Chemoenzymatic elaboration of the Raper-Mason pathway unravels the structural diversity within eumelanin pigments

Melanin is a central polymer in living organisms, yet our understanding of its molecular structure remains unresolved. Here, we apply a biosynthetic approach to explore the composite structures accessible in one type of melanin, eumelanin. Using a combination of solid-state NMR, dynamic nuclear pola...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) Jg. 11; H. 3; S. 7836 - 7841
Hauptverfasser: Ni, Qing Zhe, Sierra, Brianna N, La Clair, James J, Burkart, Michael D
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cambridge Royal Society of Chemistry 14.08.2020
The Royal Society of Chemistry
Schlagworte:
ISSN:2041-6520, 2041-6539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Melanin is a central polymer in living organisms, yet our understanding of its molecular structure remains unresolved. Here, we apply a biosynthetic approach to explore the composite structures accessible in one type of melanin, eumelanin. Using a combination of solid-state NMR, dynamic nuclear polarization, and electron microscopy, we reveal how a variety of monomers are enzymatically polymerized into their corresponding eumelanin pigments. We demonstrate how this approach can be used to unite structure with an understanding of enzymatic activity, substrate scope, and the regulation of nanostructural features. Overall, this data reveals how intermediate metabolites of the Raper-Mason metabolic pathway contribute to polymerization, allowing us to revisit the original proposal of how eumelanin is biosynthesized. Melanin is a central polymer in living organisms, yet our understanding of its molecular structure remains unresolved.
AbstractList Melanin is a central polymer in living organisms, yet our understanding of its molecular structure remains unresolved. Here, we apply a biosynthetic approach to explore the composite structures accessible in one type of melanin, eumelanin. Using a combination of solid-state NMR, dynamic nuclear polarization, and electron microscopy, we reveal how a variety of monomers are enzymatically polymerized into their corresponding eumelanin pigments. We demonstrate how this approach can be used to unite structure with an understanding of enzymatic activity, substrate scope, and the regulation of nanostructural features. Overall, this data reveals how intermediate metabolites of the Raper–Mason metabolic pathway contribute to polymerization, allowing us to revisit the original proposal of how eumelanin is biosynthesized. Melanin is a central polymer in living organisms, yet our understanding of its molecular structure remains unresolved.
Melanin is a central polymer in living organisms, yet our understanding of its molecular structure remains unresolved. Here, we apply a biosynthetic approach to explore the composite structures accessible in one type of melanin, eumelanin. Using a combination of solid-state NMR, dynamic nuclear polarization, and electron microscopy, we reveal how a variety of monomers are enzymatically polymerized into their corresponding eumelanin pigments. We demonstrate how this approach can be used to unite structure with an understanding of enzymatic activity, substrate scope, and the regulation of nanostructural features. Overall, this data reveals how intermediate metabolites of the Raper-Mason metabolic pathway contribute to polymerization, allowing us to revisit the original proposal of how eumelanin is biosynthesized.Melanin is a central polymer in living organisms, yet our understanding of its molecular structure remains unresolved. Here, we apply a biosynthetic approach to explore the composite structures accessible in one type of melanin, eumelanin. Using a combination of solid-state NMR, dynamic nuclear polarization, and electron microscopy, we reveal how a variety of monomers are enzymatically polymerized into their corresponding eumelanin pigments. We demonstrate how this approach can be used to unite structure with an understanding of enzymatic activity, substrate scope, and the regulation of nanostructural features. Overall, this data reveals how intermediate metabolites of the Raper-Mason metabolic pathway contribute to polymerization, allowing us to revisit the original proposal of how eumelanin is biosynthesized.
Melanin is a central polymer in living organisms, yet our understanding of its molecular structure remains unresolved. Here, we apply a biosynthetic approach to explore the composite structures accessible in one type of melanin, eumelanin. Using a combination of solid-state NMR, dynamic nuclear polarization, and electron microscopy, we reveal how a variety of monomers are enzymatically polymerized into their corresponding eumelanin pigments. We demonstrate how this approach can be used to unite structure with an understanding of enzymatic activity, substrate scope, and the regulation of nanostructural features. Overall, this data reveals how intermediate metabolites of the Raper–Mason metabolic pathway contribute to polymerization, allowing us to revisit the original proposal of how eumelanin is biosynthesized.
