A new fusion of whale optimizer algorithm with Kapur’s entropy for multi-threshold image segmentation: analysis and validations
The separation of an object from other objects or the background by selecting the optimal threshold values remains a challenge in the field of image segmentation. Threshold segmentation is one of the most popular image segmentation techniques. The traditional methods for finding the optimum threshol...
Uložené v:
| Vydané v: | The Artificial intelligence review Ročník 55; číslo 8; s. 6389 - 6459 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Springer
01.12.2022
Springer Nature B.V Springer Netherlands |
| Predmet: | |
| ISSN: | 0269-2821, 1573-7462 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The separation of an object from other objects or the background by selecting the optimal threshold values remains a challenge in the field of image segmentation. Threshold segmentation is one of the most popular image segmentation techniques. The traditional methods for finding the optimum threshold are computationally expensive, tedious, and may be inaccurate. Hence, this paper proposes an Improved Whale Optimization Algorithm (IWOA) based on Kapur's entropy for solving multi-threshold segmentation of the gray level image. Also, IWOA supports its performance using linearly convergence increasing and local minima avoidance technique (LCMA), and ranking-based updating method (RUM). LCMA technique accelerates the convergence speed of the solutions toward the optimal solution and tries to avoid the local minima problem that may fall within the optimization process. To do that, it updates randomly the positions of the worst solutions to be near to the best solution and at the same time randomly within the search space according to a certain probability to avoid stuck into local minima. Because of the randomization process used in LCMA for updating the solutions toward the best solutions, a huge number of the solutions around the best are skipped. Therefore, the RUM is used to replace the unbeneficial solution with a novel updating scheme to cover this problem. We compare IWOA with another seven algorithms using a set of well-known test images. We use several performance measures, such as fitness values, Peak Signal to Noise Ratio, Structured Similarity Index Metric, Standard Deviation, and CPU time. |
|---|---|
| AbstractList | The separation of an object from other objects or the background by selecting the optimal threshold values remains a challenge in the field of image segmentation. Threshold segmentation is one of the most popular image segmentation techniques. The traditional methods for finding the optimum threshold are computationally expensive, tedious, and may be inaccurate. Hence, this paper proposes an Improved Whale Optimization Algorithm (IWOA) based on Kapur’s entropy for solving multi-threshold segmentation of the gray level image. Also, IWOA supports its performance using linearly convergence increasing and local minima avoidance technique (LCMA), and ranking-based updating method (RUM). LCMA technique accelerates the convergence speed of the solutions toward the optimal solution and tries to avoid the local minima problem that may fall within the optimization process. To do that, it updates randomly the positions of the worst solutions to be near to the best solution and at the same time randomly within the search space according to a certain probability to avoid stuck into local minima. Because of the randomization process used in LCMA for updating the solutions toward the best solutions, a huge number of the solutions around the best are skipped. Therefore, the RUM is used to replace the unbeneficial solution with a novel updating scheme to cover this problem. We compare IWOA with another seven algorithms using a set of well-known test images. We use several performance measures, such as fitness values, Peak Signal to Noise Ratio, Structured Similarity Index Metric, Standard Deviation, and CPU time. The separation of an object from other objects or the background by selecting the optimal threshold values remains a challenge in the field of image segmentation. Threshold segmentation is one of the most popular image segmentation techniques. The traditional methods for finding the optimum threshold are computationally expensive, tedious, and may be inaccurate. Hence, this paper proposes an Improved Whale Optimization Algorithm (IWOA) based on Kapur's entropy for solving multi-threshold segmentation of the gray level image. Also, IWOA supports its performance using linearly convergence increasing and local minima avoidance technique (LCMA), and ranking-based updating method (RUM). LCMA technique accelerates the convergence speed of the solutions toward the optimal solution and tries to avoid the local minima problem that may fall within the optimization process. To do that, it updates randomly the positions of the worst solutions to be near to the best solution and at the same time randomly within the search space according to a certain probability to avoid stuck into local minima. Because of the randomization process used in LCMA for updating the solutions toward the best solutions, a huge number of the solutions around the best are skipped. Therefore, the RUM is used to replace the unbeneficial solution with a novel updating scheme to cover this problem. We compare IWOA with another seven algorithms using a set of well-known test images. We use several performance measures, such as fitness values, Peak Signal to Noise Ratio, Structured Similarity Index Metric, Standard Deviation, and CPU time.The separation of an object from other objects or the background by selecting the optimal threshold values remains a challenge in the field of image segmentation. Threshold segmentation is one of the most popular image segmentation techniques. The traditional methods for finding the optimum threshold are computationally expensive, tedious, and may be inaccurate. Hence, this paper proposes an Improved Whale Optimization Algorithm (IWOA) based on Kapur's entropy for solving multi-threshold segmentation of the gray level image. Also, IWOA supports its performance using linearly convergence increasing and local minima avoidance technique (LCMA), and ranking-based updating method (RUM). LCMA technique accelerates the convergence speed of the solutions toward the optimal solution and tries to avoid the local minima problem that may fall within the optimization process. To do that, it updates randomly the positions of the worst solutions to be near to the best solution and at the same time randomly within the search space according to a certain probability to avoid stuck into local minima. Because of the randomization process used in LCMA for updating the solutions toward the best solutions, a huge number of the solutions around the best are skipped. Therefore, the RUM is used to replace the unbeneficial solution with a novel updating scheme to cover this problem. We compare IWOA with another seven algorithms using a set of well-known test images. We use several performance measures, such as fitness values, Peak Signal to Noise Ratio, Structured Similarity Index Metric, Standard Deviation, and CPU time. |
| Audience | Academic |
| Author | Mohamed, Reda Abouhawwash, Mohamed Abdel-Basset, Mohamed |
| Author_xml | – sequence: 1 givenname: Mohamed surname: Abdel-Basset fullname: Abdel-Basset, Mohamed – sequence: 2 givenname: Reda surname: Mohamed fullname: Mohamed, Reda – sequence: 3 givenname: Mohamed orcidid: 0000-0003-2846-4707 surname: Abouhawwash fullname: Abouhawwash, Mohamed |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35342218$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kstu1DAUhi1URKeFF2CBLLFhk-JLEicskEYVN1Gpm-4tx7ETV0482Emj6Qoeg9fjSTjTKaWtELJkW8ff-X2O_R-hgzGMBqGXlJxQQsTbRElesowwllFCC5EtT9AKVp4JiB-gFWFlnbGK0UN0lNIlIaRgOX-GDnnBc8ZotUI_1ng0C7ZzcmHEweKlV97gsJnc4K5NxMp3IbqpH_ACM_6qNnP89f1nwmacYthssQ0RD7OfXDb10aQ--Ba7QXUGJ9MNQKkJpN9hNSq_TS7BpsVXyrv25iA9R0-t8sm8uF2P0cXHDxenn7Oz809fTtdnmc5rMWWVbUSrhGorbmtTaFMzZlVFWNGWyjbQUNnUmlDCiFYNoVUrdGtqToumokrxY_R-L7uZm8G0ele-8nIToda4lUE5-fBkdL3swpWsal6wsgKBN7cCMXybTZrk4JI23qvRhDlJVuY5L-o6LwF9_Qi9DHOE_oESnOTw9lz8pTp4celGG-BevROVa8FykTNKdtTJPygYrRmcBkNYB_EHCa_uN3rX4Z8_B4DtAR1DStHYO4QSuTOW3BtLgrHkjbHkAknVoyTt9j8L5Tj_v9TfuJvVrg |
| CitedBy_id | crossref_primary_10_1016_j_optlastec_2025_112926 crossref_primary_10_3390_jimaging9040074 crossref_primary_10_1371_journal_pone_0287573 crossref_primary_10_1016_j_solener_2023_111869 crossref_primary_10_1109_ACCESS_2024_3508796 crossref_primary_10_1007_s12530_024_09614_4 crossref_primary_10_3390_biomimetics10040218 crossref_primary_10_1093_jcde_qwaf046 crossref_primary_10_3389_fpls_2023_1122788 crossref_primary_10_3390_s22134904 crossref_primary_10_1088_1402_4896_ad504d crossref_primary_10_1016_j_compbiomed_2024_108498 crossref_primary_10_1016_j_jvcir_2023_104008 crossref_primary_10_1007_s11831_024_10070_1 crossref_primary_10_3390_app14209303 crossref_primary_10_1007_s11042_023_16300_1 crossref_primary_10_1007_s12065_025_01069_z crossref_primary_10_3390_e27050526 crossref_primary_10_3390_e24121788 crossref_primary_10_1007_s11042_024_19550_9 crossref_primary_10_1007_s10462_024_10919_8 crossref_primary_10_1109_TII_2022_3228777 crossref_primary_10_1016_j_jestch_2024_101684 crossref_primary_10_2478_amns_2023_1_00472 crossref_primary_10_1007_s10462_025_11319_2 |
| Cites_doi | 10.1109/TGRS.2013.2260552 10.1016/j.sigpro.2012.07.010 10.1016/j.eswa.2011.06.011 10.1016/0734-189X(85)90125-2 10.3390/e21030318 10.1007/s10044-017-0653-4 10.1016/j.eswa.2017.04.023 10.1007/s11042-019-08231-7 10.1016/j.asoc.2019.105570 10.1109/SAPIENCE.2016.7684170 10.1016/j.media.2020.101664 10.1007/978-3-030-16339-6_8 10.1007/978-981-13-9217-7 10.1016/j.eswa.2017.04.029 10.46298/jdmdh.6107 10.1016/j.engappai.2013.09.013 10.1016/j.swevo.2020.100791 10.1007/978-3-319-63754-9_2 10.1007/978-981-13-7403-6_33 10.1016/j.asoc.2020.106642 10.1007/s00521-020-04820-y 10.1007/978-3-540-76928-6_70 10.1007/978-1-4419-9863-7_1185 10.1016/j.eswa.2013.10.059 10.1007/978-3-319-13407-9_17 10.1016/j.asoc.2019.106042 10.1109/ICPR.2010.579 10.1016/j.asoc.2019.105954 10.1016/j.eswa.2007.01.002 10.1166/jmihi.2020.2899 10.1016/j.cmpb.2020.105395 10.1007/978-3-642-32894-7_27 10.1016/j.enconman.2019.112197 10.3390/e22030328 10.1007/s11760-016-0927-0 10.1016/j.asoc.2020.106157 10.1016/j.ins.2019.07.088 10.1016/j.asoc.2017.11.006 10.1109/CYBER.2015.7287931 10.1109/TSMC.1979.4310076 10.1007/s00521-014-1806-7 10.1016/j.engappai.2010.12.001 10.1007/s11042-020-09664-1 10.1016/j.solener.2020.09.032 10.1016/j.asoc.2020.106063 10.1016/j.cie.2020.106946 10.3934/mbe.2020036 10.1109/ICDAR.2019.00165 10.1109/ACCESS.2020.2990893 10.1016/j.asoc.2019.105577 10.1016/j.asoc.2017.05.019 10.1007/s11042-019-7506-7 10.1016/j.apm.2017.02.015 10.1007/s11042-017-4638-5 10.1016/j.asoc.2018.08.047 10.1145/3151509.3151519 10.1016/j.apacoust.2019.107051 10.1007/978-3-319-46448-0_7 10.1007/978-981-15-1100-4_3 10.1007/s00500-014-1345-2 10.1109/ICIII.2011.104 10.1109/ICRCICN50933.2020.9296166 10.1016/j.asoc.2020.107036 10.1007/s11042-019-08138-3 10.1016/j.eswa.2017.02.042 10.1109/ACCESS.2019.2921545 10.1007/s10489-016-0832-9 10.1016/j.asoc.2019.105522 10.1016/j.patcog.2017.01.010 10.1016/j.asoc.2019.105503 10.1109/ICCONS.2018.8663060 10.1016/j.measurement.2013.09.031 10.3233/BME-151432 10.1016/j.isprsjprs.2017.06.003 10.1007/978-3-030-12931-6_11 10.1016/j.knosys.2015.12.022 10.1088/1755-1315/252/4/042105 10.1016/j.infrared.2019.103140 10.1016/j.ajoms.2019.09.009 10.1109/CEC.2016.7743922 10.1109/ACCESS.2019.2953494 10.1007/s42452-020-1956-4 10.1016/j.advengsoft.2016.01.008 10.1109/ICITBS.2019.00136 10.1007/s11227-020-03171-8 10.1108/02644401011008577 10.1007/978-981-10-3223-3_26 10.1109/ACCESS.2020.3044857 10.1080/01431161.2019.1698071 |
| ContentType | Journal Article |
| Copyright | This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022. COPYRIGHT 2022 Springer Copyright Springer Nature B.V. Dec 2022 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022 |
| Copyright_xml | – notice: This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022. – notice: COPYRIGHT 2022 Springer – notice: Copyright Springer Nature B.V. Dec 2022 – notice: This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022 |
| DBID | AAYXX CITATION NPM 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU CNYFK DWQXO E3H F2A FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M1O P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA PSYQQ Q9U 7X8 5PM |
| DOI | 10.1007/s10462-022-10157-w |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Library & Information Science Collection ProQuest Central Korea Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Library Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student Library and Information Science Abstracts (LISA) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Library & Information Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Library Science ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7462 |
| EndPage | 6459 |
| ExternalDocumentID | PMC8935268 A724742107 35342218 10_1007_s10462_022_10157_w |
| Genre | Journal Article |
| GroupedDBID | -Y2 .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23N 28- 2J2 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6J9 6NX 77I 77K 7WY 8AO 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAFWJ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AAOBN AARHV AARTL AASML AATVU AAWCG AAYIU AAYQN AAYTO AAYXX ABBBX ABBXA ABDBE ABDZT ABECU ABEEZ ABFSG ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACSTC ACULB ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFEXP AFFHD AFFNX AFGCZ AFGXO AFHIU AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ C24 C6C CAG CCPQU CITATION CNYFK COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO ICD IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M1O M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9O PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PRQQA PSYQQ PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 ZMTXR ~A9 ~EX AAUYE AAYZH AESKC NPM 3V. 7SC 7XB 8AL 8FD 8FK E3H F2A JQ2 L.- L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c497t-8fb7da7ad83f9e5ce922fa8025d6afb5346b9c01020cab018d7cde9315b81aa3 |
| IEDL.DBID | M0C |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000771386800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0269-2821 |
| IngestDate | Tue Nov 04 01:55:02 EST 2025 Sun Nov 09 11:18:37 EST 2025 Fri Nov 14 18:44:17 EST 2025 Sat Nov 29 13:49:33 EST 2025 Sat Nov 29 10:29:10 EST 2025 Mon Jul 21 06:04:51 EDT 2025 Sat Nov 29 08:02:48 EST 2025 Tue Nov 18 22:23:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Kapur’s entropy Image segmentation Local Minima Whale optimization algorithm Linearly convergence |
| Language | English |
| License | This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c497t-8fb7da7ad83f9e5ce922fa8025d6afb5346b9c01020cab018d7cde9315b81aa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2846-4707 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8935268 |
| PMID | 35342218 |
| PQID | 2730442237 |
| PQPubID | 36790 |
| PageCount | 71 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8935268 proquest_miscellaneous_2644359946 proquest_journals_2730442237 gale_infotracmisc_A724742107 gale_infotracacademiconefile_A724742107 pubmed_primary_35342218 crossref_primary_10_1007_s10462_022_10157_w crossref_citationtrail_10_1007_s10462_022_10157_w |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Dordrecht |
| PublicationTitle | The Artificial intelligence review |
| PublicationTitleAlternate | Artif Intell Rev |
| PublicationYear | 2022 |
| Publisher | Springer Springer Nature B.V Springer Netherlands |
| Publisher_xml | – name: Springer – name: Springer Nature B.V – name: Springer Netherlands |
| References | 10157_CR36 10157_CR38 M Abdel-Basset (10157_CR8) 2021; 33 10157_CR33 10157_CR34 F Huo (10157_CR39) 2020; 79 10157_CR30 10157_CR74 AA El-Fergany (10157_CR28) 2019; 201 A Dirami (10157_CR26) 2013; 93 X Bao (10157_CR15) 2019; 7 Y Zhang (10157_CR91) 2020; 62 BN Narayanan (10157_CR63) 2019; 22 N Sanyal (10157_CR70) 2011; 38 T Su (10157_CR78) 2017; 130 M Chouksey (10157_CR22) 2020; 79 10157_CR47 S Wang (10157_CR82) 2020; 17 S Mirjalili (10157_CR56) 2016; 96 10157_CR86 10157_CR87 T Ren (10157_CR69) 2019; 81 10157_CR45 10157_CR89 10157_CR83 M Abdel-Basset (10157_CR5) 2020; 209 10157_CR40 M Liu (10157_CR51) 2020; 87 10157_CR84 P Ghamisi (10157_CR32) 2013; 52 10157_CR85 M Abdel-Basset (10157_CR4) 2020; 95 K Tang (10157_CR79) 2017; 46 J Han (10157_CR35) 2017; 44 SM Elsayed (10157_CR29) 2014; 27 AK Al-Musawi (10157_CR13) 2020; 104 L He (10157_CR37) 2020; 89 S Saremi (10157_CR71) 2015; 26 HS Naji Alwerfali (10157_CR61) 2020; 22 A Aksac (10157_CR11) 2017; 66 AK Bhandari (10157_CR17) 2019; 82 P Sathya (10157_CR72) 2011; 24 JN Kapur (10157_CR43) 1985; 29 TH Farook (10157_CR31) 2020; 32 CG Karydas (10157_CR44) 2020; 41 10157_CR14 10157_CR58 10157_CR59 10157_CR16 10157_CR12 K Li (10157_CR49) 2019; 7 10157_CR52 Z Yan (10157_CR88) 2020; 79 Y Pan (10157_CR67) 2017; 58 P Upadhyay (10157_CR80) 2020; 97 M Abdel-Basset (10157_CR9) 2021; 60 X Yue (10157_CR90) 2020; 90 M Mafarja (10157_CR53) 2018; 62 D Oliva (10157_CR64) 2017; 79 Z Zhang (10157_CR92) 2020; 192 AK Bhandari (10157_CR18) 2014; 41 F Di Martino (10157_CR25) 2020; 506 M Maitra (10157_CR54) 2008; 34 A Singla (10157_CR75) 2017; 11 Y Liu (10157_CR50) 2015; 19 N Otsu (10157_CR66) 1979; 9 10157_CR24 P Kandhway (10157_CR42) 2019; 78 10157_CR68 F Chakraborty (10157_CR20) 2019; 82 10157_CR27 10157_CR65 M Abd El Aziz (10157_CR1) 2017; 83 10157_CR23 M Abdel-Basset (10157_CR6) 2020; 8 10157_CR62 R Wang (10157_CR81) 2015; 26 M Abdel-Basset (10157_CR3) 2018; 73 M Abdel-Basset (10157_CR7) 2020; 8 G Chen (10157_CR21) 2020; 10 Y Song (10157_CR77) 2020; 158 F Shahabi (10157_CR73) 2019; 4 M Abdel-Basset (10157_CR10) 2020; 151 C Lang (10157_CR48) 2019; 21 S Manikandan (10157_CR55) 2014; 47 H Zhang (10157_CR93) 2020; 88 S Mirjalili (10157_CR57) 2016; 95 A Mostafa (10157_CR60) 2017; 76 P Sinha (10157_CR76) 2020; 2 10157_CR19 J Jafari-Asl (10157_CR41) 2021; 101 10157_CR2 AKM Khairuzzaman (10157_CR46) 2017; 86 |
| References_xml | – volume: 52 start-page: 2382 issue: 5 year: 2013 ident: 10157_CR32 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2013.2260552 – volume: 93 start-page: 139 issue: 1 year: 2013 ident: 10157_CR26 publication-title: Signal Process doi: 10.1016/j.sigpro.2012.07.010 – volume: 38 start-page: 15 489 issue: 12 year: 2011 ident: 10157_CR70 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.06.011 – volume: 29 start-page: 273 issue: 3 year: 1985 ident: 10157_CR43 publication-title: Computer Vis Gr Image Process doi: 10.1016/0734-189X(85)90125-2 – volume: 21 start-page: 318 issue: 3 year: 2019 ident: 10157_CR48 publication-title: Entropy doi: 10.3390/e21030318 – volume: 22 start-page: 559 issue: 2 year: 2019 ident: 10157_CR63 publication-title: Pattern Anal Appl doi: 10.1007/s10044-017-0653-4 – volume: 83 start-page: 242 year: 2017 ident: 10157_CR1 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.04.023 – volume: 79 start-page: 2447 issue: 3 year: 2020 ident: 10157_CR39 publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-08231-7 – volume: 82 start-page: 105570 year: 2019 ident: 10157_CR17 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105570 – ident: 10157_CR47 doi: 10.1109/SAPIENCE.2016.7684170 – volume: 62 start-page: 101664 year: 2020 ident: 10157_CR91 publication-title: Med Image Anal doi: 10.1016/j.media.2020.101664 – ident: 10157_CR23 doi: 10.1007/978-3-030-16339-6_8 – ident: 10157_CR84 doi: 10.1007/978-981-13-9217-7 – volume: 86 start-page: 64 year: 2017 ident: 10157_CR46 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.04.029 – ident: 10157_CR16 doi: 10.46298/jdmdh.6107 – volume: 27 start-page: 57 year: 2014 ident: 10157_CR29 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2013.09.013 – volume: 60 start-page: 100791 year: 2021 ident: 10157_CR9 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2020.100791 – ident: 10157_CR2 doi: 10.1007/978-3-319-63754-9_2 – ident: 10157_CR14 doi: 10.1007/978-981-13-7403-6_33 – volume: 95 start-page: 106642 year: 2020 ident: 10157_CR4 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106642 – volume: 33 start-page: 10 685 issue: 17 year: 2021 ident: 10157_CR8 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-04820-y – ident: 10157_CR34 doi: 10.1007/978-3-540-76928-6_70 – ident: 10157_CR36 doi: 10.1007/978-1-4419-9863-7_1185 – volume: 41 start-page: 3538 issue: 7 year: 2014 ident: 10157_CR18 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.10.059 – ident: 10157_CR30 doi: 10.1007/978-3-319-13407-9_17 – volume: 88 start-page: 106042 year: 2020 ident: 10157_CR93 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.106042 – ident: 10157_CR38 doi: 10.1109/ICPR.2010.579 – volume: 87 start-page: 105954 year: 2020 ident: 10157_CR51 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105954 – volume: 34 start-page: 1341 issue: 2 year: 2008 ident: 10157_CR54 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2007.01.002 – volume: 10 start-page: 515 issue: 2 year: 2020 ident: 10157_CR21 publication-title: J Med Imag Health Informat doi: 10.1166/jmihi.2020.2899 – volume: 192 start-page: 105395 year: 2020 ident: 10157_CR92 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2020.105395 – ident: 10157_CR87 doi: 10.1007/978-3-642-32894-7_27 – volume: 201 start-page: 112197 year: 2019 ident: 10157_CR28 publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.112197 – volume: 22 start-page: 328 issue: 3 year: 2020 ident: 10157_CR61 publication-title: Entropy doi: 10.3390/e22030328 – volume: 11 start-page: 243 issue: 2 year: 2017 ident: 10157_CR75 publication-title: SIViP doi: 10.1007/s11760-016-0927-0 – volume: 90 start-page: 106157 year: 2020 ident: 10157_CR90 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106157 – volume: 506 start-page: 308 year: 2020 ident: 10157_CR25 publication-title: Inf Sci doi: 10.1016/j.ins.2019.07.088 – volume: 62 start-page: 441 year: 2018 ident: 10157_CR53 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.11.006 – ident: 10157_CR52 doi: 10.1109/CYBER.2015.7287931 – volume: 9 start-page: 62 issue: 1 year: 1979 ident: 10157_CR66 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1979.4310076 – ident: 10157_CR59 – volume: 26 start-page: 1257 issue: 5 year: 2015 ident: 10157_CR71 publication-title: Neural Comput Appl doi: 10.1007/s00521-014-1806-7 – volume: 24 start-page: 595 issue: 4 year: 2011 ident: 10157_CR72 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2010.12.001 – volume: 79 start-page: 32415 issue: 43 year: 2020 ident: 10157_CR88 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-09664-1 – volume: 209 start-page: 694 year: 2020 ident: 10157_CR5 publication-title: Sol Energy doi: 10.1016/j.solener.2020.09.032 – volume: 89 start-page: 106063 year: 2020 ident: 10157_CR37 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106063 – volume: 151 start-page: 106946 year: 2020 ident: 10157_CR10 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2020.106946 – volume: 17 start-page: 700 year: 2020 ident: 10157_CR82 publication-title: Math Biosci Eng doi: 10.3934/mbe.2020036 – ident: 10157_CR27 – ident: 10157_CR62 doi: 10.1109/ICDAR.2019.00165 – volume: 8 start-page: 521 year: 2020 ident: 10157_CR7 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2990893 – ident: 10157_CR33 – volume: 82 start-page: 105577 year: 2019 ident: 10157_CR20 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105577 – volume: 58 start-page: 770 year: 2017 ident: 10157_CR67 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.05.019 – volume: 78 start-page: 22 613 issue: 16 year: 2019 ident: 10157_CR42 publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-7506-7 – volume: 44 start-page: 588 year: 2017 ident: 10157_CR35 publication-title: Appl Math Model doi: 10.1016/j.apm.2017.02.015 – volume: 76 start-page: 24 931 issue: 23 year: 2017 ident: 10157_CR60 publication-title: Multimed Tools Appl doi: 10.1007/s11042-017-4638-5 – volume: 73 start-page: 530 year: 2018 ident: 10157_CR3 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.08.047 – ident: 10157_CR12 doi: 10.1145/3151509.3151519 – volume: 158 start-page: 107051 year: 2020 ident: 10157_CR77 publication-title: Appl Acoust doi: 10.1016/j.apacoust.2019.107051 – ident: 10157_CR40 doi: 10.1007/978-3-319-46448-0_7 – ident: 10157_CR58 doi: 10.1007/978-981-15-1100-4_3 – volume: 19 start-page: 1311 issue: 5 year: 2015 ident: 10157_CR50 publication-title: Soft Comput doi: 10.1007/s00500-014-1345-2 – ident: 10157_CR85 doi: 10.1109/ICIII.2011.104 – ident: 10157_CR24 doi: 10.1109/ICRCICN50933.2020.9296166 – volume: 101 start-page: 107036 year: 2021 ident: 10157_CR41 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.107036 – volume: 79 start-page: 19075 issue: 27 year: 2020 ident: 10157_CR22 publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-08138-3 – volume: 79 start-page: 164 year: 2017 ident: 10157_CR64 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.02.042 – volume: 7 start-page: 76 529 year: 2019 ident: 10157_CR15 publication-title: Ieee Access doi: 10.1109/ACCESS.2019.2921545 – volume: 4 start-page: 33 issue: 1 year: 2019 ident: 10157_CR73 publication-title: J Dec Op Res – volume: 46 start-page: 214 issue: 1 year: 2017 ident: 10157_CR79 publication-title: Appl Intell doi: 10.1007/s10489-016-0832-9 – volume: 97 start-page: 105522 year: 2020 ident: 10157_CR80 publication-title: Applied soft computing doi: 10.1016/j.asoc.2019.105522 – volume: 66 start-page: 268 year: 2017 ident: 10157_CR11 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.01.010 – volume: 81 start-page: 105503 year: 2019 ident: 10157_CR69 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105503 – ident: 10157_CR74 doi: 10.1109/ICCONS.2018.8663060 – volume: 47 start-page: 558 year: 2014 ident: 10157_CR55 publication-title: Measurement doi: 10.1016/j.measurement.2013.09.031 – volume: 26 start-page: S1345 issue: s1 year: 2015 ident: 10157_CR81 publication-title: Bio-Med Mater Eng doi: 10.3233/BME-151432 – volume: 130 start-page: 256 year: 2017 ident: 10157_CR78 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2017.06.003 – ident: 10157_CR65 doi: 10.1007/978-3-030-12931-6_11 – volume: 96 start-page: 120 year: 2016 ident: 10157_CR56 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.12.022 – ident: 10157_CR89 doi: 10.1088/1755-1315/252/4/042105 – volume: 104 start-page: 103140 year: 2020 ident: 10157_CR13 publication-title: Infra Phys Technol doi: 10.1016/j.infrared.2019.103140 – volume: 32 start-page: 61 issue: 1 year: 2020 ident: 10157_CR31 publication-title: J Oral Maxillofac Surg Med Pathol doi: 10.1016/j.ajoms.2019.09.009 – ident: 10157_CR19 doi: 10.1109/CEC.2016.7743922 – volume: 7 start-page: 165 571 year: 2019 ident: 10157_CR49 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2953494 – volume: 2 start-page: 1 issue: 2 year: 2020 ident: 10157_CR76 publication-title: SN Appl Sci doi: 10.1007/s42452-020-1956-4 – volume: 95 start-page: 51 year: 2016 ident: 10157_CR57 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – ident: 10157_CR83 doi: 10.1109/ICITBS.2019.00136 – ident: 10157_CR86 doi: 10.1007/s11227-020-03171-8 – ident: 10157_CR45 doi: 10.1108/02644401011008577 – ident: 10157_CR68 doi: 10.1007/978-981-10-3223-3_26 – volume: 8 start-page: 222 144 year: 2020 ident: 10157_CR6 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3044857 – volume: 41 start-page: 2905 issue: 8 year: 2020 ident: 10157_CR44 publication-title: Int J Remote Sens doi: 10.1080/01431161.2019.1698071 |
| SSID | ssj0005243 |
| Score | 2.4727507 |
| Snippet | The separation of an object from other objects or the background by selecting the optimal threshold values remains a challenge in the field of image... |
| SourceID | pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 6389 |
| SubjectTerms | Algorithms Cetacea Convergence Entropy Image processing Image segmentation Mathematical optimization Medical imaging equipment Minima NMR Nuclear magnetic resonance Optimization Optimization algorithms Rankings Segmentation Signal to noise ratio Thresholds Whales & whaling |
| Title | A new fusion of whale optimizer algorithm with Kapur’s entropy for multi-threshold image segmentation: analysis and validations |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35342218 https://www.proquest.com/docview/2730442237 https://www.proquest.com/docview/2644359946 https://pubmed.ncbi.nlm.nih.gov/PMC8935268 |
| Volume | 55 |
| WOSCitedRecordID | wos000771386800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFLfYxoEL4z-BURkJiQOyaBLHjrmgMm1CmijVmKBwiWwnXiutSWlaKjjBx-Dr8Ul4L3W7hsMuXKxWfole6_cvzs-_R8gzUeSGSyFYYrqO8TwPWWqFYYmwlhsbG-N002xC9vvpcKgGfsOt9rDKdUxsAnVeWdwjfwlptss5JDP5evqVYdcofLvqW2jskD2sbBDS9657uAXxWKHmIqEYPFqE_tCMPzrHRcQQyw5GmUi2bCWmf8PzVn5qYye3ktHx_v_-jFvkpi9DaW9lN7fJtaK8Q_bXLR6o9_i75FePQt1N3QI31Wjl6HIEKtMKAs1k_AMk9cU53H4-mlDc0aUnerqY_fn5u6aoeDX9TqEopg1qkc3BbGp820XHE4hitC7OJ_7kU_mKas-OAh9yCuY_XjV7qu-Rs-Ojs8O3zHdtYJYrOWepMzLXUudp7FSR2EJFkdMp1Fa50M4kMRdGWaSy61ptumGaS5sXKg4Tk4Zax_fJblmVxUNCtRImcnksNHe8iCMlnHLWIv2P1MYmAQnXK5ZZz2iOjTUusksuZlzlDFY5a1Y5Wwbkxeaa6YrP40rp52gIGTo73Nlqf2YB9EParKwnIy45PDXLgBy0JMFJbXt6bQ6ZDxJ1dmkLAXm6mcYrEfhWFtUCZKBejROluAjIg5XlbfSO4b-MoEQLiGzZ5EYAqcPbM-V41FCIQ5WKPD-PrlbrMbkRNR6C6J0DsjufLYon5Lr9Nh_Xsw7ZkZ8-4zhMO2TvzVF_cArfTiTrNF6IY_gexkHyBcbTDx__AkTqPRk |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQYIL5d1AASOBOCCLjePYMRJCK6BqtWXFYQ-9RX7E3ZW6yXazy6qc4GfwI_hT_BLGeWw3HHrrgVskjyNnMi_bM98g9JJnVjPBOYl1zxFmbUgSwzWJuTFMm0hrp6pmE2I4TI6P5dct9LuthfFpla1NrAy1LYw_I38LbrbHGDgz8WF2RnzXKH-72rbQqMVikJ2vYMtWvj_8BP_3FaX7n0cfD0jTVYAYJsWCJE4Lq4SySeRkFptMUupUAr7fcuV0HDGupfFQaz2jdC9MrDA2k1EY6yRUKoLXXkPXWZQIr1YDQTYySuokPcolgZ1M2NToNJV6jFPiU-dBB2JBVh0_-K832HCH3VTNDd-3v_Ofce0Out0E2bhfa8VdtJXl99BO28ACN_bsPvrZx7CrwG7pjwxx4fBqDBzCBZjR6eQ7UKrTE_iaxXiK_Xk1HqjZcv7nx68Sez4Vs3MMIT-ucjLJApSi9Hd5eDIFG43L7GTa1HXl77BqsF_gwWJQ7kndyqp8gEZXwYeHaDsv8mwXYSW5ps5GXDHHsohK7qQzxoMbCaVNHKCwFZDUNHjtvm3IaXqBNO2FKgWhSiuhSlcBerOeM6vRSi6lfu3lLvWmDN5sVFORAevzoGBpX1AmGA17IkB7HUowQaY73Epf2pjAMr0QvQC9WA_7mT6tL8-KJdBANB7FUjIeoEe1oK_XHQEvKQSgARIdFVgTeGD07kg-GVcA6RCDexSjx5cv6zm6eTD6cpQeHQ4HT9AtWimnz1PaQ9uL-TJ7im6Yb4tJOX9WqTlG6RUryF8KJZPF |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VghAXyqtgKLBIIA5o1Xi93vUiIRRRKqqgKIceKi7WPrxNpMYOcUJUTvAz-Cn8HX4Js36kMYfeeuBmacfWejzP9TczCL3kmdVMcE5i3XOEWRuSxHBNYm4M0ybS2qlq2IQYDpOTEznaQr_bWhgPq2xtYmWobWH8Gfk-uNkeY-DMxL5rYBGjg8P3s6_ET5Dyf1rbcRq1iAyy8xWkb-W7owP41q8oPfx4_OETaSYMEMOkWJDEaWGVUDaJnMxik0lKnUogDrBcOR1HjGtpfNu1nlG6FyZWGJvJKIx1EioVwWOvoesCUkyPJhzFXzbQJTVgj3JJIKsJm3qdpmqPcUo8jB70IRZk1fGJ_3qGDdfYhW1u-MHDnf-Yg3fQ7Sb4xv1aW-6irSy_h3bawRa4sXP30c8-hmwDu6U_SsSFw6sxcAsXYF6nk-9Aqc5O4W0W4yn259h4oGbL-Z8fv0rseVbMzjGkArjCapIFKEvp__HhyRRsNy6z02lT75W_xarpCQMXFoPST-oRV-UDdHwVfNhF23mRZ48QVpJr6mzEFXMsi6jkTjpjfNMjobSJAxS2wpKapo-7Hydyll50oPYCloKApZWApasAvVnfM6u7mFxK_drLYOpNHDzZqKZSA_bnm4WlfUGZYDTsiQDtdSjBNJnuciuJaWMay_RCDAP0Yr3s7_RwvzwrlkADUXoUS8l4gB7WQr_edwS8pBCYBkh01GFN4Bumd1fyybhqnA6xue9u9PjybT1HN0Ev0s9Hw8ETdItWeurhS3toezFfZk_RDfNtMSnnzyqNxyi9Yv34CxsnnOk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+fusion+of+whale+optimizer+algorithm+with+Kapur%E2%80%99s+entropy+for+multi-threshold+image+segmentation%3A+analysis+and+validations&rft.jtitle=The+Artificial+intelligence+review&rft.au=Abdel-Basset%2C+Mohamed&rft.au=Mohamed%2C+Reda&rft.au=Abouhawwash%2C+Mohamed&rft.date=2022-12-01&rft.pub=Springer+Netherlands&rft.issn=0269-2821&rft.eissn=1573-7462&rft.spage=1&rft.epage=71&rft_id=info:doi/10.1007%2Fs10462-022-10157-w&rft_id=info%3Apmid%2F35342218&rft.externalDocID=PMC8935268 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon |