Enhancing biomechanical machine learning with limited data: generating realistic synthetic posture data using generative artificial intelligence

Objective: Biomechanical Machine Learning (ML) models, particularly deep-learning models, demonstrate the best performance when trained using extensive datasets. However, biomechanical data are frequently limited due to diverse challenges. Effective methods for augmenting data in developing ML model...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in bioengineering and biotechnology Ročník 12; s. 1350135
Hlavní autoři: Dindorf, Carlo, Dully, Jonas, Konradi, Jürgen, Wolf, Claudia, Becker, Stephan, Simon, Steven, Huthwelker, Janine, Werthmann, Frederike, Kniepert, Johanna, Drees, Philipp, Betz, Ulrich, Fröhlich, Michael
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland Frontiers Media SA 14.02.2024
Frontiers Media S.A
Témata:
ISSN:2296-4185, 2296-4185
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Objective: Biomechanical Machine Learning (ML) models, particularly deep-learning models, demonstrate the best performance when trained using extensive datasets. However, biomechanical data are frequently limited due to diverse challenges. Effective methods for augmenting data in developing ML models, specifically in the human posture domain, are scarce. Therefore, this study explored the feasibility of leveraging generative artificial intelligence (AI) to produce realistic synthetic posture data by utilizing three-dimensional posture data. Methods: Data were collected from 338 subjects through surface topography. A Variational Autoencoder (VAE) architecture was employed to generate and evaluate synthetic posture data, examining its distinguishability from real data by domain experts, ML classifiers, and Statistical Parametric Mapping (SPM). The benefits of incorporating augmented posture data into the learning process were exemplified by a deep autoencoder (AE) for automated feature representation. Results: Our findings highlight the challenge of differentiating synthetic data from real data for both experts and ML classifiers, underscoring the quality of synthetic data. This observation was also confirmed by SPM. By integrating synthetic data into AE training, the reconstruction error can be reduced compared to using only real data samples. Moreover, this study demonstrates the potential for reduced latent dimensions, while maintaining a reconstruction accuracy comparable to AEs trained exclusively on real data samples. Conclusion: This study emphasizes the prospects of harnessing generative AI to enhance ML tasks in the biomechanics domain.
AbstractList Objective: Biomechanical Machine Learning (ML) models, particularly deep-learning models, demonstrate the best performance when trained using extensive datasets. However, biomechanical data are frequently limited due to diverse challenges. Effective methods for augmenting data in developing ML models, specifically in the human posture domain, are scarce. Therefore, this study explored the feasibility of leveraging generative artificial intelligence (AI) to produce realistic synthetic posture data by utilizing three-dimensional posture data. Methods: Data were collected from 338 subjects through surface topography. A Variational Autoencoder (VAE) architecture was employed to generate and evaluate synthetic posture data, examining its distinguishability from real data by domain experts, ML classifiers, and Statistical Parametric Mapping (SPM). The benefits of incorporating augmented posture data into the learning process were exemplified by a deep autoencoder (AE) for automated feature representation. Results: Our findings highlight the challenge of differentiating synthetic data from real data for both experts and ML classifiers, underscoring the quality of synthetic data. This observation was also confirmed by SPM. By integrating synthetic data into AE training, the reconstruction error can be reduced compared to using only real data samples. Moreover, this study demonstrates the potential for reduced latent dimensions, while maintaining a reconstruction accuracy comparable to AEs trained exclusively on real data samples. Conclusion: This study emphasizes the prospects of harnessing generative AI to enhance ML tasks in the biomechanics domain.Objective: Biomechanical Machine Learning (ML) models, particularly deep-learning models, demonstrate the best performance when trained using extensive datasets. However, biomechanical data are frequently limited due to diverse challenges. Effective methods for augmenting data in developing ML models, specifically in the human posture domain, are scarce. Therefore, this study explored the feasibility of leveraging generative artificial intelligence (AI) to produce realistic synthetic posture data by utilizing three-dimensional posture data. Methods: Data were collected from 338 subjects through surface topography. A Variational Autoencoder (VAE) architecture was employed to generate and evaluate synthetic posture data, examining its distinguishability from real data by domain experts, ML classifiers, and Statistical Parametric Mapping (SPM). The benefits of incorporating augmented posture data into the learning process were exemplified by a deep autoencoder (AE) for automated feature representation. Results: Our findings highlight the challenge of differentiating synthetic data from real data for both experts and ML classifiers, underscoring the quality of synthetic data. This observation was also confirmed by SPM. By integrating synthetic data into AE training, the reconstruction error can be reduced compared to using only real data samples. Moreover, this study demonstrates the potential for reduced latent dimensions, while maintaining a reconstruction accuracy comparable to AEs trained exclusively on real data samples. Conclusion: This study emphasizes the prospects of harnessing generative AI to enhance ML tasks in the biomechanics domain.
Objective: Biomechanical Machine Learning (ML) models, particularly deep-learning models, demonstrate the best performance when trained using extensive datasets. However, biomechanical data are frequently limited due to diverse challenges. Effective methods for augmenting data in developing ML models, specifically in the human posture domain, are scarce. Therefore, this study explored the feasibility of leveraging generative artificial intelligence (AI) to produce realistic synthetic posture data by utilizing three-dimensional posture data. Methods: Data were collected from 338 subjects through surface topography. A Variational Autoencoder (VAE) architecture was employed to generate and evaluate synthetic posture data, examining its distinguishability from real data by domain experts, ML classifiers, and Statistical Parametric Mapping (SPM). The benefits of incorporating augmented posture data into the learning process were exemplified by a deep autoencoder (AE) for automated feature representation. Results: Our findings highlight the challenge of differentiating synthetic data from real data for both experts and ML classifiers, underscoring the quality of synthetic data. This observation was also confirmed by SPM. By integrating synthetic data into AE training, the reconstruction error can be reduced compared to using only real data samples. Moreover, this study demonstrates the potential for reduced latent dimensions, while maintaining a reconstruction accuracy comparable to AEs trained exclusively on real data samples. Conclusion: This study emphasizes the prospects of harnessing generative AI to enhance ML tasks in the biomechanics domain.
Objective: Biomechanical Machine Learning (ML) models, particularly deep-learning models, demonstrate the best performance when trained using extensive datasets. However, biomechanical data are frequently limited due to diverse challenges. Effective methods for augmenting data in developing ML models, specifically in the human posture domain, are scarce. Therefore, this study explored the feasibility of leveraging generative artificial intelligence (AI) to produce realistic synthetic posture data by utilizing three-dimensional posture data. Methods: Data were collected from 338 subjects through surface topography. A Variational Autoencoder (VAE) architecture was employed to generate and evaluate synthetic posture data, examining its distinguishability from real data by domain experts, ML classifiers, and Statistical Parametric Mapping (SPM). The benefits of incorporating augmented posture data into the learning process were exemplified by a deep autoencoder (AE) for automated feature representation. Results: Our findings highlight the challenge of differentiating synthetic data from real data for both experts and ML classifiers, underscoring the quality of synthetic data. This observation was also confirmed by SPM. By integrating synthetic data into AE training, the reconstruction error can be reduced compared to using only real data samples. Moreover, this study demonstrates the potential for reduced latent dimensions, while maintaining a reconstruction accuracy comparable to AEs trained exclusively on real data samples. Conclusion: This study emphasizes the prospects of harnessing generative AI to enhance ML tasks in the biomechanics domain.
Biomechanical Machine Learning (ML) models, particularly deep-learning models, demonstrate the best performance when trained using extensive datasets. However, biomechanical data are frequently limited due to diverse challenges. Effective methods for augmenting data in developing ML models, specifically in the human posture domain, are scarce. Therefore, this study explored the feasibility of leveraging generative artificial intelligence (AI) to produce realistic synthetic posture data by utilizing three-dimensional posture data. Data were collected from 338 subjects through surface topography. A Variational Autoencoder (VAE) architecture was employed to generate and evaluate synthetic posture data, examining its distinguishability from real data by domain experts, ML classifiers, and Statistical Parametric Mapping (SPM). The benefits of incorporating augmented posture data into the learning process were exemplified by a deep autoencoder (AE) for automated feature representation. Our findings highlight the challenge of differentiating synthetic data from real data for both experts and ML classifiers, underscoring the quality of synthetic data. This observation was also confirmed by SPM. By integrating synthetic data into AE training, the reconstruction error can be reduced compared to using only real data samples. Moreover, this study demonstrates the potential for reduced latent dimensions, while maintaining a reconstruction accuracy comparable to AEs trained exclusively on real data samples. This study emphasizes the prospects of harnessing generative AI to enhance ML tasks in the biomechanics domain.
Objective: Biomechanical Machine Learning (ML) models, particularly deep-learning models, demonstrate the best performance when trained using extensive datasets. However, biomechanical data are frequently limited due to diverse challenges. Effective methods for augmenting data in developing ML models, specifically in the human posture domain, are scarce. Therefore, this study explored the feasibility of leveraging generative artificial intelligence (AI) to produce realistic synthetic posture data by utilizing three-dimensional posture data.Methods: Data were collected from 338 subjects through surface topography. A Variational Autoencoder (VAE) architecture was employed to generate and evaluate synthetic posture data, examining its distinguishability from real data by domain experts, ML classifiers, and Statistical Parametric Mapping (SPM). The benefits of incorporating augmented posture data into the learning process were exemplified by a deep autoencoder (AE) for automated feature representation.Results: Our findings highlight the challenge of differentiating synthetic data from real data for both experts and ML classifiers, underscoring the quality of synthetic data. This observation was also confirmed by SPM. By integrating synthetic data into AE training, the reconstruction error can be reduced compared to using only real data samples. Moreover, this study demonstrates the potential for reduced latent dimensions, while maintaining a reconstruction accuracy comparable to AEs trained exclusively on real data samples.Conclusion: This study emphasizes the prospects of harnessing generative AI to enhance ML tasks in the biomechanics domain.
Author Simon, Steven
Werthmann, Frederike
Wolf, Claudia
Kniepert, Johanna
Konradi, Jürgen
Betz, Ulrich
Drees, Philipp
Dindorf, Carlo
Dully, Jonas
Becker, Stephan
Fröhlich, Michael
Huthwelker, Janine
AuthorAffiliation 1 Department of Sports Science , University of Kaiserslautern-Landau , Kaiserslautern , Germany
2 Institute of Physical Therapy , Prevention and Rehabilitation , University Medical Centre , Johannes Gutenberg University Mainz , Mainz , Germany
3 Department of Orthopedics and Trauma Surgery , University Medical Centre , Johannes Gutenberg University Mainz , Mainz , Germany
AuthorAffiliation_xml – name: 2 Institute of Physical Therapy , Prevention and Rehabilitation , University Medical Centre , Johannes Gutenberg University Mainz , Mainz , Germany
– name: 1 Department of Sports Science , University of Kaiserslautern-Landau , Kaiserslautern , Germany
– name: 3 Department of Orthopedics and Trauma Surgery , University Medical Centre , Johannes Gutenberg University Mainz , Mainz , Germany
Author_xml – sequence: 1
  givenname: Carlo
  surname: Dindorf
  fullname: Dindorf, Carlo
– sequence: 2
  givenname: Jonas
  surname: Dully
  fullname: Dully, Jonas
– sequence: 3
  givenname: Jürgen
  surname: Konradi
  fullname: Konradi, Jürgen
– sequence: 4
  givenname: Claudia
  surname: Wolf
  fullname: Wolf, Claudia
– sequence: 5
  givenname: Stephan
  surname: Becker
  fullname: Becker, Stephan
– sequence: 6
  givenname: Steven
  surname: Simon
  fullname: Simon, Steven
– sequence: 7
  givenname: Janine
  surname: Huthwelker
  fullname: Huthwelker, Janine
– sequence: 8
  givenname: Frederike
  surname: Werthmann
  fullname: Werthmann, Frederike
– sequence: 9
  givenname: Johanna
  surname: Kniepert
  fullname: Kniepert, Johanna
– sequence: 10
  givenname: Philipp
  surname: Drees
  fullname: Drees, Philipp
– sequence: 11
  givenname: Ulrich
  surname: Betz
  fullname: Betz, Ulrich
– sequence: 12
  givenname: Michael
  surname: Fröhlich
  fullname: Fröhlich, Michael
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38419724$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUjVARLaU_wAJFYsNmBj8Tmw1CVaGVKrGBteXYNzMeJfZgO636F3wyzjxQ20UXlu_1Pff43Mfb6sQHD1X1HqMlpUJ-7jsXYEkQYUtMOSrnVXVGiGwWDAt-8sg-rS5S2iCEMOEtF-RNdUoFw7Il7Kz6e-XX2hvnV3UhHMEUzxk91KM2a-ehHkBHP4fvXV7XgxtdBltbnfWXegUeos5zNIIeXMrO1OnB5zXM1jakPEXYgespzbBjxh3UOmbXO-PKX85nGAZXggbeVa97PSS4ONzn1e_vV78urxe3P3_cXH67XRgm21wK6xpudS8BGSGYBE2BI-gsRbrFfW8QkE42PS6-FVZa1tBGS0Nt22MBiJ5XN3teG_RGbaMbdXxQQTu1ewhxpWaFZgAFSLLOmoZw3rG25Rqo6JDueoQlUNsUrq97ru3UjWAN-Bz18IT0acS7tVqFO4WRkFK0ojB8OjDE8GeClNXokilN0R7ClBSRlLIGYc4L9OMz6CZM0ZdeKUpailjTkLm8D48l_ddynHwBiD3AxJBShF4Zl8tkwqzQDUWamvdM7fZMzXumDntWUsmz1CP7C0n_AD3P20I
CitedBy_id crossref_primary_10_1016_j_foohum_2025_100818
crossref_primary_10_3389_fbioe_2025_1579085
crossref_primary_10_1177_14727978251380798
crossref_primary_10_3389_fspor_2025_1646146
crossref_primary_10_1038_s41598_024_62720_w
crossref_primary_10_1108_K_11_2024_3026
crossref_primary_10_3389_fspor_2025_1607600
Cites_doi 10.1016/j.jbiomech.2022.111301
10.1109/access.2020.3029616
10.1007/s40279-014-0246-y
10.1145/3446374
10.3390/s20185373
10.1007/s00586-021-06918-w
10.1109/JBHI.2015.2450232
10.18653/v1/P17-1061
10.1109/CVPR.2009.5206848
10.1109/jsen.2020.3019053
10.1109/JBHI.2019.2958879
10.2478/bhk-2021-0022
10.1109/ICASSP40776.2020.9053735
10.1609/aaai.v33i01.33015885
10.1109/access.2020.2973898
10.1038/s41597-021-01014-6
10.3390/ijerph19074074
10.1109/MCSE.2007.55
10.1093/jamia/ocaa309
10.1016/j.jneumeth.2020.108885
10.1109/jbhi.2019.2906499
10.1007/s00419-023-02458-5
10.1109/ICMLA.2019.00236
10.1142/S1469026820500029
10.1038/s41598-019-38748-8
10.2307/2529310
10.1016/B978-0-444-63984-4.00005-3
10.1038/nmeth.4642
10.3390/s18103533
10.1109/TNNLS.2021.3132928
10.1186/s40537-023-00727-2
10.1007/s40141-019-00234-7
10.3390/s21186323
10.1007/s40279-019-01110-z
10.1519/jsc.0000000000001279
10.1016/j.humov.2022.103054
10.3390/ijerph20054131
10.1109/EMBC.2019.8856294
10.1080/10255842.2020.1828375
10.1109/ICASSP.2015.7178320
10.1109/CCE.2018.8465714
10.1016/j.humov.2008.12.003
10.1109/CASE49439.2021.9551525
10.1016/j.jbiomech.2020.109684
10.1007/s40846-017-0297-2
10.1016/j.medengphy.2023.104046
10.3390/ijerph20010173
10.1007/s00586-016-4807-7
10.3389/fbioe.2020.00362
10.1007/s13042-022-01553-3
10.1016/j.neunet.2020.09.007
10.1109/AIPR.2018.8707390
10.36730/2022.1.levia.6
10.1016/j.jbiomech.2018.09.009
10.3390/s21175876
ContentType Journal Article
Copyright Copyright © 2024 Dindorf, Dully, Konradi, Wolf, Becker, Simon, Huthwelker, Werthmann, Kniepert, Drees, Betz and Fröhlich.
2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2024 Dindorf, Dully, Konradi, Wolf, Becker, Simon, Huthwelker, Werthmann, Kniepert, Drees, Betz and Fröhlich. 2024 Dindorf, Dully, Konradi, Wolf, Becker, Simon, Huthwelker, Werthmann, Kniepert, Drees, Betz and Fröhlich
Copyright_xml – notice: Copyright © 2024 Dindorf, Dully, Konradi, Wolf, Becker, Simon, Huthwelker, Werthmann, Kniepert, Drees, Betz and Fröhlich.
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2024 Dindorf, Dully, Konradi, Wolf, Becker, Simon, Huthwelker, Werthmann, Kniepert, Drees, Betz and Fröhlich. 2024 Dindorf, Dully, Konradi, Wolf, Becker, Simon, Huthwelker, Werthmann, Kniepert, Drees, Betz and Fröhlich
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3389/fbioe.2024.1350135
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
PubMed
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Dindorf et al
EISSN 2296-4185
ExternalDocumentID oai_doaj_org_article_e094bdc6255b4775ae38b0abf019e3d6
PMC10899878
38419724
10_3389_fbioe_2024_1350135
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
ACXDI
IPNFZ
NPM
RIG
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GNUQQ
HCIFZ
K9.
LK8
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c497t-41b65daf9e0c8849ea3e50ebd30a71ffc0e2b96f130ad8d9d4636a9c3d7f18e03
IEDL.DBID DOA
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001174144000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2296-4185
IngestDate Fri Oct 03 12:43:59 EDT 2025
Tue Sep 30 17:10:04 EDT 2025
Fri Sep 05 11:49:13 EDT 2025
Thu Nov 20 01:07:04 EST 2025
Thu Apr 03 07:01:00 EDT 2025
Sat Nov 29 05:43:18 EST 2025
Tue Nov 18 21:30:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords deep learning
spine
data augmentation
machine learning
variational autoencoder
statistical parametric mapping
Language English
License Copyright © 2024 Dindorf, Dully, Konradi, Wolf, Becker, Simon, Huthwelker, Werthmann, Kniepert, Drees, Betz and Fröhlich.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-41b65daf9e0c8849ea3e50ebd30a71ffc0e2b96f130ad8d9d4636a9c3d7f18e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Zhen (Jeff) Luo, University of Technology Sydney, Australia
Reviewed by: Tianzhe Bao, University of Health and Rehabilitation Sciences, China
These authors have contributed equally to this work and share senior authorship
Chang Won Jeong, Wonkwang University, Republic of Korea
OpenAccessLink https://doaj.org/article/e094bdc6255b4775ae38b0abf019e3d6
PMID 38419724
PQID 3273046620
PQPubID 7426804
ParticipantIDs doaj_primary_oai_doaj_org_article_e094bdc6255b4775ae38b0abf019e3d6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10899878
proquest_miscellaneous_2933460155
proquest_journals_3273046620
pubmed_primary_38419724
crossref_citationtrail_10_3389_fbioe_2024_1350135
crossref_primary_10_3389_fbioe_2024_1350135
PublicationCentury 2000
PublicationDate 2024-02-14
PublicationDateYYYYMMDD 2024-02-14
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-14
  day: 14
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in bioengineering and biotechnology
PublicationTitleAlternate Front Bioeng Biotechnol
PublicationYear 2024
Publisher Frontiers Media SA
Frontiers Media S.A
Publisher_xml – name: Frontiers Media SA
– name: Frontiers Media S.A
References Lashgari (B32) 2020; 346
Yang (B58) 2021; 21
Huang (B22) 2023; 120
Lau (B33) 2009; 28
Liu (B34) 2020; 8
Halilaj (B18) 2018; 81
Pandit (B44) 2019
Luo (B36) 2020; 8
Takeishi (B52) 2021
Tu (B53) 2020
Chollet (B9) 2015
Zhao (B65) 2017
Yukawa (B61) 2018; 27
Barnes (B4) 2015; 45
Kiprijanovska (B28) 2020; 20
Kneifl (B29) 2023; 93
Kang (B27) 2021; 28
Zaroug (B62) 2020; 8
Dindorf (B15); 13
Saxena (B49) 2022; 54
Abadi (B1) 2016
Mohan (B42) 2019; 7
Yang (B59) 2022; 33
Dindorf (B13); 24
Horst (B20) 2019; 9
Tunca (B54) 2020; 24
Nguyen (B43) 2018
Hernandez (B19) 2020; 103
Yee (B60) 2021
Ceyssens (B8) 2019; 49
Horst (B21) 2021; 8
Martinez (B39) 2020; 24
Wahid (B56) 2015; 19
Zhou (B67) 2019
Bzdok (B7) 2018; 15
Ballabio (B3) 2019; 31
Deng (B10) 2009
Hussain (B24) 2020; 132
Zhao (B64) 2017
Valamatos (B55) 2022; 19
Phinyomark (B47) 2018; 38
Zhao (B66) 2019; 33
Dindorf (B12); 21
Landis (B31) 1977; 33
Alzubaidi (B2) 2023; 10
Dindorf (B11); 20
Paragliola (B45) 2021
Song (B51) 2020
Marchi (B38) 2015
Sharifi Renani (B50) 2021; 21
Bicer (B6) 2022; 144
Huthwelker (B25) 2023; 88
Mahmud (B37) 2020; 19
Wan (B57) 2017
Mohammadian Rad (B41) 2018; 18
Bayer (B5) 2023; 14
Elkholy (B16) 2019
Ferreira (B17) 2016; 30
Hunter (B23) 2007; 9
Prost (B48) 2021; 30
Dindorf (B14)
Pedregosa (B46) 2011
Zhao (B63) 2015
Kornish (B30) 2018
McInnes (B40) 2018
Ludwig (B35) 2023; 20
Iglesias (B26) 2023
References_xml – volume: 144
  start-page: 111301
  year: 2022
  ident: B6
  article-title: Generative deep learning applied to biomechanics: a new augmentation technique for motion capture datasets
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2022.111301
– volume: 8
  start-page: 188429
  year: 2020
  ident: B34
  article-title: Synthesizing foot and ankle kinematic characteristics for lateral collateral ligament injuries detection
  publication-title: IEEE Access
  doi: 10.1109/access.2020.3029616
– volume: 45
  start-page: 37
  year: 2015
  ident: B4
  article-title: Strategies to improve running economy
  publication-title: Sports Med.
  doi: 10.1007/s40279-014-0246-y
– volume: 54
  start-page: 1
  year: 2022
  ident: B49
  article-title: Generative adversarial networks (GANs)
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3446374
– volume: 20
  start-page: 5373
  year: 2020
  ident: B28
  article-title: Detection of gait abnormalities for fall risk assessment using wrist-worn inertial sensors and deep learning
  publication-title: Sensors
  doi: 10.3390/s20185373
– volume: 30
  start-page: 2520
  year: 2021
  ident: B48
  article-title: Description of spine motion during gait in normal adolescents and young adults
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-021-06918-w
– volume: 19
  start-page: 1794
  year: 2015
  ident: B56
  article-title: Classification of Parkinson's disease gait using spatial-temporal gait features
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2015.2450232
– year: 2017
  ident: B65
  article-title: Learning discourse-level diversity for neural dialog models using conditional variational autoencoders
  doi: 10.18653/v1/P17-1061
– year: 2017
  ident: B64
  article-title: Towards deeper understanding of variational autoencoding models
– volume-title: ImageNet: a large-scale hierarchical image database
  year: 2009
  ident: B10
  article-title: ImageNet: a large-scale hierarchical image database
  doi: 10.1109/CVPR.2009.5206848
– volume: 21
  start-page: 1906
  year: 2021
  ident: B58
  article-title: Novel soft smart shoes for motion intent learning of lower limbs using LSTM with a convolutional autoencoder
  publication-title: IEEE Sensors J.
  doi: 10.1109/jsen.2020.3019053
– volume: 24
  start-page: 1994
  year: 2020
  ident: B54
  article-title: Deep learning for fall risk assessment with inertial sensors: utilizing domain knowledge in spatio-temporal gait parameters
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2019.2958879
– volume: 13
  start-page: 177
  ident: B15
  article-title: Feature extraction and gait classification in hip replacement patients on the basis of kinematic waveform data
  publication-title: Biomed. Hum. Kinet.
  doi: 10.2478/bhk-2021-0022
– volume-title: Information maximized variational domain adversarial learning for speaker verification
  year: 2020
  ident: B53
  article-title: Information maximized variational domain adversarial learning for speaker verification
  doi: 10.1109/ICASSP40776.2020.9053735
– volume: 33
  start-page: 5885
  year: 2019
  ident: B66
  article-title: InfoVAE: balancing learning and inference in variational autoencoders
  publication-title: AAAI
  doi: 10.1609/aaai.v33i01.33015885
– volume: 8
  start-page: 32485
  year: 2020
  ident: B36
  article-title: Multi-set canonical correlation analysis for 3D abnormal gait behaviour recognition based on virtual sample generation
  publication-title: IEEE Access
  doi: 10.1109/access.2020.2973898
– start-page: 452
  volume-title: A deep learning-based approach for the classification of gait dynamics in subjects with a neurodegenerative disease
  year: 2021
  ident: B45
  article-title: A deep learning-based approach for the classification of gait dynamics in subjects with a neurodegenerative disease
– volume: 8
  start-page: 232
  year: 2021
  ident: B21
  article-title: Gutenberg Gait Database, a ground reaction force database of level overground walking in healthy individuals
  publication-title: Sci. Data
  doi: 10.1038/s41597-021-01014-6
– volume: 19
  start-page: 4074
  year: 2022
  ident: B55
  article-title: Biomechanical performance factors in the track and field sprint start: a systematic review
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph19074074
– volume: 9
  start-page: 90
  year: 2007
  ident: B23
  article-title: Matplotlib: a 2D graphics environment
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: 28
  start-page: 812
  year: 2021
  ident: B27
  article-title: UMLS-based data augmentation for natural language processing of clinical research literature
  publication-title: J. Am. Med. Inf. Assoc.
  doi: 10.1093/jamia/ocaa309
– volume: 346
  start-page: 108885
  year: 2020
  ident: B32
  article-title: Data augmentation for deep-learning-based electroencephalography
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2020.108885
– volume: 24
  start-page: 144
  year: 2020
  ident: B39
  article-title: Falls risk classification of older adults using deep neural networks and transfer learning
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/jbhi.2019.2906499
– volume: 93
  start-page: 3637
  year: 2023
  ident: B29
  article-title: Low-dimensional data-based surrogate model of a continuum-mechanical musculoskeletal system based on non-intrusive model order reduction
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-023-02458-5
– volume-title: Abnormal gait detection by classifying inertial sensor data using transfer learning
  year: 2019
  ident: B44
  article-title: Abnormal gait detection by classifying inertial sensor data using transfer learning
  doi: 10.1109/ICMLA.2019.00236
– year: 2021
  ident: B52
  article-title: Variational autoencoder with differentiable physics engine for human gait analysis and synthesis
– volume: 19
  year: 2020
  ident: B37
  article-title: Variational autoencoder-based dimensionality reduction for high-dimensional small-sample data classification
  publication-title: Int. J. Comp. Intel. Appl.
  doi: 10.1142/S1469026820500029
– volume: 9
  start-page: 2391
  year: 2019
  ident: B20
  article-title: Explaining the unique nature of individual gait patterns with deep learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-38748-8
– volume: 33
  start-page: 159
  year: 1977
  ident: B31
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
  doi: 10.2307/2529310
– volume: 31
  start-page: 129
  year: 2019
  ident: B3
  article-title: Recent advances in high-level fusion methods to classify multiple analytical chemical data
  publication-title: Data Handl. Sci. Technol.
  doi: 10.1016/B978-0-444-63984-4.00005-3
– volume: 15
  start-page: 233
  year: 2018
  ident: B7
  article-title: Statistics versus machine learning
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4642
– volume: 18
  start-page: 3533
  year: 2018
  ident: B41
  article-title: Novelty detection using deep normative modeling for IMU-based abnormal movement monitoring in Parkinson's disease and autism spectrum disorders
  publication-title: Sensors
  doi: 10.3390/s18103533
– volume: 33
  start-page: 2324
  year: 2022
  ident: B59
  article-title: Memory-augmented generative adversarial networks for anomaly detection
  publication-title: IEEE Trans. Neural Netw. Learn Syst.
  doi: 10.1109/TNNLS.2021.3132928
– volume: 10
  start-page: 46
  year: 2023
  ident: B2
  article-title: A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications
  publication-title: J. Big Data
  doi: 10.1186/s40537-023-00727-2
– year: 2023
  ident: B26
  article-title: Data Augmentation techniques in time series domain: a survey and taxonomy 2023
– volume: 7
  start-page: 246
  year: 2019
  ident: B42
  article-title: Sex differences in the spine
  publication-title: Curr. Phys. Med. Rehabil. Rep.
  doi: 10.1007/s40141-019-00234-7
– volume: 21
  start-page: 6323
  ident: B12
  article-title: Classification and automated interpretation of spinal posture data using a pathology-independent classifier and explainable artificial intelligence (XAI)
  publication-title: Sensors
  doi: 10.3390/s21186323
– volume: 49
  start-page: 1095
  year: 2019
  ident: B8
  article-title: Biomechanical risk factors associated with running-related injuries: a systematic review
  publication-title: Sports Med.
  doi: 10.1007/s40279-019-01110-z
– volume: 30
  start-page: 2069
  year: 2016
  ident: B17
  article-title: Energetics, biomechanics, and performance in masters' swimmers: a systematic review
  publication-title: J. Strength Cond. Res.
  doi: 10.1519/jsc.0000000000001279
– year: 2018
  ident: B40
  article-title: UMAP: Uniform Manifold approximation and projection for dimension reduction
– volume: 88
  start-page: 103054
  year: 2023
  ident: B25
  article-title: Reference values and functional descriptions of transverse plane spinal dynamics during gait based on surface topography
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2022.103054
– volume: 20
  start-page: 4131
  year: 2023
  ident: B35
  article-title: Reference values for sagittal clinical posture assessment in people aged 10 to 69 years
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph20054131
– volume-title: Unsupervised GEI-based gait disorders detection from different views
  year: 2019
  ident: B16
  article-title: Unsupervised GEI-based gait disorders detection from different views
  doi: 10.1109/EMBC.2019.8856294
– start-page: 265
  volume-title: {TensorFlow}: a system for {Large-Scale} machine learning
  year: 2016
  ident: B1
  article-title: {TensorFlow}: a system for {Large-Scale} machine learning
– volume: 24
  start-page: 299
  ident: B13
  article-title: General method for automated feature extraction and selection and its application for gender classification and biomechanical knowledge discovery of sex differences in spinal posture during stance and gait
  publication-title: Comput. Methods Biomech. Biomed. Engin
  doi: 10.1080/10255842.2020.1828375
– start-page: 1
  year: 2017
  ident: B57
  article-title: Variational autoencoder based synthetic data generation for imbalanced learning
– volume-title: A novel approach for automatic acoustic novelty detection using a denoising autoencoder with bidirectional LSTM neural networks
  year: 2015
  ident: B38
  article-title: A novel approach for automatic acoustic novelty detection using a denoising autoencoder with bidirectional LSTM neural networks
  doi: 10.1109/ICASSP.2015.7178320
– year: 2015
  ident: B9
  publication-title: Keras
– volume-title: Estimating skeleton-based gait abnormality index by sparse deep auto-encoder
  year: 2018
  ident: B43
  article-title: Estimating skeleton-based gait abnormality index by sparse deep auto-encoder
  doi: 10.1109/CCE.2018.8465714
– year: 2019
  ident: B67
  article-title: HYPE: a benchmark for human eYe perceptual evaluation of generative models
– start-page: 3
  volume-title: A novel approach to abnormal gait recognition based on generative adversarial networks
  year: 2020
  ident: B51
  article-title: A novel approach to abnormal gait recognition based on generative adversarial networks
– year: 2015
  ident: B63
  article-title: Stacked what-where auto-encoders
– volume: 28
  start-page: 504
  year: 2009
  ident: B33
  article-title: Support vector machine for classification of walking conditions of persons after stroke with dropped foot
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2008.12.003
– volume-title: Systematic development of machine for abnormal muscle activity detection
  year: 2021
  ident: B60
  article-title: Systematic development of machine for abnormal muscle activity detection
  doi: 10.1109/CASE49439.2021.9551525
– volume: 103
  start-page: 109684
  year: 2020
  ident: B19
  article-title: Adversarial autoencoder for visualization and classification of human activity: application to a low-cost commercial force plate
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2020.109684
– volume: 38
  start-page: 244
  year: 2018
  ident: B47
  article-title: Analysis of big data in gait biomechanics: current trends and future directions
  publication-title: J. Med. Biol. Eng.
  doi: 10.1007/s40846-017-0297-2
– volume: 120
  start-page: 104046
  year: 2023
  ident: B22
  article-title: Three-dimensional lumbar spine generation using variational autoencoder
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2023.104046
– volume: 20
  start-page: 173
  ident: B11
  article-title: Conceptual structure and current trends in artificial intelligence, machine learning, and deep learning research in sports: a bibliometric review
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph20010173
– volume: 27
  start-page: 426
  year: 2018
  ident: B61
  article-title: Normative data for parameters of sagittal spinal alignment in healthy subjects: an analysis of gender specific differences and changes with aging in 626 asymptomatic individuals
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-016-4807-7
– volume: 8
  start-page: 362
  year: 2020
  ident: B62
  article-title: Lower limb kinematics trajectory prediction using long short-term memory neural networks
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00362
– volume: 14
  start-page: 135
  year: 2023
  ident: B5
  article-title: Data augmentation in natural language processing: a novel text generation approach for long and short text classifiers
  publication-title: Int. J. Mach. Learn Cybern.
  doi: 10.1007/s13042-022-01553-3
– volume: 132
  start-page: 353
  year: 2020
  ident: B24
  article-title: High-content image generation for drug discovery using generative adversarial networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.09.007
– volume-title: DCNN augmentation via synthetic data from variational autoencoders and generative adversarial networks
  year: 2018
  ident: B30
  article-title: DCNN augmentation via synthetic data from variational autoencoders and generative adversarial networks
  doi: 10.1109/AIPR.2018.8707390
– year: 2011
  ident: B46
  article-title: Scikit-learn: machine learning in Python
– volume-title: Visualization of interindividual differences in spinal dynamics in the presence of intraindividual variabilities
  ident: B14
  article-title: Visualization of interindividual differences in spinal dynamics in the presence of intraindividual variabilities
  doi: 10.36730/2022.1.levia.6
– volume: 81
  start-page: 1
  year: 2018
  ident: B18
  article-title: Machine learning in human movement biomechanics: best practices, common pitfalls, and new opportunities
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2018.09.009
– volume: 21
  start-page: 5876
  year: 2021
  ident: B50
  article-title: The use of synthetic IMU signals in the training of deep learning models significantly improves the accuracy of joint kinematic predictions
  publication-title: Sensors
  doi: 10.3390/s21175876
SSID ssj0001257582
Score 2.3270307
Snippet Objective: Biomechanical Machine Learning (ML) models, particularly deep-learning models, demonstrate the best performance when trained using extensive...
Biomechanical Machine Learning (ML) models, particularly deep-learning models, demonstrate the best performance when trained using extensive datasets. However,...
Objective: Biomechanical Machine Learning (ML) models, particularly deep-learning models, demonstrate the best performance when trained using extensive...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1350135
SubjectTerms Accuracy
Artificial intelligence
Asymptomatic
Bioengineering and Biotechnology
Biomechanics
Data analysis
data augmentation
Data collection
Datasets
Deep learning
Feasibility studies
Gait
Generative artificial intelligence
Human mechanics
Kinematics
Learning algorithms
Machine learning
Posture
spine
statistical parametric mapping
variational autoencoder
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIAD70egICNxQ1GT2ElsLghQK05VDyD1ZvmZrrQky2ZbiX_BT2bG8YZdhHrhFsV2NMqM7W88428IecusNho8NnBTC5tzVpW5bgDIaS4tbypra-NisYn29FScn8uzdOA2prTK7ZoYF2o3WDwjP2Kwz4Iv11TFh9WPHKtGYXQ1ldC4SW4hSwKLqXtnO2csAEZENd2VAV9MHgWzGJAcs-JY8AHgT723H0Xa_n9hzb9TJnf2oJP7_yv9A3IvoU_6cTKXh-SG7x-RuzuchI_Jr-P-Ajk4-o7Gq_l4MxgVSb_HtEtPU52JjuIRLl1OF6QoZpq-p10kscZMagpgdBlJoOn4sweUiU-rYcSARexMMeO-m0dceYpGPPFZ0MUOUegT8u3k-OvnL3kq25BbLttNzkvT1E4H6QsrBJdeM18X3jhW6LYMwRa-MrIJsHtqJ5x0yFmmpWWuDaXwBXtKDvqh988JheUE3DnRVkG08CErhQi68Bi8tVyLJiPlVnnKJk5zLK2xVODboMJVVLhChauk8Iy8m8esJkaPa3t_QpuYeyIbd3wxrDuVJrcCgbhxFlzJ2vC2rbVnwhTaBMDPnjkQ83BrFSotEaP6YxIZeTM3w-TGiI3u_XA5KsBijDcIazPybDLAWRImOJaM4xkRe6a5J-p-S7-4iATiJcZ6RSteXC_XS3IHfwXmqJf8kBxs1pf-FbltrzaLcf06TrXfUDw32A
  priority: 102
  providerName: ProQuest
Title Enhancing biomechanical machine learning with limited data: generating realistic synthetic posture data using generative artificial intelligence
URI https://www.ncbi.nlm.nih.gov/pubmed/38419724
https://www.proquest.com/docview/3273046620
https://www.proquest.com/docview/2933460155
https://pubmed.ncbi.nlm.nih.gov/PMC10899878
https://doaj.org/article/e094bdc6255b4775ae38b0abf019e3d6
Volume 12
WOSCitedRecordID wos001174144000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2296-4185
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257582
  issn: 2296-4185
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2296-4185
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257582
  issn: 2296-4185
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2296-4185
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257582
  issn: 2296-4185
  databaseCode: M7P
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2296-4185
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257582
  issn: 2296-4185
  databaseCode: 7X7
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2296-4185
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257582
  issn: 2296-4185
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2296-4185
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257582
  issn: 2296-4185
  databaseCode: PIMPY
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgcIAD4ptAWRmJG4rqxE5sc6NoKziwihBIy8myHWe70pKtmm2l_ov-ZGacNMoiBBcuURTbkeMZx2884zeEvOXeOgsWG5ipzKeC51lqSwByVmgvytz7wtUx2YRcLNRyqatJqi-MCevpgfuBOwpgf7jaA0wvnJCysIErx6xrAJsEXkeybUA9E2Oq310BGKLy_pQMWGH6qHHrLdJi5gJTPQDwKfZWokjY_yeU-Xuw5GT1OXlIHgywkX7ou_uI3ArtY3J_Qib4hFzP21Mkz2hXNJ6pxyO9KAH6M8ZLBjokiFhR3Hulm_5kE8UQ0fd0FdmnMQSaAorcRPZm2l21AA_x7mzboachVqYYKr8aW1wGioPYE1HQ9YTh8yn5fjL_9vFTOuRbSL3QcpeKzJVFbRsdmFdK6GB5KFhwNWdWZk3jWcidLhtY9mytal0j2ZjVnteyyVRg_Bk5aLdteEEo_AfADlMyb5SEF3mtVGNZQK-rF1aVCcluxt74gYwcc2JsDBglKC8T5WVQXmaQV0LejW3OeiqOv9Y-RpGONZFGOz4A5TKDcpl_KVdCDm8UwgxzuzMcEB8TZZmzhLwZi2FWoqvFtmF70RkAUVyUiEcT8rzXn7EnXAnM9SYSovY0a6-r-yXt-jQyf2fopFVSvfwfH_eK3MMBwxD0TBySg935RXhN7vrL3bo7n5HbcinjVc3IneP5ovo6i3NshuGxFTyrPn-pfvwCDtswWg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceD8CBYwEJxQ1iZ3EQUKIR6tWLaseitSb6zhOutKSLJttUf8Fv4TfyIyTLLsI9dYDtyhxIsv5ZjzjmfkG4BU3OtfosaGbGhhf8Cj0dYKGnBaZEUlkTJwXrtlEOhrJo6PsYA1-DbUwlFY56ESnqIvG0Bn5Jsd9Fn25JAreT7_71DWKoqtDC40OFnv2_Ae6bO273c_4f19H0fbW4acdv-8q4BuRpXNfhHkSF7rMbGCkFJnV3MaBzQse6DQsSxPYKM-SEpW7LmSRFUSppTPDi7QMpQ04fvcKXEUzIpIuVfBg6UwHjR8ZdbU56Ptlm2U-boiMMxLUYALNrXhl_3NtAv5l2_6dorm0523f_t9W6w7c6q1r9qETh7uwZut7cHOJc_E-_NyqT4hjpK6Yox6gymcCKvvm0kot6_toVIyOqNmkKwBjlEn7llWOpJsyxRka2xNHcs3a8xqtaLqaNi0FZNxgRhUF1eKNM8tISDu-DjZeIkJ9AF8vZUkewnrd1PYxMFSX6K7KNCplih8ymZSlDiwFp43QMvEgHMCiTM_ZTq1DJgp9NwKYcgBTBDDVA8yDN4t3ph1jyYWjPxIGFyOJbdzdaGaV6pWXwgmJvDDoKse5SNNYWy7zQOcl-geWFzjNjQGFqleBrfoDQQ9eLh6j8qKIlK5tc9oqtDW5SMhs9-BRB_jFTLgU1BJPeCBXRGFlqqtP6vGJI0gPKZYtU_nk4nm9gOs7h1_21f7uaO8p3KBloXz8UGzA-nx2ap_BNXM2H7ez507MGRxftqT8Boo5ltM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+biomechanical+machine+learning+with+limited+data%3A+generating+realistic+synthetic+posture+data+using+generative+artificial+intelligence&rft.jtitle=Frontiers+in+bioengineering+and+biotechnology&rft.au=Carlo+Dindorf&rft.au=Jonas+Dully&rft.au=J%C3%BCrgen+Konradi&rft.au=Claudia+Wolf&rft.date=2024-02-14&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-4185&rft.volume=12&rft_id=info:doi/10.3389%2Ffbioe.2024.1350135&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e094bdc6255b4775ae38b0abf019e3d6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-4185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-4185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-4185&client=summon