Melanin is a central polymer in living organisms, yet our understanding of its molecular structure remains unresolved. Here, we apply a biosynthetic approach to explore the composite structures accessible in one type of melanin, eumelanin. Using a combination of solid-state NMR, dynamic nuclear polarization, and electron microscopy, we reveal how a variety of monomers are enzymatically polymerized into their corresponding eumelanin pigments. We demonstrate how this approach can be used to unite structure with an understanding of enzymatic activity, substrate scope, and the regulation of nanostructural features. Overall, this data reveals how intermediate metabolites of the Raper-Mason metabolic pathway contribute to polymerization, allowing us to revisit the original proposal of how eumelanin is biosynthesized. Melanin is a central polymer in living organisms, yet our understanding of its molecular structure remains unresolved.
Author Sierra, Brianna N
La Clair, James J
Ni, Qing Zhe
Burkart, Michael D
AuthorAffiliation Department of Chemistry and Biochemistry
University of California
AuthorAffiliation_xml – name: University of California
– name: Department of Chemistry and Biochemistry
Author_xml – sequence: 1
  givenname: Qing Zhe
  surname: Ni
  fullname: Ni, Qing Zhe
– sequence: 2
  givenname: Brianna N
  surname: Sierra
  fullname: Sierra, Brianna N
– sequence: 3
  givenname: James J
  surname: La Clair
  fullname: La Clair, James J
– sequence: 4
  givenname: Michael D
  surname: Burkart
  fullname: Burkart, Michael D
BookMark eNp9kstrFTEUh4NUbK3duBdG3EhhNI_JZGZTkNuHQkXwsQ6ZzEknZSaZJplbrn-96b21YhGzyUnynd955Tnac94BQi8Jfkcwa9_3OGpMaU37J-iA4oqUNWft3oNN8T46ivEa58UY4VQ8Q_usIpRhQQ_QzWqAyYP7uZlUsrqAUXU-ZNO7wpsiDVB8VTOE8rOK-WpWabhVm2JxQa1hjFsgprDotAQ1Fr1dQ4g2bYpbmwbrClimLOmyNdurCVyKL9BTo8YIR_f7IfpxfvZ99bG8_HLxafXhstRVK1LJKOcNB2F0XbOqp1AZYfp84ErzzihDCRjeESIaQ_qmFp3pRN8o1jCuhQB2iE52uvPSTdDrHDtnKOdgJxU20isr_35xdpBXfi0bUjNGWRZ4ey8Q_M0CMcnJRg1jLgf8EiXlVW4hFuQOffMIvfZLcLk8SSuGGedt1WYK7ygdfIwBjNQ2bVud49tREizvRipP8bfVdqSn2eX4kcvv_P8Jv97BIeoH7s__kHNvMvPqfwz7BUFEumQ
CitedBy_id crossref_primary_10_1002_cbic_202200021
crossref_primary_10_1039_D1SC05512G
crossref_primary_10_1093_jimb_kuad014
crossref_primary_10_3390_bioengineering10010013
crossref_primary_10_1039_D4SC05453A
crossref_primary_10_1039_D1SC06755A
crossref_primary_10_1039_D2SC06418A
crossref_primary_10_3390_ijms25158490
crossref_primary_10_1021_acs_accounts_5c00120
crossref_primary_10_1002_macp_202300025
crossref_primary_10_1111_jam_15046
crossref_primary_10_1016_j_dyepig_2023_111360
crossref_primary_10_1021_jacs_0c12322
crossref_primary_10_1016_j_ejmech_2022_114525
Cites_doi 10.1111/j.1365-2672.2006.02866.x
10.1006/jmre.2002.2599
10.1016/S0021-9258(18)35614-X
10.1155/2014/498420
10.2174/1568026614666140523121427
10.1021/acs.jproteome.7b00500
10.1002/anie.200803786
10.1021/acs.analchem.5b01837
10.1007/s00253-011-3777-2
10.3390/ijms17091576
10.1016/0009-2614(95)00741-L
10.1152/physrev.1928.8.2.245
10.1038/jid.2013.37
10.3390/ijms18071561
10.1016/j.pnmrs.2017.06.002
10.1074/jbc.RA118.005791
10.3390/ijms18091901
10.1021/ar500273y
10.1063/1.1534105
10.1007/s12010-018-2925-x
10.1111/1523-1747.ep12480680
10.1039/C5CP06767G
10.1152/physrev.00059.2017
10.1021/ar300348n
10.1111/exd.12618
10.1021/acs.langmuir.8b02444
10.4103/1673-5374.202928
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
This journal is © The Royal Society of Chemistry.
This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
– notice: This journal is © The Royal Society of Chemistry.
– notice: This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/d0sc02262d
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
CrossRef

Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 7841
ExternalDocumentID PMC8163323
10_1039_D0SC02262D
d0sc02262d
GrantInformation_xml – fundername: ;
  grantid: FA9550-18-1-0142
GroupedDBID 0-7
0R
705
7~J
AAGNR
AAIWI
AAPBV
ABGFH
ACGFS
ACIWK
ADBBV
ADMRA
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
CKLOX
D0L
EE0
EF-
F5P
GROUPED_DOAJ
HYE
HZ
H~N
JG
O-G
O9-
OK1
R7C
R7D
RCNCU
ROYLF
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
SMJ
0R~
53G
AAFWJ
AAJAE
AARTK
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGMRB
AGRSR
AHGCF
AKBGW
ANUXI
APEMP
CITATION
H13
HZ~
PGMZT
RAOCF
RNS
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c497t-325585e7fc6634d2e4f7fdc665ac5bfaf21ef5b1178f1d867bfb7d8a3835c77e3
IEDL.DBID RRC
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000555801800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-6520
IngestDate Tue Nov 04 01:56:23 EST 2025
Wed Oct 01 14:08:50 EDT 2025
Sun Nov 09 06:23:04 EST 2025
Tue Nov 18 22:51:02 EST 2025
Sat Nov 29 05:54:14 EST 2025
Wed Nov 11 00:27:41 EST 2020
Sat Jan 08 03:53:02 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-325585e7fc6634d2e4f7fdc665ac5bfaf21ef5b1178f1d867bfb7d8a3835c77e3
Notes 10.1039/d0sc02262d
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4472-2254
0000-0001-8207-3569
0000-0001-6205-1119
0000-0001-6500-4107
OpenAccessLink http://dx.doi.org/10.1039/d0sc02262d
PMID 34123072
PQID 2430355949
PQPubID 2047492
PageCount 6
ParticipantIDs crossref_citationtrail_10_1039_D0SC02262D
crossref_primary_10_1039_D0SC02262D
rsc_primary_d0sc02262d
proquest_journals_2430355949
proquest_miscellaneous_2540720713
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8163323
PublicationCentury 2000
PublicationDate 2020-08-14
PublicationDateYYYYMMDD 2020-08-14
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-14
  day: 14
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationYear 2020
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Iwasaki (D0SC02262D-(cit7)/*[position()=1]) 2018; 34
Casanola-Martin (D0SC02262D-(cit15)/*[position()=1]) 2014; 14
Gatoo (D0SC02262D-(cit24)/*[position()=1]) 2014; 498420
Slominski (D0SC02262D-(cit4)/*[position()=1]) 2015; 4
Simpson (D0SC02262D-(cit9)/*[position()=1]) 2013; 133
Halaouli (D0SC02262D-(cit20)/*[position()=1]) 2006; 100
Li (D0SC02262D-(cit26)/*[position()=1]) 2015; 87
Ni (D0SC02262D-(cit21)/*[position()=1]) 2013; 46
Mason (D0SC02262D-(cit14)/*[position()=1]) 1948; 172
Eisenman (D0SC02262D-(cit10)/*[position()=1]) 2012; 93
Takegoshi (D0SC02262D-(cit25)/*[position()=1]) 2003; 118
Sugumaran (D0SC02262D-(cit11)/*[position()=1]) 2016; 17
Büngeler (D0SC02262D-(cit3)/*[position()=1]) 2017; 18
Raper (D0SC02262D-(cit13)/*[position()=1]) 1928; 8
Lee (D0SC02262D-(cit27)/*[position()=1]) 1995; 242
Marchetti (D0SC02262D-(cit8)/*[position()=1]) 2016; 18
Meiler (D0SC02262D-(cit19)/*[position()=1]) 2002; 157
d'Ischia (D0SC02262D-(cit23)/*[position()=1]) 2014; 47
Nosanchuk (D0SC02262D-(cit18)/*[position()=1]) 2015; 6
Lilly Thankamony (D0SC02262D-(cit22)/*[position()=1]) 2017; 102–103
Thody (D0SC02262D-(cit5)/*[position()=1]) 1991; 97
D'Alba (D0SC02262D-(cit1)/*[position()=1]) 2019; 99
Haining (D0SC02262D-(cit6)/*[position()=1]) 2017; 12
Chatterjee (D0SC02262D-(cit17)/*[position()=1]) 2018; 293
Solano (D0SC02262D-(cit2)/*[position()=1]) 2017; 18
Hing (D0SC02262D-(cit28)/*[position()=1]) 1992; 96
d'Ischia (D0SC02262D-(cit12)/*[position()=1]) 2009; 48
Jiang (D0SC02262D-(cit16)/*[position()=1]) 2019; 188
Mekala (D0SC02262D-(cit29)/*[position()=1]) 2018; 17
References_xml – volume: 100
  start-page: 219
  year: 2006
  ident: D0SC02262D-(cit20)/*[position()=1]
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/j.1365-2672.2006.02866.x
– volume: 157
  start-page: 242
  year: 2002
  ident: D0SC02262D-(cit19)/*[position()=1]
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmre.2002.2599
– volume: 172
  start-page: 83
  year: 1948
  ident: D0SC02262D-(cit14)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)35614-X
– volume: 498420
  start-page: 1
  year: 2014
  ident: D0SC02262D-(cit24)/*[position()=1]
  publication-title: Biomed Res. Int.
  doi: 10.1155/2014/498420
– volume: 14
  start-page: 1494
  year: 2014
  ident: D0SC02262D-(cit15)/*[position()=1]
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/1568026614666140523121427
– volume: 17
  start-page: 189
  year: 2018
  ident: D0SC02262D-(cit29)/*[position()=1]
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.7b00500
– volume: 48
  start-page: 3914
  year: 2009
  ident: D0SC02262D-(cit12)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200803786
– volume: 6
  start-page: 1463
  year: 2015
  ident: D0SC02262D-(cit18)/*[position()=1]
  publication-title: Front. Microbiol.
– volume: 96
  start-page: 205
  year: 1992
  ident: D0SC02262D-(cit28)/*[position()=1]
  publication-title: J. Mag. Reson.
– volume: 87
  start-page: 7958
  year: 2015
  ident: D0SC02262D-(cit26)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b01837
– volume: 93
  start-page: 931
  year: 2012
  ident: D0SC02262D-(cit10)/*[position()=1]
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-011-3777-2
– volume: 17
  start-page: E1576
  year: 2016
  ident: D0SC02262D-(cit11)/*[position()=1]
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms17091576
– volume: 242
  start-page: 304
  year: 1995
  ident: D0SC02262D-(cit27)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(95)00741-L
– volume: 8
  start-page: 245
  year: 1928
  ident: D0SC02262D-(cit13)/*[position()=1]
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.1928.8.2.245
– volume: 133
  start-page: 1822
  year: 2013
  ident: D0SC02262D-(cit9)/*[position()=1]
  publication-title: J. Invest. Dermatol.
  doi: 10.1038/jid.2013.37
– volume: 18
  start-page: E1561
  year: 2017
  ident: D0SC02262D-(cit2)/*[position()=1]
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18071561
– volume: 102–103
  start-page: 120
  year: 2017
  ident: D0SC02262D-(cit22)/*[position()=1]
  publication-title: Prog. Nucl. Magn. Reson. Spectrosc.
  doi: 10.1016/j.pnmrs.2017.06.002
– volume: 293
  start-page: 20157
  year: 2018
  ident: D0SC02262D-(cit17)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.005791
– volume: 18
  start-page: E1901
  year: 2017
  ident: D0SC02262D-(cit3)/*[position()=1]
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18091901
– volume: 47
  start-page: 3541
  year: 2014
  ident: D0SC02262D-(cit23)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar500273y
– volume: 118
  start-page: 2325
  year: 2003
  ident: D0SC02262D-(cit25)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1534105
– volume: 188
  start-page: 436
  year: 2019
  ident: D0SC02262D-(cit16)/*[position()=1]
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-018-2925-x
– volume: 97
  start-page: 340
  year: 1991
  ident: D0SC02262D-(cit5)/*[position()=1]
  publication-title: J. Invest. Dermatol.
  doi: 10.1111/1523-1747.ep12480680
– volume: 18
  start-page: 3644
  year: 2016
  ident: D0SC02262D-(cit8)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP06767G
– volume: 99
  start-page: 1
  year: 2019
  ident: D0SC02262D-(cit1)/*[position()=1]
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00059.2017
– volume: 46
  start-page: 1933
  year: 2013
  ident: D0SC02262D-(cit21)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300348n
– volume: 4
  start-page: 258
  year: 2015
  ident: D0SC02262D-(cit4)/*[position()=1]
  publication-title: Exp. Dermatol.
  doi: 10.1111/exd.12618
– volume: 34
  start-page: 11814
  year: 2018
  ident: D0SC02262D-(cit7)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b02444
– volume: 12
  start-page: 372
  year: 2017
  ident: D0SC02262D-(cit6)/*[position()=1]
  publication-title: Neural Regen. Res.
  doi: 10.4103/1673-5374.202928
SSID ssj0000331527
Score 2.4197562
Snippet Melanin is a central polymer in living organisms, yet our understanding of its molecular structure remains unresolved. Here, we apply a biosynthetic approach...
SourceID pubmedcentral
proquest
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7836
SubjectTerms Chemistry
Composite structures
Melanin
Metabolites
Molecular structure
NMR
Nuclear magnetic resonance
Pigments
Polymerization
Substrates
Title Chemoenzymatic elaboration of the Raper-Mason pathway unravels the structural diversity within eumelanin pigments
URI https://www.proquest.com/docview/2430355949
https://www.proquest.com/docview/2540720713
https://pubmed.ncbi.nlm.nih.gov/PMC8163323
Volume 11
WOSCitedRecordID wos000555801800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-6539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331527
  issn: 2041-6520
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAUL
  databaseName: Royal Society of Chemistry
  customDbUrl:
  eissn: 2041-6539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331527
  issn: 2041-6520
  databaseCode: RRC
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://pubs.rsc.org/
  providerName: Royal Society of Chemistry
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LatwwFL0kodBumr5CnSaDSrPpwtSWZEtehklCNw1l2sLsjJ7twOAZxklLsso_9A_7Jb3S2B6mpJCFQUZXWNa1pHsk-RyAE5o7FkhGUmlMINVGzKoN5WklqfAlC5eNYhPi8lJOp9XnHTj5zw4-qz6cZV_GONGU9CwMtKIM-gyTyXhYSMkY66RZacbztCxo1tOQbpXenng20eS_ZyF3V730R5xiLvYfVrln8LQLIcnp2ufPYcc1L-DxuFduewltSC9cc3sT-ViJ23iaLDzBkI9M1NKt_tz9_qQw3iZBlviXuiHXTRAjmrfRZM0sG1g5iO0Pb5CwbDtriMMRba4aTC1n3-NPcq_g28X51_HHtBNXSA2vxFXKEEvIwglvMObgljruhbd4UyhTaK88etEXOs-F9LmVpdBeCysVItrCCOHYAew1i8a9BoKozQltdams4dZoXSLe5syKQnCtpUrgfd_ytemYx4MAxryOO-CsqjfNmMC7wXa55tu41-qod2Dd9bm2xkdmGD1VvErg7ZCNTR-2QFTjFtdoE_gGaUDmCYgtxw9PC3zb2znN7Efk3ZYYuzKKJQ_wExnsbdaaWCubwOH9GfXS-sMHvdgbeEIDoA-cu_wI9tDT7hgemZ9Xs3Y1gl0xlaO4bDCKneAv5jACCg
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemoenzymatic+elaboration+of+the+Raper%E2%80%93Mason+pathway+unravels+the+structural+diversity+within+eumelanin+pigments&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Ni%2C+Qing+Zhe&rft.au=Sierra%2C+Brianna+N.&rft.au=La+Clair%2C+James+J.&rft.au=Burkart%2C+Michael+D.&rft.date=2020-08-14&rft.pub=The+Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=11&rft.issue=30&rft.spage=7836&rft.epage=7841&rft_id=info:doi/10.1039%2Fd0sc02262d&rft_id=info%3Apmid%2F34123072&rft.externalDocID=PMC8163323
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon