain probability to avoid stuck into local minima. Because of the randomization process used in LCMA for updating the solutions toward the best solutions, a huge number of the solutions around the best are skipped. Therefore, the RUM is used to replace the unbeneficial solution with a novel updating scheme to cover this problem. We compare IWOA with another seven algorithms using a set of well-known test images. We use several performance measures, such as fitness values, Peak Signal to Noise Ratio, Structured Similarity Index Metric, Standard Deviation, and CPU time.
The separation of an object from other objects or the background by selecting the optimal threshold values remains a challenge in the field of image segmentation. Threshold segmentation is one of the most popular image segmentation techniques. The traditional methods for finding the optimum threshold are computationally expensive, tedious, and may be inaccurate. Hence, this paper proposes an Improved Whale Optimization Algorithm (IWOA) based on Kapur's entropy for solving multi-threshold segmentation of the gray level image. Also, IWOA supports its performance using linearly convergence increasing and local minima avoidance technique (LCMA), and ranking-based updating method (RUM). LCMA technique accelerates the convergence speed of the solutions toward the optimal solution and tries to avoid the local minima problem that may fall within the optimization process. To do that, it updates randomly the positions of the worst solutions to be near to the best solution and at the same time randomly within the search space according to a certain probability to avoid stuck into local minima. Because of the randomization process used in LCMA for updating the solutions toward the best solutions, a huge number of the solutions around the best are skipped. Therefore, the RUM is used to replace the unbeneficial solution with a novel updating scheme to cover this problem. We compare IWOA with another seven algorithms using a set of well-known test images. We use several performance measures, such as fitness values, Peak Signal to Noise Ratio, Structured Similarity Index Metric, Standard Deviation, and CPU time.The separation of an object from other objects or the background by selecting the optimal threshold values remains a challenge in the field of image segmentation. Threshold segmentation is one of the most popular image segmentation techniques. The traditional methods for finding the optimum threshold are computationally expensive, tedious, and may be inaccurate. Hence, this paper proposes an Improved Whale Optimization Algorithm (IWOA) based on Kapur's entropy for solving multi-threshold segmentation of the gray level image. Also, IWOA supports its performance using linearly convergence increasing and local minima avoidance technique (LCMA), and ranking-based updating method (RUM). LCMA technique accelerates the convergence speed of the solutions toward the optimal solution and tries to avoid the local minima problem that may fall within the optimization process. To do that, it updates randomly the positions of the worst solutions to be near to the best solution and at the same time randomly within the search space according to a certain probability to avoid stuck into local minima. Because of the randomization process used in LCMA for updating the solutions toward the best solutions, a huge number of the solutions around the best are skipped. Therefore, the RUM is used to replace the unbeneficial solution with a novel updating scheme to cover this problem. We compare IWOA with another seven algorithms using a set of well-known test images. We use several performance measures, such as fitness values, Peak Signal to Noise Ratio, Structured Similarity Index Metric, Standard Deviation, and CPU time.
Audience Academic
Author Mohamed, Reda
Abouhawwash, Mohamed
Abdel-Basset, Mohamed
Author_xml – sequence: 1
  givenname: Mohamed
  surname: Abdel-Basset
  fullname: Abdel-Basset, Mohamed
– sequence: 2
  givenname: Reda
  surname: Mohamed
  fullname: Mohamed, Reda
– sequence: 3
  givenname: Mohamed
  orcidid: 0000-0003-2846-4707
  surname: Abouhawwash
  fullname: Abouhawwash, Mohamed
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35342218$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAUhi1URKeFF2CBLLFhk-JLEicskEYVN1Gpm-4tx7ETV0482Emj6Qoeg9fjSTjTKaWtELJkW8ff-X2O_R-hgzGMBqGXlJxQQsTbRElesowwllFCC5EtT9AKVp4JiB-gFWFlnbGK0UN0lNIlIaRgOX-GDnnBc8ZotUI_1ng0C7ZzcmHEweKlV97gsJnc4K5NxMp3IbqpH_ACM_6qNnP89f1nwmacYthssQ0RD7OfXDb10aQ--Ba7QXUGJ9MNQKkJpN9hNSq_TS7BpsVXyrv25iA9R0-t8sm8uF2P0cXHDxenn7Oz809fTtdnmc5rMWWVbUSrhGorbmtTaFMzZlVFWNGWyjbQUNnUmlDCiFYNoVUrdGtqToumokrxY_R-L7uZm8G0ele-8nIToda4lUE5-fBkdL3swpWsal6wsgKBN7cCMXybTZrk4JI23qvRhDlJVuY5L-o6LwF9_Qi9DHOE_oESnOTw9lz8pTp4celGG-BevROVa8FykTNKdtTJPygYrRmcBkNYB_EHCa_uN3rX4Z8_B4DtAR1DStHYO4QSuTOW3BtLgrHkjbHkAknVoyTt9j8L5Tj_v9TfuJvVrg
CitedBy_id crossref_primary_10_1016_j_optlastec_2025_112926
crossref_primary_10_3390_jimaging9040074
crossref_primary_10_1371_journal_pone_0287573
crossref_primary_10_1016_j_solener_2023_111869
crossref_primary_10_1109_ACCESS_2024_3508796
crossref_primary_10_1007_s12530_024_09614_4
crossref_primary_10_3390_biomimetics10040218
crossref_primary_10_1093_jcde_qwaf046
crossref_primary_10_3389_fpls_2023_1122788
crossref_primary_10_3390_s22134904
crossref_primary_10_1088_1402_4896_ad504d
crossref_primary_10_1016_j_compbiomed_2024_108498
crossref_primary_10_1016_j_jvcir_2023_104008
crossref_primary_10_1007_s11831_024_10070_1
crossref_primary_10_3390_app14209303
crossref_primary_10_1007_s11042_023_16300_1
crossref_primary_10_1007_s12065_025_01069_z
crossref_primary_10_3390_e27050526
crossref_primary_10_3390_e24121788
crossref_primary_10_1007_s11042_024_19550_9
crossref_primary_10_1007_s10462_024_10919_8
crossref_primary_10_1109_TII_2022_3228777
crossref_primary_10_1016_j_jestch_2024_101684
crossref_primary_10_2478_amns_2023_1_00472
crossref_primary_10_1007_s10462_025_11319_2
Cites_doi 10.1109/TGRS.2013.2260552
10.1016/j.sigpro.2012.07.010
10.1016/j.eswa.2011.06.011
10.1016/0734-189X(85)90125-2
10.3390/e21030318
10.1007/s10044-017-0653-4
10.1016/j.eswa.2017.04.023
10.1007/s11042-019-08231-7
10.1016/j.asoc.2019.105570
10.1109/SAPIENCE.2016.7684170
10.1016/j.media.2020.101664
10.1007/978-3-030-16339-6_8
10.1007/978-981-13-9217-7
10.1016/j.eswa.2017.04.029
10.46298/jdmdh.6107
10.1016/j.engappai.2013.09.013
10.1016/j.swevo.2020.100791
10.1007/978-3-319-63754-9_2
10.1007/978-981-13-7403-6_33
10.1016/j.asoc.2020.106642
10.1007/s00521-020-04820-y
10.1007/978-3-540-76928-6_70
10.1007/978-1-4419-9863-7_1185
10.1016/j.eswa.2013.10.059
10.1007/978-3-319-13407-9_17
10.1016/j.asoc.2019.106042
10.1109/ICPR.2010.579
10.1016/j.asoc.2019.105954
10.1016/j.eswa.2007.01.002
10.1166/jmihi.2020.2899
10.1016/j.cmpb.2020.105395
10.1007/978-3-642-32894-7_27
10.1016/j.enconman.2019.112197
10.3390/e22030328
10.1007/s11760-016-0927-0
10.1016/j.asoc.2020.106157
10.1016/j.ins.2019.07.088
10.1016/j.asoc.2017.11.006
10.1109/CYBER.2015.7287931
10.1109/TSMC.1979.4310076
10.1007/s00521-014-1806-7
10.1016/j.engappai.2010.12.001
10.1007/s11042-020-09664-1
10.1016/j.solener.2020.09.032
10.1016/j.asoc.2020.106063
10.1016/j.cie.2020.106946
10.3934/mbe.2020036
10.1109/ICDAR.2019.00165
10.1109/ACCESS.2020.2990893
10.1016/j.asoc.2019.105577
10.1016/j.asoc.2017.05.019
10.1007/s11042-019-7506-7
10.1016/j.apm.2017.02.015
10.1007/s11042-017-4638-5
10.1016/j.asoc.2018.08.047
10.1145/3151509.3151519
10.1016/j.apacoust.2019.107051
10.1007/978-3-319-46448-0_7
10.1007/978-981-15-1100-4_3
10.1007/s00500-014-1345-2
10.1109/ICIII.2011.104
10.1109/ICRCICN50933.2020.9296166
10.1016/j.asoc.2020.107036
10.1007/s11042-019-08138-3
10.1016/j.eswa.2017.02.042
10.1109/ACCESS.2019.2921545
10.1007/s10489-016-0832-9
10.1016/j.asoc.2019.105522
10.1016/j.patcog.2017.01.010
10.1016/j.asoc.2019.105503
10.1109/ICCONS.2018.8663060
10.1016/j.measurement.2013.09.031
10.3233/BME-151432
10.1016/j.isprsjprs.2017.06.003
10.1007/978-3-030-12931-6_11
10.1016/j.knosys.2015.12.022
10.1088/1755-1315/252/4/042105
10.1016/j.infrared.2019.103140
10.1016/j.ajoms.2019.09.009
10.1109/CEC.2016.7743922
10.1109/ACCESS.2019.2953494
10.1007/s42452-020-1956-4
10.1016/j.advengsoft.2016.01.008
10.1109/ICITBS.2019.00136
10.1007/s11227-020-03171-8
10.1108/02644401011008577
10.1007/978-981-10-3223-3_26
10.1109/ACCESS.2020.3044857
10.1080/01431161.2019.1698071
ContentType Journal Article
Copyright This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022.
COPYRIGHT 2022 Springer
Copyright Springer Nature B.V. Dec 2022
This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022
Copyright_xml – notice: This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022.
– notice: COPYRIGHT 2022 Springer
– notice: Copyright Springer Nature B.V. Dec 2022
– notice: This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022
DBID AAYXX
CITATION
NPM
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CNYFK
DWQXO
E3H
F2A
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M1O
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
7X8
5PM
DOI 10.1007/s10462-022-10157-w
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
Library & Information Science Collection
ProQuest Central Korea
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Library Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Business Collection (Alumni Edition)


MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7462
EndPage 6459
ExternalDocumentID PMC8935268
A724742107
35342218
10_1007_s10462_022_10157_w
Genre Journal Article
GroupedDBID -Y2
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6J9
6NX
77I
77K
7WY
8AO
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAFWJ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AASML
AATVU
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABBBX
ABBXA
ABDBE
ABDZT
ABECU
ABEEZ
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACSTC
ACULB
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFEXP
AFFHD
AFFNX
AFGCZ
AFGXO
AFHIU
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
CITATION
CNYFK
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
ICD
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M1O
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PRQQA
PSYQQ
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
ZMTXR
~A9
~EX
AAUYE
AAYZH
AESKC
NPM
3V.
7SC
7XB
8AL
8FD
8FK
E3H
F2A
JQ2
L.-
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c497t-8fb7da7ad83f9e5ce922fa8025d6afb5346b9c01020cab018d7cde9315b81aa3
IEDL.DBID M0C
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000771386800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0269-2821
IngestDate Tue Nov 04 01:55:02 EST 2025
Sun Nov 09 11:18:37 EST 2025
Fri Nov 14 18:44:17 EST 2025
Sat Nov 29 13:49:33 EST 2025
Sat Nov 29 10:29:10 EST 2025
Mon Jul 21 06:04:51 EDT 2025
Sat Nov 29 08:02:48 EST 2025
Tue Nov 18 22:23:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Kapur’s entropy
Image segmentation
Local Minima
Whale optimization algorithm
Linearly convergence
Language English
License This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-8fb7da7ad83f9e5ce922fa8025d6afb5346b9c01020cab018d7cde9315b81aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2846-4707
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8935268
PMID 35342218
PQID 2730442237
PQPubID 36790
PageCount 71
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8935268
proquest_miscellaneous_2644359946
proquest_journals_2730442237
gale_infotracmisc_A724742107
gale_infotracacademiconefile_A724742107
pubmed_primary_35342218
crossref_primary_10_1007_s10462_022_10157_w
crossref_citationtrail_10_1007_s10462_022_10157_w
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Dordrecht
PublicationTitle The Artificial intelligence review
PublicationTitleAlternate Artif Intell Rev
PublicationYear 2022
Publisher Springer
Springer Nature B.V
Springer Netherlands
Publisher_xml – name: Springer
– name: Springer Nature B.V
– name: Springer Netherlands
References 10157_CR36
10157_CR38
M Abdel-Basset (10157_CR8) 2021; 33
10157_CR33
10157_CR34
F Huo (10157_CR39) 2020; 79
10157_CR30
10157_CR74
AA El-Fergany (10157_CR28) 2019; 201
A Dirami (10157_CR26) 2013; 93
X Bao (10157_CR15) 2019; 7
Y Zhang (10157_CR91) 2020; 62
BN Narayanan (10157_CR63) 2019; 22
N Sanyal (10157_CR70) 2011; 38
T Su (10157_CR78) 2017; 130
M Chouksey (10157_CR22) 2020; 79
10157_CR47
S Wang (10157_CR82) 2020; 17
S Mirjalili (10157_CR56) 2016; 96
10157_CR86
10157_CR87
T Ren (10157_CR69) 2019; 81
10157_CR45
10157_CR89
10157_CR83
M Abdel-Basset (10157_CR5) 2020; 209
10157_CR40
M Liu (10157_CR51) 2020; 87
10157_CR84
P Ghamisi (10157_CR32) 2013; 52
10157_CR85
M Abdel-Basset (10157_CR4) 2020; 95
K Tang (10157_CR79) 2017; 46
J Han (10157_CR35) 2017; 44
SM Elsayed (10157_CR29) 2014; 27
AK Al-Musawi (10157_CR13) 2020; 104
L He (10157_CR37) 2020; 89
S Saremi (10157_CR71) 2015; 26
HS Naji Alwerfali (10157_CR61) 2020; 22
A Aksac (10157_CR11) 2017; 66
AK Bhandari (10157_CR17) 2019; 82
P Sathya (10157_CR72) 2011; 24
JN Kapur (10157_CR43) 1985; 29
TH Farook (10157_CR31) 2020; 32
CG Karydas (10157_CR44) 2020; 41
10157_CR14
10157_CR58
10157_CR59
10157_CR16
10157_CR12
K Li (10157_CR49) 2019; 7
10157_CR52
Z Yan (10157_CR88) 2020; 79
Y Pan (10157_CR67) 2017; 58
P Upadhyay (10157_CR80) 2020; 97
M Abdel-Basset (10157_CR9) 2021; 60
X Yue (10157_CR90) 2020; 90
M Mafarja (10157_CR53) 2018; 62
D Oliva (10157_CR64) 2017; 79
Z Zhang (10157_CR92) 2020; 192
AK Bhandari (10157_CR18) 2014; 41
F Di Martino (10157_CR25) 2020; 506
M Maitra (10157_CR54) 2008; 34
A Singla (10157_CR75) 2017; 11
Y Liu (10157_CR50) 2015; 19
N Otsu (10157_CR66) 1979; 9
10157_CR24
P Kandhway (10157_CR42) 2019; 78
10157_CR68
F Chakraborty (10157_CR20) 2019; 82
10157_CR27
10157_CR65
M Abd El Aziz (10157_CR1) 2017; 83
10157_CR23
M Abdel-Basset (10157_CR6) 2020; 8
10157_CR62
R Wang (10157_CR81) 2015; 26
M Abdel-Basset (10157_CR3) 2018; 73
M Abdel-Basset (10157_CR7) 2020; 8
G Chen (10157_CR21) 2020; 10
Y Song (10157_CR77) 2020; 158
F Shahabi (10157_CR73) 2019; 4
M Abdel-Basset (10157_CR10) 2020; 151
C Lang (10157_CR48) 2019; 21
S Manikandan (10157_CR55) 2014; 47
H Zhang (10157_CR93) 2020; 88
S Mirjalili (10157_CR57) 2016; 95
A Mostafa (10157_CR60) 2017; 76
P Sinha (10157_CR76) 2020; 2
10157_CR19
J Jafari-Asl (10157_CR41) 2021; 101
10157_CR2
AKM Khairuzzaman (10157_CR46) 2017; 86
References_xml – volume: 52
  start-page: 2382
  issue: 5
  year: 2013
  ident: 10157_CR32
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2013.2260552
– volume: 93
  start-page: 139
  issue: 1
  year: 2013
  ident: 10157_CR26
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2012.07.010
– volume: 38
  start-page: 15 489
  issue: 12
  year: 2011
  ident: 10157_CR70
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.06.011
– volume: 29
  start-page: 273
  issue: 3
  year: 1985
  ident: 10157_CR43
  publication-title: Computer Vis Gr Image Process
  doi: 10.1016/0734-189X(85)90125-2
– volume: 21
  start-page: 318
  issue: 3
  year: 2019
  ident: 10157_CR48
  publication-title: Entropy
  doi: 10.3390/e21030318
– volume: 22
  start-page: 559
  issue: 2
  year: 2019
  ident: 10157_CR63
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-017-0653-4
– volume: 83
  start-page: 242
  year: 2017
  ident: 10157_CR1
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.04.023
– volume: 79
  start-page: 2447
  issue: 3
  year: 2020
  ident: 10157_CR39
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-08231-7
– volume: 82
  start-page: 105570
  year: 2019
  ident: 10157_CR17
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105570
– ident: 10157_CR47
  doi: 10.1109/SAPIENCE.2016.7684170
– volume: 62
  start-page: 101664
  year: 2020
  ident: 10157_CR91
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2020.101664
– ident: 10157_CR23
  doi: 10.1007/978-3-030-16339-6_8
– ident: 10157_CR84
  doi: 10.1007/978-981-13-9217-7
– volume: 86
  start-page: 64
  year: 2017
  ident: 10157_CR46
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.04.029
– ident: 10157_CR16
  doi: 10.46298/jdmdh.6107
– volume: 27
  start-page: 57
  year: 2014
  ident: 10157_CR29
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2013.09.013
– volume: 60
  start-page: 100791
  year: 2021
  ident: 10157_CR9
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2020.100791
– ident: 10157_CR2
  doi: 10.1007/978-3-319-63754-9_2
– ident: 10157_CR14
  doi: 10.1007/978-981-13-7403-6_33
– volume: 95
  start-page: 106642
  year: 2020
  ident: 10157_CR4
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106642
– volume: 33
  start-page: 10 685
  issue: 17
  year: 2021
  ident: 10157_CR8
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-04820-y
– ident: 10157_CR34
  doi: 10.1007/978-3-540-76928-6_70
– ident: 10157_CR36
  doi: 10.1007/978-1-4419-9863-7_1185
– volume: 41
  start-page: 3538
  issue: 7
  year: 2014
  ident: 10157_CR18
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.10.059
– ident: 10157_CR30
  doi: 10.1007/978-3-319-13407-9_17
– volume: 88
  start-page: 106042
  year: 2020
  ident: 10157_CR93
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.106042
– ident: 10157_CR38
  doi: 10.1109/ICPR.2010.579
– volume: 87
  start-page: 105954
  year: 2020
  ident: 10157_CR51
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105954
– volume: 34
  start-page: 1341
  issue: 2
  year: 2008
  ident: 10157_CR54
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2007.01.002
– volume: 10
  start-page: 515
  issue: 2
  year: 2020
  ident: 10157_CR21
  publication-title: J Med Imag Health Informat
  doi: 10.1166/jmihi.2020.2899
– volume: 192
  start-page: 105395
  year: 2020
  ident: 10157_CR92
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2020.105395
– ident: 10157_CR87
  doi: 10.1007/978-3-642-32894-7_27
– volume: 201
  start-page: 112197
  year: 2019
  ident: 10157_CR28
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.112197
– volume: 22
  start-page: 328
  issue: 3
  year: 2020
  ident: 10157_CR61
  publication-title: Entropy
  doi: 10.3390/e22030328
– volume: 11
  start-page: 243
  issue: 2
  year: 2017
  ident: 10157_CR75
  publication-title: SIViP
  doi: 10.1007/s11760-016-0927-0
– volume: 90
  start-page: 106157
  year: 2020
  ident: 10157_CR90
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106157
– volume: 506
  start-page: 308
  year: 2020
  ident: 10157_CR25
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.07.088
– volume: 62
  start-page: 441
  year: 2018
  ident: 10157_CR53
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.11.006
– ident: 10157_CR52
  doi: 10.1109/CYBER.2015.7287931
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  ident: 10157_CR66
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1979.4310076
– ident: 10157_CR59
– volume: 26
  start-page: 1257
  issue: 5
  year: 2015
  ident: 10157_CR71
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-014-1806-7
– volume: 24
  start-page: 595
  issue: 4
  year: 2011
  ident: 10157_CR72
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2010.12.001
– volume: 79
  start-page: 32415
  issue: 43
  year: 2020
  ident: 10157_CR88
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-09664-1
– volume: 209
  start-page: 694
  year: 2020
  ident: 10157_CR5
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2020.09.032
– volume: 89
  start-page: 106063
  year: 2020
  ident: 10157_CR37
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106063
– volume: 151
  start-page: 106946
  year: 2020
  ident: 10157_CR10
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2020.106946
– volume: 17
  start-page: 700
  year: 2020
  ident: 10157_CR82
  publication-title: Math Biosci Eng
  doi: 10.3934/mbe.2020036
– ident: 10157_CR27
– ident: 10157_CR62
  doi: 10.1109/ICDAR.2019.00165
– volume: 8
  start-page: 521
  year: 2020
  ident: 10157_CR7
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2990893
– ident: 10157_CR33
– volume: 82
  start-page: 105577
  year: 2019
  ident: 10157_CR20
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105577
– volume: 58
  start-page: 770
  year: 2017
  ident: 10157_CR67
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.05.019
– volume: 78
  start-page: 22 613
  issue: 16
  year: 2019
  ident: 10157_CR42
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-7506-7
– volume: 44
  start-page: 588
  year: 2017
  ident: 10157_CR35
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2017.02.015
– volume: 76
  start-page: 24 931
  issue: 23
  year: 2017
  ident: 10157_CR60
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-4638-5
– volume: 73
  start-page: 530
  year: 2018
  ident: 10157_CR3
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.08.047
– ident: 10157_CR12
  doi: 10.1145/3151509.3151519
– volume: 158
  start-page: 107051
  year: 2020
  ident: 10157_CR77
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2019.107051
– ident: 10157_CR40
  doi: 10.1007/978-3-319-46448-0_7
– ident: 10157_CR58
  doi: 10.1007/978-981-15-1100-4_3
– volume: 19
  start-page: 1311
  issue: 5
  year: 2015
  ident: 10157_CR50
  publication-title: Soft Comput
  doi: 10.1007/s00500-014-1345-2
– ident: 10157_CR85
  doi: 10.1109/ICIII.2011.104
– ident: 10157_CR24
  doi: 10.1109/ICRCICN50933.2020.9296166
– volume: 101
  start-page: 107036
  year: 2021
  ident: 10157_CR41
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.107036
– volume: 79
  start-page: 19075
  issue: 27
  year: 2020
  ident: 10157_CR22
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-08138-3
– volume: 79
  start-page: 164
  year: 2017
  ident: 10157_CR64
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.02.042
– volume: 7
  start-page: 76 529
  year: 2019
  ident: 10157_CR15
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2019.2921545
– volume: 4
  start-page: 33
  issue: 1
  year: 2019
  ident: 10157_CR73
  publication-title: J Dec Op Res
– volume: 46
  start-page: 214
  issue: 1
  year: 2017
  ident: 10157_CR79
  publication-title: Appl Intell
  doi: 10.1007/s10489-016-0832-9
– volume: 97
  start-page: 105522
  year: 2020
  ident: 10157_CR80
  publication-title: Applied soft computing
  doi: 10.1016/j.asoc.2019.105522
– volume: 66
  start-page: 268
  year: 2017
  ident: 10157_CR11
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.01.010
– volume: 81
  start-page: 105503
  year: 2019
  ident: 10157_CR69
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105503
– ident: 10157_CR74
  doi: 10.1109/ICCONS.2018.8663060
– volume: 47
  start-page: 558
  year: 2014
  ident: 10157_CR55
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.09.031
– volume: 26
  start-page: S1345
  issue: s1
  year: 2015
  ident: 10157_CR81
  publication-title: Bio-Med Mater Eng
  doi: 10.3233/BME-151432
– volume: 130
  start-page: 256
  year: 2017
  ident: 10157_CR78
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2017.06.003
– ident: 10157_CR65
  doi: 10.1007/978-3-030-12931-6_11
– volume: 96
  start-page: 120
  year: 2016
  ident: 10157_CR56
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– ident: 10157_CR89
  doi: 10.1088/1755-1315/252/4/042105
– volume: 104
  start-page: 103140
  year: 2020
  ident: 10157_CR13
  publication-title: Infra Phys Technol
  doi: 10.1016/j.infrared.2019.103140
– volume: 32
  start-page: 61
  issue: 1
  year: 2020
  ident: 10157_CR31
  publication-title: J Oral Maxillofac Surg Med Pathol
  doi: 10.1016/j.ajoms.2019.09.009
– ident: 10157_CR19
  doi: 10.1109/CEC.2016.7743922
– volume: 7
  start-page: 165 571
  year: 2019
  ident: 10157_CR49
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2953494
– volume: 2
  start-page: 1
  issue: 2
  year: 2020
  ident: 10157_CR76
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-020-1956-4
– volume: 95
  start-page: 51
  year: 2016
  ident: 10157_CR57
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: 10157_CR83
  doi: 10.1109/ICITBS.2019.00136
– ident: 10157_CR86
  doi: 10.1007/s11227-020-03171-8
– ident: 10157_CR45
  doi: 10.1108/02644401011008577
– ident: 10157_CR68
  doi: 10.1007/978-981-10-3223-3_26
– volume: 8
  start-page: 222 144
  year: 2020
  ident: 10157_CR6
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3044857
– volume: 41
  start-page: 2905
  issue: 8
  year: 2020
  ident: 10157_CR44
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2019.1698071
SSID ssj0005243
Score 2.4727507
Snippet The separation of an object from other objects or the background by selecting the optimal threshold values remains a challenge in the field of image...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6389
SubjectTerms Algorithms
Cetacea
Convergence
Entropy
Image processing
Image segmentation
Mathematical optimization
Medical imaging equipment
Minima
NMR
Nuclear magnetic resonance
Optimization
Optimization algorithms
Rankings
Segmentation
Signal to noise ratio
Thresholds
Whales & whaling
Title A new fusion of whale optimizer algorithm with Kapur’s entropy for multi-threshold image segmentation: analysis and validations
URI https://www.ncbi.nlm.nih.gov/pubmed/35342218
https://www.proquest.com/docview/2730442237
https://www.proquest.com/docview/2644359946
https://pubmed.ncbi.nlm.nih.gov/PMC8935268
Volume 55
WOSCitedRecordID wos000771386800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFLfYxoEL4z-BURkJiQOyaBLHjrmgMm1CmijVmKBwiWwnXiutSWlaKjjBx-Dr8Ul4L3W7hsMuXKxWfole6_cvzs-_R8gzUeSGSyFYYrqO8TwPWWqFYYmwlhsbG-N002xC9vvpcKgGfsOt9rDKdUxsAnVeWdwjfwlptss5JDP5evqVYdcofLvqW2jskD2sbBDS9657uAXxWKHmIqEYPFqE_tCMPzrHRcQQyw5GmUi2bCWmf8PzVn5qYye3ktHx_v_-jFvkpi9DaW9lN7fJtaK8Q_bXLR6o9_i75FePQt1N3QI31Wjl6HIEKtMKAs1k_AMk9cU53H4-mlDc0aUnerqY_fn5u6aoeDX9TqEopg1qkc3BbGp820XHE4hitC7OJ_7kU_mKas-OAh9yCuY_XjV7qu-Rs-Ojs8O3zHdtYJYrOWepMzLXUudp7FSR2EJFkdMp1Fa50M4kMRdGWaSy61ptumGaS5sXKg4Tk4Zax_fJblmVxUNCtRImcnksNHe8iCMlnHLWIv2P1MYmAQnXK5ZZz2iOjTUusksuZlzlDFY5a1Y5Wwbkxeaa6YrP40rp52gIGTo73Nlqf2YB9EParKwnIy45PDXLgBy0JMFJbXt6bQ6ZDxJ1dmkLAXm6mcYrEfhWFtUCZKBejROluAjIg5XlbfSO4b-MoEQLiGzZ5EYAqcPbM-V41FCIQ5WKPD-PrlbrMbkRNR6C6J0DsjufLYon5Lr9Nh_Xsw7ZkZ8-4zhMO2TvzVF_cArfTiTrNF6IY_gexkHyBcbTDx__AkTqPRk
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQYIL5d1AASOBOCCLjePYMRJCK6BqtWXFYQ-9RX7E3ZW6yXazy6qc4GfwI_hT_BLGeWw3HHrrgVskjyNnMi_bM98g9JJnVjPBOYl1zxFmbUgSwzWJuTFMm0hrp6pmE2I4TI6P5dct9LuthfFpla1NrAy1LYw_I38LbrbHGDgz8WF2RnzXKH-72rbQqMVikJ2vYMtWvj_8BP_3FaX7n0cfD0jTVYAYJsWCJE4Lq4SySeRkFptMUupUAr7fcuV0HDGupfFQaz2jdC9MrDA2k1EY6yRUKoLXXkPXWZQIr1YDQTYySuokPcolgZ1M2NToNJV6jFPiU-dBB2JBVh0_-K832HCH3VTNDd-3v_Ofce0Out0E2bhfa8VdtJXl99BO28ACN_bsPvrZx7CrwG7pjwxx4fBqDBzCBZjR6eQ7UKrTE_iaxXiK_Xk1HqjZcv7nx68Sez4Vs3MMIT-ucjLJApSi9Hd5eDIFG43L7GTa1HXl77BqsF_gwWJQ7kndyqp8gEZXwYeHaDsv8mwXYSW5ps5GXDHHsohK7qQzxoMbCaVNHKCwFZDUNHjtvm3IaXqBNO2FKgWhSiuhSlcBerOeM6vRSi6lfu3lLvWmDN5sVFORAevzoGBpX1AmGA17IkB7HUowQaY73Epf2pjAMr0QvQC9WA_7mT6tL8-KJdBANB7FUjIeoEe1oK_XHQEvKQSgARIdFVgTeGD07kg-GVcA6RCDexSjx5cv6zm6eTD6cpQeHQ4HT9AtWimnz1PaQ9uL-TJ7im6Yb4tJOX9WqTlG6RUryF8KJZPF
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VghAXyqtgKLBIIA5o1Xi93vUiIRRRKqqgKIceKi7WPrxNpMYOcUJUTvAz-Cn8HX4Js36kMYfeeuBmacfWejzP9TczCL3kmdVMcE5i3XOEWRuSxHBNYm4M0ybS2qlq2IQYDpOTEznaQr_bWhgPq2xtYmWobWH8Gfk-uNkeY-DMxL5rYBGjg8P3s6_ET5Dyf1rbcRq1iAyy8xWkb-W7owP41q8oPfx4_OETaSYMEMOkWJDEaWGVUDaJnMxik0lKnUogDrBcOR1HjGtpfNu1nlG6FyZWGJvJKIx1EioVwWOvoesCUkyPJhzFXzbQJTVgj3JJIKsJm3qdpmqPcUo8jB70IRZk1fGJ_3qGDdfYhW1u-MHDnf-Yg3fQ7Sb4xv1aW-6irSy_h3bawRa4sXP30c8-hmwDu6U_SsSFw6sxcAsXYF6nk-9Aqc5O4W0W4yn259h4oGbL-Z8fv0rseVbMzjGkArjCapIFKEvp__HhyRRsNy6z02lT75W_xarpCQMXFoPST-oRV-UDdHwVfNhF23mRZ48QVpJr6mzEFXMsi6jkTjpjfNMjobSJAxS2wpKapo-7Hydyll50oPYCloKApZWApasAvVnfM6u7mFxK_drLYOpNHDzZqKZSA_bnm4WlfUGZYDTsiQDtdSjBNJnuciuJaWMay_RCDAP0Yr3s7_RwvzwrlkADUXoUS8l4gB7WQr_edwS8pBCYBkh01GFN4Bumd1fyybhqnA6xue9u9PjybT1HN0Ev0s9Hw8ETdItWeurhS3toezFfZk_RDfNtMSnnzyqNxyi9Yv34CxsnnOk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+fusion+of+whale+optimizer+algorithm+with+Kapur%E2%80%99s+entropy+for+multi-threshold+image+segmentation%3A+analysis+and+validations&rft.jtitle=The+Artificial+intelligence+review&rft.au=Abdel-Basset%2C+Mohamed&rft.au=Mohamed%2C+Reda&rft.au=Abouhawwash%2C+Mohamed&rft.date=2022-12-01&rft.pub=Springer+Netherlands&rft.issn=0269-2821&rft.eissn=1573-7462&rft.spage=1&rft.epage=71&rft_id=info:doi/10.1007%2Fs10462-022-10157-w&rft_id=info%3Apmid%2F35342218&rft.externalDocID=PMC8935268
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon