Using SymPy (Symbolic Python) for Understanding Structural Equation Modeling

Structural Equation Modeling (SEM) continues to grow in popularity with numerous articles, books, courses, and workshops available to help researchers become proficient with SEM quickly. However, few resources are available to help users gain a deep understanding of the analytic steps involved in SE...

Full description

Saved in:
Bibliographic Details
Published in:Structural equation modeling Vol. 31; no. 6; pp. 1104 - 1115
Main Authors: Steele, Joel S., Grimm, Kevin J.
Format: Journal Article
Language:English
Published: United States Routledge 01.11.2024
Psychology Press
Subjects:
ISSN:1070-5511, 1532-8007
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Structural Equation Modeling (SEM) continues to grow in popularity with numerous articles, books, courses, and workshops available to help researchers become proficient with SEM quickly. However, few resources are available to help users gain a deep understanding of the analytic steps involved in SEM, with even fewer providing reproducible syntax for those learning the technique. This work builds off of the original work by Ferron and Hess to provide computer syntax, written in python, for the specification, estimation, and numerical optimization steps necessary for SEM. The goal is to provide readers with many of the numerical and analytic details of SEM that may not be regularly taught in workshops and courses. This work extends the original demonstration by Ferron and Hess to incorporate the reticular action model notation for specification as well as the estimation of variable means. All of the code listed is provided in the appendix.
AbstractList Structural Equation Modeling (SEM) continues to grow in popularity with numerous articles, books, courses, and workshops available to help researchers become proficient with SEM quickly. However, few resources are available to help users gain a deep understanding of the analytic steps involved in SEM, with even fewer providing reproducible syntax for those learning the technique. This work builds off of the original work by Ferron and Hess (2007) to provide computer syntax, written in python, for the specification, estimation, and numerical optimization steps necessary for SEM. The goal is to provide readers with many of the numerical and analytic details of SEM that may not be regularly taught in workshops and courses. This work extends the original demonstration by Ferron and Hess to incorporate the reticular action model notation for specification as well as the estimation of variable means. All of the code listed is provided in the appendix.
Structural Equation Modeling (SEM) continues to grow in popularity with numerous articles, books, courses, and workshops available to help researchers become proficient with SEM quickly. However, few resources are available to help users gain a deep understanding of the analytic steps involved in SEM, with even fewer providing reproducible syntax for those learning the technique. This work builds off of the original work by Ferron and Hess to provide computer syntax, written in python, for the specification, estimation, and numerical optimization steps necessary for SEM. The goal is to provide readers with many of the numerical and analytic details of SEM that may not be regularly taught in workshops and courses. This work extends the original demonstration by Ferron and Hess to incorporate the reticular action model notation for specification as well as the estimation of variable means. All of the code listed is provided in the appendix.
Structural Equation Modeling (SEM) continues to grow in popularity with numerous articles, books, courses, and workshops available to help researchers become proficient with SEM quickly. However, few resources are available to help users gain a deep understanding of the analytic steps involved in SEM, with even fewer providing reproducible syntax for those learning the technique. This work builds off of the original work by Ferron and Hess (2007) to provide computer syntax, written in python, for the specification, estimation, and numerical optimization steps necessary for SEM. The goal is to provide readers with many of the numerical and analytic details of SEM that may not be regularly taught in workshops and courses. This work extends the original demonstration by Ferron and Hess to incorporate the reticular action model notation for specification as well as the estimation of variable means. All of the code listed is provided in the appendix.Structural Equation Modeling (SEM) continues to grow in popularity with numerous articles, books, courses, and workshops available to help researchers become proficient with SEM quickly. However, few resources are available to help users gain a deep understanding of the analytic steps involved in SEM, with even fewer providing reproducible syntax for those learning the technique. This work builds off of the original work by Ferron and Hess (2007) to provide computer syntax, written in python, for the specification, estimation, and numerical optimization steps necessary for SEM. The goal is to provide readers with many of the numerical and analytic details of SEM that may not be regularly taught in workshops and courses. This work extends the original demonstration by Ferron and Hess to incorporate the reticular action model notation for specification as well as the estimation of variable means. All of the code listed is provided in the appendix.
Author Steele, Joel S.
Grimm, Kevin J.
Author_xml – sequence: 1
  givenname: Joel S.
  orcidid: 0009-0008-4127-5664
  surname: Steele
  fullname: Steele, Joel S.
  organization: University of North Dakota
– sequence: 2
  givenname: Kevin J.
  orcidid: 0000-0002-8576-4469
  surname: Grimm
  fullname: Grimm, Kevin J.
  organization: Arizona State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39639914$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URB_wE0CR2LSLDH7EdiwWgKrykAZRCWZtOY7dukrs1nao8u9xOjMIuoDVtXS_c33uPcfgwAdvAHiJ4ArBFr5BkENKEVphiJsVJpgijJ-AI0QJrlsI-UF5F6ZeoENwnNINhKhFuH0GDolgRAjUHIH1Jjl_VX2fx8u5Oi2lC4PT1eWcr4M_q2yI1cb3JqasfP9A5jjpPEU1VBd3k8ou-Opr6M1Qms_BU6uGZF7s6gnYfLz4cf65Xn_79OX8w7rWjeC5bo0ltoOCM8Roo7UWVnNDTVmhs0z1bdMKq4gSVgiNG91TxiA3XHTWMEgVOQHvtnNvp240vTY-Fz_yNrpRxVkG5eTfHe-u5VX4KRFiiJfblAmnuwkx3E0mZTm6pM0wKG_ClCRBDaOEcIwL-voRehOm6Mt-hcK8IZihhXr1p6XfXvaXLsDbLaBjSCkaK7XLD-crDt0gEZRLrnKfq1xylbtci5o-Uu8_-J_u_VbnfIlyVPchDr3Mah5CtFF57ZYt_jniF0Q3uSI
CitedBy_id crossref_primary_10_3389_fcomp_2024_1371052
Cites_doi 10.1016/S1475-9144(05)04015-4
10.1037/met0000154
10.1111/j.2044-8317.1984.tb00802.x
10.1080/10705511.2011.607099
10.21105/joss.03438
10.1093/imamat/6.1.76
10.18637/jss.v048.i02
10.1177/002224378201900402
10.21105/joss.01763
10.3758/s13428-013-0384-4
10.32614/CRAN.package.symSEM
10.3102/1076998606298025
10.2333/bhmk.29.81
10.7717/peerj-cs.103
ContentType Journal Article
Copyright 2024 The Author(s). Published with license by Taylor & Francis Group, LLC 2024
2024 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Published with license by Taylor & Francis Group, LLC 2024
– notice: 2024 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
NPM
AHOVV
7X8
5PM
DOI 10.1080/10705511.2024.2325122
DatabaseName Taylor & Francis Open Access
CrossRef
PubMed
Education Research Index
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-8007
EndPage 1115
ExternalDocumentID PMC11617007
39639914
10_1080_10705511_2024_2325122
2325122
Genre Note
Journal Article
General Information
GrantInformation_xml – fundername: National Institute Of General Medical Sciences of the National Institutes of Health
  grantid: P20GM139759
– fundername: NIA NIH HHS
  grantid: P30 AG066518
– fundername: NIGMS NIH HHS
  grantid: P20 GM139759
GroupedDBID .7I
.QK
0BK
0R~
0YH
123
4.4
5VS
AAGDL
AAGZJ
AAHIA
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABFIM
ABIVO
ABJNI
ABLIJ
ABLJU
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGFS
ACTIO
ACTOA
ADAHI
ADCVX
ADKVQ
AECIN
AEFOU
AEISY
AEKEX
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AIJEM
AIYEW
AJWEG
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQTUD
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CJ0
CQ1
DGFLZ
DKSSO
EBS
E~B
E~C
F5P
G-F
GTTXZ
H13
HF~
HZ~
IPNFZ
J.O
KYCEM
LJTGL
M4Z
NA5
NW-
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TNTFI
TRJHH
TUROJ
UT5
UT9
VAE
XSW
~01
~S~
07M
4B3
AAAVZ
AANPH
AAYXX
ABBZI
ABVXC
ABWZE
ACIKQ
ACPKE
ACRBO
ADEWX
ADIUE
ADLFI
ADXAZ
AEXSR
AIXGP
ALLRG
C5A
CAG
CBZAQ
CITATION
CKOZC
COF
C~T
DGXZK
EFRLQ
EGDCR
EJD
FXNIP
JLMOS
L7Y
OHT
QZZOY
RBICI
ROL
TBH
UA1
YHZ
ADYSH
NPM
AHOVV
7X8
5PM
ID FETCH-LOGICAL-c497t-8ef3fb09761654ccc9fc7e5e251bf6ad8489fa3a9f99c24cd56607e79bfe605a3
IEDL.DBID 0YH
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001194262000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1070-5511
IngestDate Tue Nov 04 02:03:08 EST 2025
Sun Nov 09 12:48:14 EST 2025
Fri Nov 14 01:22:23 EST 2025
Sat Mar 29 01:29:29 EDT 2025
Tue Nov 18 22:23:32 EST 2025
Sat Nov 29 08:05:38 EST 2025
Mon Oct 20 23:45:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License open-access: http://creativecommons.org/licenses/by-nc/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-8ef3fb09761654ccc9fc7e5e251bf6ad8489fa3a9f99c24cd56607e79bfe605a3
Notes SourceType-Scholarly Journals-1
ObjectType-General Information-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0008-4127-5664
0000-0002-8576-4469
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/10705511.2024.2325122
PMID 39639914
PQID 3127432612
PQPubID 46559
PageCount 12
ParticipantIDs informaworld_taylorfrancis_310_1080_10705511_2024_2325122
proquest_journals_3127432612
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11617007
crossref_citationtrail_10_1080_10705511_2024_2325122
proquest_miscellaneous_3146533722
crossref_primary_10_1080_10705511_2024_2325122
pubmed_primary_39639914
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hove
PublicationTitle Structural equation modeling
PublicationTitleAlternate Struct Equ Modeling
PublicationYear 2024
Publisher Routledge
Psychology Press
Publisher_xml – name: Routledge
– name: Psychology Press
References Gunzler D. (e_1_3_1_10_1) 2013; 25
Preacher K. J. (e_1_3_1_18_1) 2010; 1
Asparouhov T. (e_1_3_1_4_1) 2006
e_1_3_1_9_1
e_1_3_1_14_1
e_1_3_1_8_1
e_1_3_1_13_1
e_1_3_1_12_1
e_1_3_1_11_1
Van Rossum G. (e_1_3_1_20_1) 2009
e_1_3_1_5_1
e_1_3_1_17_1
e_1_3_1_7_1
e_1_3_1_16_1
e_1_3_1_6_1
e_1_3_1_15_1
e_1_3_1_3_1
e_1_3_1_2_1
e_1_3_1_19_1
References_xml – volume: 1
  start-page: 185
  year: 2010
  ident: e_1_3_1_18_1
  article-title: Latent growth curve models
  publication-title: The Reviewer’s Guide to Quantitative Methods in the Social Sciences,
– ident: e_1_3_1_9_1
  doi: 10.1016/S1475-9144(05)04015-4
– ident: e_1_3_1_8_1
  doi: 10.1037/met0000154
– ident: e_1_3_1_14_1
  doi: 10.1111/j.2044-8317.1984.tb00802.x
– ident: e_1_3_1_12_1
  doi: 10.1080/10705511.2011.607099
– ident: e_1_3_1_3_1
  doi: 10.21105/joss.03438
– ident: e_1_3_1_5_1
  doi: 10.1093/imamat/6.1.76
– volume: 25
  start-page: 390
  year: 2013
  ident: e_1_3_1_10_1
  article-title: Introduction to mediation analysis with structural equation modeling
  publication-title: Shanghai Archives of Psychiatry,
– ident: e_1_3_1_19_1
  doi: 10.18637/jss.v048.i02
– ident: e_1_3_1_11_1
  doi: 10.1177/002224378201900402
– ident: e_1_3_1_13_1
– ident: e_1_3_1_2_1
  doi: 10.21105/joss.01763
– ident: e_1_3_1_17_1
  doi: 10.3758/s13428-013-0384-4
– ident: e_1_3_1_6_1
  doi: 10.32614/CRAN.package.symSEM
– ident: e_1_3_1_7_1
  doi: 10.3102/1076998606298025
– ident: e_1_3_1_16_1
  doi: 10.2333/bhmk.29.81
– start-page: 1
  year: 2006
  ident: e_1_3_1_4_1
  article-title: Comparison of estimation methods for complex survey data analysis
  publication-title: Mplus Web Notes,
– volume-title: Python 3 reference manual
  year: 2009
  ident: e_1_3_1_20_1
– ident: e_1_3_1_15_1
  doi: 10.7717/peerj-cs.103
SSID ssj0018128
Score 2.415841
Snippet Structural Equation Modeling (SEM) continues to grow in popularity with numerous articles, books, courses, and workshops available to help researchers become...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1104
SubjectTerms Estimation
Open-source software
Optimization
Popularity
Python
RAM
SEM
Specification
Structural equation modeling
Structural Equation Models
symbolic math
Syntax
Workshops
Title Using SymPy (Symbolic Python) for Understanding Structural Equation Modeling
URI https://www.tandfonline.com/doi/abs/10.1080/10705511.2024.2325122
https://www.ncbi.nlm.nih.gov/pubmed/39639914
https://www.proquest.com/docview/3127432612
https://www.proquest.com/docview/3146533722
https://pubmed.ncbi.nlm.nih.gov/PMC11617007
Volume 31
WOSCitedRecordID wos001194262000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1532-8007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0018128
  issn: 1070-5511
  databaseCode: TFW
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT8IwFG8MetCD3x8ompp40MPIxgpdj8ZAOCAhASKelrZrI4kOFTThv_e9fQWMhoNeuizda9rude_31vd-JeTKiLqMwJd1wHYah0mpHBHVPMdYHSmleRDphDK_w7vdYDQSvSyacJqFVaIPbVOiiORbjYtbqmkeEQdXpIDx0LursSpAAjBa8BVer4Frgv6X-9guNhLAfqXZcNx1UCZP4vmtmSXztERe-hME_R5JuWCaWjv_MKhdsp3hUnqbKtIeWTPxPtm6L0hdpwekk4QX0P78pTen13BRyClMe3OkH7ihMAY6XEyVof2EmxZ5PWjzLaUUp3j2GmbAH5Jhqzm4azvZYQyOZoLPnMBY3yoX0AvmP2mthdXc1A30U9mGjAIWCCt9KawQusZ0BDjR5YYLZQ24TNI_IqV4EpsTQiMmXSVtXQNYYrphBGJWyVmgvDq3vioTlr-DUGdM5XhgxnPoZYSm-WSFOFlhNlllUi3EXlOqjlUCYvEFh7PkH4lNDzQJ_RWylVwbwmzVowj4-D6SspXJZVEN6xU3YWRsJh_4DDLa-RybOE6Vp-itLxAveqxMgiW1Kh5ALvDlmnj8lHCCe-inAt47_cOYzsgm3qaZlhVSAiUx52RDf87G0_eLZF1ByUcBlIPWwxcSASBh
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8QwEMcHUUE9-H6srhrBgx66bLepaY4iLoq7i-CK3kqSJihofa3Cfntn-mJXFA966iGd0qSTzn_azC8A-1aGKsFc1sPYaT2ulPZk0vI960yitRFRYjJkfkf0etHtrRythaFllZRDuxwUkb2raXLTx-hySRweiQHjU3rX4g3UBBi18DU8FWKsJX5-v31T_UnAAJaXw4mmRzZlFc9PlxmLT2P00u806NellCOxqb3wH71ahPlCmbLj3JWWYMKmyzDXrbCubyvQyRYYsKvh4-WQHeBBE1WYXQ4JQHDIsBPserRYhl1ldFoie7DTlxwqzmj3NaqBX4Xr9mn_5MwrtmPwDJdi4EXWBU43Ub9QBZQxRjojbGjxPrU7UknEI-lUoKST0rS4SVApNoUVUjuLSZMK1mAyfUrtBrCEq6ZWLjQol7g5spJUqxI80n4oXKBrwMuHEJuCVU5bZjzEfoE0LQcrpsGKi8GqQaMye85hHb8ZyNEnHA-yryQu39IkDn6xrZfuEBfznkwwyw8Iy1aDvaoZZyz9hlGpfXqnc4hpFwi6xHruPdXdBpIUo89rEI35VXUC0cDHW9L7u4wK7lOmiopv8w992oWZs363E3fOexdbMEtNed1lHSbRYew2TJuPwf3b6042yT4BIu4ikQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB5ERfTg-1GtGsGDHla63bTZHEUtirUUquhtSbIJCro-WoX-e2f2RSuKBz3lkJ2QxyTzzWbmC8C-lQ0Voy_roe20HldKezKu-551JtbaiDA2KWV-W3Q64d2d7ObRhP08rJJ8aJcRRaRnNW3ul9gVEXFYEgWMT95dnR8hJECjhafwFELnJin5deu2vEhA-5Vlw4maRzJFEs9PzYyZpzHy0u8g6NdIyhHT1Fr4h0EtwnyOS9lxpkhLMGGTZZi7Kkld-yvQTsMLWG_41B2yAyw0cQqz7pDoBw4ZjoHdjKbKsF7KTUu8HuzsNaMUZ_T2GmXAr8JN6-z65NzLH2PwDJdi4IXWBU7XEL1Q_pMxRjojbMNiP7VrqjjkoXQqUNJJaercxIgTa8IKqZ1Fl0kFazCZPCd2A1jMVU0r1zAIlrhpWkmYVQkear8hXKArwIs1iEzOVE4PZjxGfk5oWkxWRJMV5ZNVgaNS7CWj6vhNQI4ucDRI_5G47EGTKPhFtlpoQ5TvehJBHz8gUrYK7JXVuF_pEkYl9vmdviFGu0BQE-uZ8pS9DSThRZ9XIBxTq_ID4gIfr0ke7lNOcJ_8VMR7m38Y0y7MdE9bUfuic7kFs1STJV1WYRL1xW7DtPkYPPTfdtIt9gmWeyFD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+SymPy+%28Symbolic+Python%29+for+understanding+Structural+Equation+Modeling&rft.jtitle=Structural+equation+modeling&rft.au=Steele%2C+Joel+S&rft.au=Grimm%2C+Kevin+J&rft.date=2024-11-01&rft.issn=1070-5511&rft.volume=31&rft.issue=6&rft.spage=1104&rft_id=info:doi/10.1080%2F10705511.2024.2325122&rft_id=info%3Apmid%2F39639914&rft.externalDocID=39639914
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-5511&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-5511&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-5511&client=summon