Dopamine transients are sufficient and necessary for acquisition of model-based associations

Learning to predict reward is thought to be driven by dopaminergic prediction errors, which reflect discrepancies between actual and expected value. Here the authors show that learning to predict neutral events is also driven by prediction errors and that such value-neutral associative learning is a...

Full description

Saved in:
Bibliographic Details
Published in:Nature neuroscience Vol. 20; no. 5; pp. 735 - 742
Main Authors: Sharpe, Melissa J, Chang, Chun Yun, Liu, Melissa A, Batchelor, Hannah M, Mueller, Lauren E, Jones, Joshua L, Niv, Yael, Schoenbaum, Geoffrey
Format: Journal Article
Language:English
Published: New York Nature Publishing Group US 01.05.2017
Nature Publishing Group
Subjects:
ISSN:1097-6256, 1546-1726, 1546-1726
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Learning to predict reward is thought to be driven by dopaminergic prediction errors, which reflect discrepancies between actual and expected value. Here the authors show that learning to predict neutral events is also driven by prediction errors and that such value-neutral associative learning is also likely mediated by dopaminergic error signals. Associative learning is driven by prediction errors. Dopamine transients correlate with these errors, which current interpretations limit to endowing cues with a scalar quantity reflecting the value of future rewards. We tested whether dopamine might act more broadly to support learning of an associative model of the environment. Using sensory preconditioning, we show that prediction errors underlying stimulus–stimulus learning can be blocked behaviorally and reinstated by optogenetically activating dopamine neurons. We further show that suppressing the firing of these neurons across the transition prevents normal stimulus–stimulus learning. These results establish that the acquisition of model-based information about transitions between nonrewarding events is also driven by prediction errors and that, contrary to existing canon, dopamine transients are both sufficient and necessary to support this type of learning. Our findings open new possibilities for how these biological signals might support associative learning in the mammalian brain in these and other contexts.
AbstractList Associative learning is driven by prediction errors. Dopamine transients correlate with these errors, which current interpretations limit to endowing cues with a scalar quantity reflecting the value of future rewards. We tested whether dopamine might act more broadly to support learning of an associative model of the environment. Using sensory preconditioning, we show that prediction errors underlying stimulus-stimulus learning can be blocked behaviorally and reinstated by optogenetically activating dopamine neurons. We further show that suppressing the firing of these neurons across the transition prevents normal stimulus-stimulus learning. These results establish that the acquisition of model-based information about transitions between nonrewarding events is also driven by prediction errors and that, contrary to existing canon, dopamine transients are both sufficient and necessary to support this type of learning. Our findings open new possibilities for how these biological signals might support associative learning in the mammalian brain in these and other contexts.Associative learning is driven by prediction errors. Dopamine transients correlate with these errors, which current interpretations limit to endowing cues with a scalar quantity reflecting the value of future rewards. We tested whether dopamine might act more broadly to support learning of an associative model of the environment. Using sensory preconditioning, we show that prediction errors underlying stimulus-stimulus learning can be blocked behaviorally and reinstated by optogenetically activating dopamine neurons. We further show that suppressing the firing of these neurons across the transition prevents normal stimulus-stimulus learning. These results establish that the acquisition of model-based information about transitions between nonrewarding events is also driven by prediction errors and that, contrary to existing canon, dopamine transients are both sufficient and necessary to support this type of learning. Our findings open new possibilities for how these biological signals might support associative learning in the mammalian brain in these and other contexts.
Associative learning is driven by prediction errors. Dopamine transients correlate with these errors, which current interpretations limit to endowing cues with a scalar quantity reflecting the value of future rewards. We tested whether dopamine might act more broadly to support learning of an associative model of the environment. Using sensory preconditioning, we show that prediction errors underlying stimulus-stimulus learning can be blocked behaviorally and reinstated by optogenetically activating dopamine neurons. We further show that suppressing the firing of these neurons across the transition prevents normal stimulus-stimulus learning. These results establish that the acquisition of model-based information about transitions between nonrewarding events is also driven by prediction errors and that, contrary to existing canon, dopamine transients are both sufficient and necessary to support this type of learning. Our findings open new possibilities for how these biological signals might support associative learning in the mammalian brain in these and other contexts.
Learning to predict reward is thought to be driven by dopaminergic prediction errors, which reflect discrepancies between actual and expected value. Here the authors show that learning to predict neutral events is also driven by prediction errors and that such value-neutral associative learning is also likely mediated by dopaminergic error signals. Associative learning is driven by prediction errors. Dopamine transients correlate with these errors, which current interpretations limit to endowing cues with a scalar quantity reflecting the value of future rewards. We tested whether dopamine might act more broadly to support learning of an associative model of the environment. Using sensory preconditioning, we show that prediction errors underlying stimulus–stimulus learning can be blocked behaviorally and reinstated by optogenetically activating dopamine neurons. We further show that suppressing the firing of these neurons across the transition prevents normal stimulus–stimulus learning. These results establish that the acquisition of model-based information about transitions between nonrewarding events is also driven by prediction errors and that, contrary to existing canon, dopamine transients are both sufficient and necessary to support this type of learning. Our findings open new possibilities for how these biological signals might support associative learning in the mammalian brain in these and other contexts.
Learning to predict reward is thought to be driven by dopaminergic prediction errors, which reflect discrepancies between actual and expected value. Here the authors show that learning to predict neutral events is also driven by prediction errors and that such value-neutral associative learning is also likely mediated by dopaminergic error signals.
Associative learning is driven by prediction errors. Dopamine transients correlate with these errors, which current interpretations limit to endowing cues with a scalar quantity reflecting the value of future rewards. Here, we tested whether dopamine might act more broadly to support learning of an associative model of the environment. Using sensory preconditioning, we show that prediction errors underlying stimulus-stimulus learning can be blocked behaviorally and reinstated by optogenetically activating dopamine neurons. We further show that suppressing the firing of these neurons across t transition prevents normal stimulus-stimulus learning. These results establish that the acquisition of model-based information about transitions between non-rewarding events is also driven by prediction errors, and that contrary to existing canon, dopamine transients are both sufficient and necessary to support this type of learning. Our findings open new possibilities for how these biological signals might support associative learning in the mammalian brain in these and other contexts.
Audience Academic
Author Sharpe, Melissa J
Liu, Melissa A
Mueller, Lauren E
Jones, Joshua L
Schoenbaum, Geoffrey
Chang, Chun Yun
Batchelor, Hannah M
Niv, Yael
AuthorAffiliation 1 NIDA Intramural Research Program, Baltimore, MD 21224
4 Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University, Baltimore, MD 21287
3 Departments of Anatomy & Neurobiology and Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201
2 Department of Psychology and Neuroscience Institute, Princeton University, Princeton, NJ 08544
AuthorAffiliation_xml – name: 2 Department of Psychology and Neuroscience Institute, Princeton University, Princeton, NJ 08544
– name: 3 Departments of Anatomy & Neurobiology and Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201
– name: 4 Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University, Baltimore, MD 21287
– name: 1 NIDA Intramural Research Program, Baltimore, MD 21224
Author_xml – sequence: 1
  givenname: Melissa J
  surname: Sharpe
  fullname: Sharpe, Melissa J
  email: melissa.sharpe@nih.gov
  organization: NIDA Intramural Research Program, Department of Psychology and Neuroscience Institute, Princeton University
– sequence: 2
  givenname: Chun Yun
  surname: Chang
  fullname: Chang, Chun Yun
  organization: NIDA Intramural Research Program
– sequence: 3
  givenname: Melissa A
  surname: Liu
  fullname: Liu, Melissa A
  organization: NIDA Intramural Research Program
– sequence: 4
  givenname: Hannah M
  surname: Batchelor
  fullname: Batchelor, Hannah M
  organization: NIDA Intramural Research Program
– sequence: 5
  givenname: Lauren E
  surname: Mueller
  fullname: Mueller, Lauren E
  organization: NIDA Intramural Research Program
– sequence: 6
  givenname: Joshua L
  surname: Jones
  fullname: Jones, Joshua L
  organization: NIDA Intramural Research Program
– sequence: 7
  givenname: Yael
  orcidid: 0000-0002-0259-8371
  surname: Niv
  fullname: Niv, Yael
  organization: Department of Psychology and Neuroscience Institute, Princeton University
– sequence: 8
  givenname: Geoffrey
  orcidid: 0000-0001-8180-0701
  surname: Schoenbaum
  fullname: Schoenbaum, Geoffrey
  email: geoffrey.schoenbaum@nih.gov
  organization: NIDA Intramural Research Program, Departments of Anatomy and of Neurobiology and Psychiatry, University of Maryland School of Medicine, Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28368385$$D View this record in MEDLINE/PubMed
BookMark eNqNkluLFDEQhYOsuLuj-A-kwQf1odekc-0XYVlvCwuClzchpNPVY5aeZDbVLfrvTTvjsg4--JQK9XGoc6pOyVFMEQh5zOgZo9y8jPFMSG7ukRMmhaqZbtRRqWmra9VIdUxOEa8ppVqa9gE5bgxXhht5Qr6-Tlu3CRGqKbuIAeKElctQ4TwMwS__ysW-iuAB0eWf1ZBy5fzNHDBMIcUqDdUm9TDWnUPoK4eYfHBLCx-S-4MbER7t3xX58vbN54v39dWHd5cX51e1F62eaqZEZ3gvZM8a4EPTONMb4zgoELo1jHZt51veaCZb6UBLYQZDhXS9oGpgnq_Iq53udu420PsydHaj3eawKRPb5IL9uxPDN7tO360UjBslisDzvUBONzPgZDcBPYyji5BmtMy0mmtDtfkPtAQruGG8oE8P0Os051iSWASb4ocWbEVe7Ki1G8GG6FOc4Me0djOivfz00Z6rYl1IyprCPrlr9Nbhn30W4NkO8DkhZhhuEUbtcik2RrtcSiHrA9KH6ffaSkJh_Ae_941FMa4h3zFzgP4CsKfMbg
CODEN NANEFN
CitedBy_id crossref_primary_10_1016_j_conb_2017_10_006
crossref_primary_10_1016_j_cub_2025_07_021
crossref_primary_10_1152_jn_00648_2020
crossref_primary_10_3390_brainsci11121581
crossref_primary_10_1038_s41593_018_0232_z
crossref_primary_10_1016_j_cobeha_2021_01_006
crossref_primary_10_1016_j_conb_2018_02_005
crossref_primary_10_1038_s41583_020_0355_6
crossref_primary_10_1016_j_neubiorev_2022_104687
crossref_primary_10_1093_schbul_sbz043
crossref_primary_10_1016_j_tics_2023_08_019
crossref_primary_10_1038_s41583_019_0234_1
crossref_primary_10_1073_pnas_1904249116
crossref_primary_10_1038_s41467_019_13953_1
crossref_primary_10_1038_s41593_018_0258_2
crossref_primary_10_1002_jnr_24587
crossref_primary_10_1016_j_tics_2019_12_005
crossref_primary_10_1111_desc_13296
crossref_primary_10_1016_j_neubiorev_2021_08_002
crossref_primary_10_1111_ejn_14152
crossref_primary_10_1016_j_neuron_2022_05_021
crossref_primary_10_1016_j_cobeha_2020_07_003
crossref_primary_10_1016_j_tics_2021_04_007
crossref_primary_10_1523_JNEUROSCI_1839_17_2017
crossref_primary_10_1177_1073858420907591
crossref_primary_10_1523_JNEUROSCI_1551_24_2025
crossref_primary_10_1016_j_ejphar_2020_173638
crossref_primary_10_1038_s41386_024_01912_4
crossref_primary_10_7554_eLife_58321
crossref_primary_10_1016_j_neubiorev_2021_06_024
crossref_primary_10_1038_s42255_023_00859_y
crossref_primary_10_1371_journal_pone_0306797
crossref_primary_10_1038_s41593_024_01643_1
crossref_primary_10_1146_annurev_neuro_112723_025228
crossref_primary_10_1038_s41467_023_44632_x
crossref_primary_10_1523_JNEUROSCI_1113_22_2022
crossref_primary_10_3389_fnbeh_2022_954646
crossref_primary_10_1016_j_dcn_2019_100732
crossref_primary_10_1073_pnas_2316658121
crossref_primary_10_1038_s41583_024_00898_8
crossref_primary_10_1162_jocn_a_01784
crossref_primary_10_1016_j_conb_2017_08_015
crossref_primary_10_1126_sciadv_adq9684
crossref_primary_10_1016_j_tics_2019_02_006
crossref_primary_10_1038_s41467_019_08922_7
crossref_primary_10_1016_j_cub_2022_06_035
crossref_primary_10_1016_j_cub_2018_11_050
crossref_primary_10_3758_s13420_018_0362_x
crossref_primary_10_1016_j_tics_2023_06_006
crossref_primary_10_1038_s41593_023_01310_x
crossref_primary_10_7554_eLife_28362
crossref_primary_10_1038_s42256_019_0053_0
crossref_primary_10_1016_j_conb_2020_10_012
crossref_primary_10_1523_JNEUROSCI_0120_24_2024
crossref_primary_10_1523_JNEUROSCI_0144_18_2018
crossref_primary_10_1111_ejn_14732
crossref_primary_10_1016_j_cub_2022_11_008
crossref_primary_10_1162_neco_a_01705
crossref_primary_10_1038_s41586_025_09089_6
crossref_primary_10_1111_ejn_16199
crossref_primary_10_1038_s41467_021_23906_2
crossref_primary_10_1016_j_neubiorev_2021_01_016
crossref_primary_10_1523_JNEUROSCI_2219_18_2018
crossref_primary_10_1016_j_neuron_2018_11_025
crossref_primary_10_1038_s42003_024_07440_7
crossref_primary_10_1016_j_cobeha_2021_04_020
crossref_primary_10_1038_s41467_023_43747_5
crossref_primary_10_7554_eLife_42383
crossref_primary_10_1038_s41380_022_01861_8
crossref_primary_10_17816_RCF651161
crossref_primary_10_1038_s41593_018_0191_4
crossref_primary_10_1523_JNEUROSCI_0194_19_2019
crossref_primary_10_1016_j_tics_2023_11_004
crossref_primary_10_7554_eLife_30373
crossref_primary_10_1016_j_neuron_2022_07_005
crossref_primary_10_1016_j_neuron_2020_09_015
crossref_primary_10_7554_eLife_49315
crossref_primary_10_1016_j_cub_2017_09_049
crossref_primary_10_1523_JNEUROSCI_1114_22_2022
crossref_primary_10_1146_annurev_neuro_110920_011929
crossref_primary_10_1016_j_plrev_2020_11_005
crossref_primary_10_1038_s41593_025_02015_z
crossref_primary_10_7554_eLife_43962
crossref_primary_10_1016_j_cobeha_2021_04_014
crossref_primary_10_7554_eLife_67778
crossref_primary_10_1016_j_neubiorev_2020_10_029
crossref_primary_10_1371_journal_pcbi_1011388
crossref_primary_10_1016_j_cub_2024_07_105
crossref_primary_10_1162_jocn_a_02215
crossref_primary_10_1016_j_neuron_2017_08_025
crossref_primary_10_1016_j_neunet_2020_03_005
crossref_primary_10_1038_s41593_022_01126_1
crossref_primary_10_1093_schbul_sby154
crossref_primary_10_3389_fnbeh_2022_1022713
crossref_primary_10_1016_j_conb_2020_08_014
crossref_primary_10_1038_nn0817_1189e
crossref_primary_10_1523_JNEUROSCI_0911_24_2025
crossref_primary_10_3389_fnins_2023_1209398
crossref_primary_10_1073_pnas_1809855116
crossref_primary_10_1016_j_cub_2017_12_059
crossref_primary_10_3389_fnbeh_2021_740992
crossref_primary_10_1017_S0140525X22000218
crossref_primary_10_1016_j_cobeha_2021_02_017
crossref_primary_10_1016_j_nlm_2023_107794
crossref_primary_10_1016_j_cub_2021_05_045
crossref_primary_10_1038_s41386_021_01188_y
crossref_primary_10_1016_j_cub_2024_05_069
crossref_primary_10_1523_JNEUROSCI_0028_23_2023
crossref_primary_10_1038_s41386_021_01264_3
crossref_primary_10_1038_s41562_023_01573_1
crossref_primary_10_1016_j_cobeha_2017_12_001
crossref_primary_10_1016_j_cobeha_2024_101464
crossref_primary_10_1016_j_neuron_2020_10_029
crossref_primary_10_1016_j_cobeha_2020_10_010
crossref_primary_10_1016_j_neubiorev_2019_12_025
crossref_primary_10_3389_fnbeh_2021_722796
crossref_primary_10_1016_j_neubiorev_2023_105085
crossref_primary_10_1016_j_cub_2025_07_083
crossref_primary_10_1016_j_neuroscience_2019_04_035
crossref_primary_10_1111_ejn_16426
crossref_primary_10_1016_j_cell_2023_12_018
crossref_primary_10_1038_s41467_024_45880_1
crossref_primary_10_3389_fnbeh_2021_749517
crossref_primary_10_1016_j_neuron_2021_09_034
crossref_primary_10_1038_s41593_020_00791_4
crossref_primary_10_1371_journal_pcbi_1008317
crossref_primary_10_1038_s41467_022_32679_1
crossref_primary_10_1176_appi_ajp_20240556
crossref_primary_10_1016_j_cell_2020_08_035
crossref_primary_10_1038_s42256_019_0025_4
crossref_primary_10_1002_wcs_70012
crossref_primary_10_1126_science_abq6740
crossref_primary_10_1523_JNEUROSCI_0078_24_2024
crossref_primary_10_1016_j_cub_2025_06_075
crossref_primary_10_1038_s41583_024_00893_z
crossref_primary_10_1073_pnas_1809298115
crossref_primary_10_1038_s41583_019_0189_2
crossref_primary_10_1016_j_cub_2025_06_076
crossref_primary_10_1038_s41467_018_04055_5
crossref_primary_10_1038_s41593_019_0567_0
crossref_primary_10_1038_s41467_024_51729_4
crossref_primary_10_3389_fnbeh_2021_745388
crossref_primary_10_1016_j_cub_2024_12_031
crossref_primary_10_1038_s41562_020_0905_y
crossref_primary_10_1038_s41598_019_42244_4
crossref_primary_10_1007_s11229_023_04168_5
crossref_primary_10_1038_s41598_022_05637_6
crossref_primary_10_1016_j_tics_2018_12_001
crossref_primary_10_1007_s11055_019_00815_y
crossref_primary_10_1038_s41593_019_0574_1
crossref_primary_10_1371_journal_pcbi_1009003
crossref_primary_10_1523_JNEUROSCI_0170_25_2025
crossref_primary_10_1016_j_cobeha_2024_101443
crossref_primary_10_1016_j_cobeha_2021_07_004
crossref_primary_10_1016_j_cub_2021_08_052
crossref_primary_10_1038_s41593_024_01705_4
crossref_primary_10_1016_j_tins_2025_02_006
Cites_doi 10.1016/j.neuron.2010.04.016
10.1126/science.275.5306.1593
10.1523/JNEUROSCI.1478-05.2005
10.1038/nn.4191
10.1038/1124
10.1038/nature10754
10.1093/cercor/bhs393
10.1038/nature06993
10.1016/S0959-4388(97)80007-4
10.7554/eLife.13665
10.1016/j.neuron.2011.02.027
10.1038/nn.4239
10.1073/pnas.1519643113
10.1111/jnc.13494
10.1016/S0006-8993(97)00265-5
10.1126/science.1168878
10.1037/0033-295X.87.6.532
10.1098/rspb.2011.0836
10.1523/JNEUROSCI.1703-13.2014
10.1038/nn.3413
10.1037/h0076778
10.1037/h0033333
10.1523/JNEUROSCI.2246-11.2011
10.1016/j.neuron.2014.08.033
10.1126/science.1223252
10.1523/JNEUROSCI.23-32-10402.2003
10.1016/S0893-6080(02)00048-5
10.1038/nn1923
10.1523/JNEUROSCI.5499-10.2011
10.1073/pnas.1417219112
10.1037/0097-7403.1.4.355
10.1016/j.neuron.2009.03.005
10.1038/nature14855
10.1111/1467-8721.ep10772598
10.1037/0097-7403.31.2.155
10.1126/science.1150605
10.1016/j.neuron.2008.01.022
10.1038/nn1560
10.1037/0735-7044.107.2.235
10.3758/BF03199951
10.1126/science.1227489
10.1016/j.conb.2014.01.001
10.1073/pnas.1606098113
10.1038/nrn.2015.26
10.1523/JNEUROSCI.23-20-07702.2003
10.1038/nn.4287
10.1037/0097-7403.3.1.77
10.1037/h0061626
10.1037/0033-295X.88.2.135
10.1037/0097-7403.30.2.104
10.1523/JNEUROSCI.1349-14.2014
10.1016/j.tics.2008.11.005
10.1037/h0058944
10.1016/j.neuron.2011.10.028
10.1152/jn.00158.2010
ContentType Journal Article
Copyright Springer Nature America, Inc. 2017
COPYRIGHT 2017 Nature Publishing Group
Copyright Nature Publishing Group May 2017
Copyright_xml – notice: Springer Nature America, Inc. 2017
– notice: COPYRIGHT 2017 Nature Publishing Group
– notice: Copyright Nature Publishing Group May 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QG
7QP
7QR
7TK
7TM
7U7
7U9
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOI 10.1038/nn.4538
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
AIDS and Cancer Research Abstracts
ProQuest Central Basic
Toxicology Abstracts
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

ProQuest One Psychology

Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1546-1726
EndPage 742
ExternalDocumentID PMC5413864
4322024461
A632745012
28368385
10_1038_nn_4538
Genre Journal Article
GeographicLocations United States
United States--US
Maryland
Baltimore Maryland
GeographicLocations_xml – name: United States
– name: Maryland
– name: United States--US
– name: Baltimore Maryland
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH098861
– fundername: Intramural NIH HHS
  grantid: ZIA DA000587
GroupedDBID ---
-DZ
.55
.GJ
0R~
123
29M
2FS
36B
39C
3V.
4.4
53G
5BI
5RE
70F
7X7
85S
88E
8AO
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABIVO
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACNCT
ACPRK
ACUHS
ADBBV
AENEX
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D0L
DB5
DU5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
EPS
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
INH
INR
IPY
ISR
ITC
M1P
M2M
M7P
MVM
N9A
NNMJJ
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
PSYQQ
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
X7M
XJT
YNT
YQT
ZGI
~8M
AAYXX
ABFSG
AETEA
AFANA
AFFHD
AGSTI
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
ACSTC
ADXHL
AEZWR
AFHIU
AHWEU
AIXLP
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
7QG
7QP
7QR
7TK
7TM
7U7
7U9
7XB
8FD
8FE
8FH
8FK
C1K
FR3
H94
K9.
LK8
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c497t-164b83d45d12e3f22a8d88a3e6e479810b9bc93271595ae7548f8045ad406f1c3
IEDL.DBID M7P
ISICitedReferencesCount 188
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000400004300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1097-6256
1546-1726
IngestDate Tue Nov 04 01:49:51 EST 2025
Sun Nov 09 11:52:03 EST 2025
Thu Oct 02 11:56:23 EDT 2025
Tue Oct 07 05:13:48 EDT 2025
Thu Nov 13 14:58:52 EST 2025
Mon Jul 21 06:02:41 EDT 2025
Sat Nov 29 05:28:41 EST 2025
Tue Nov 18 21:03:52 EST 2025
Fri Feb 21 02:39:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c497t-164b83d45d12e3f22a8d88a3e6e479810b9bc93271595ae7548f8045ad406f1c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0259-8371
0000-0001-8180-0701
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5413864
PMID 28368385
PQID 1892271081
PQPubID 44706
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5413864
proquest_miscellaneous_1897378078
proquest_miscellaneous_1883843813
proquest_journals_1892271081
gale_incontextgauss_ISR_A632745012
pubmed_primary_28368385
crossref_primary_10_1038_nn_4538
crossref_citationtrail_10_1038_nn_4538
springer_journals_10_1038_nn_4538
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature neuroscience
PublicationTitleAbbrev Nat Neurosci
PublicationTitleAlternate Nat Neurosci
PublicationYear 2017
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Sadacca, Jones, Schoenbaum (CR41) 2016; 5
McDannald, Lucantonio, Burke, Niv, Schoenbaum (CR52) 2011; 31
Dickinson, Balleine (CR36) 1994; 22
Popescu, Zhou, Poo (CR37) 2016; 113
Bromberg-Martin, Matsumoto, Hong, Hikosaka (CR43) 2010; 104
Schultz, Dayan, Montague (CR2) 1997; 275
Gläscher, Daw, Dayan, O'Doherty (CR8) 2010; 66
Cone (CR42) 2016; 113
Tobler, Dickinson, Schultz (CR24) 2003; 23
Takahashi (CR28) 2009; 62
Pan, Schmidt, Wickens, Hyland (CR25) 2005; 25
D'Ardenne, McClure, Nystrom, Cohen (CR32) 2008; 319
Nakahara (CR4) 2014; 25
Tsai (CR15) 2009; 324
Brogden (CR19) 1939; 25
Rizley, Rescorla (CR22) 1972; 81
Holland (CR51) 1977; 3
Blundell, Hall, Killcross (CR20) 2003; 23
Tolman (CR6) 1948; 55
Witten (CR31) 2011; 72
Eshel, Tian, Bukwich, Uchida (CR46) 2016; 19
Sutton, Barto (CR3) 1981; 88
Daw, Gershman, Seymour, Dayan, Dolan (CR11) 2011; 69
Jones (CR21) 2012; 338
Holland, Gallagher (CR53) 1993; 107
Adamantidis (CR16) 2011; 31
CR40
Chang (CR14) 2016; 19
Robinson (CR49) 2014; 34
Hollland, Rescorla (CR10) 1975; 1
Aitken, Greenfield, Wassum (CR44) 2016; 136
Schultz (CR5) 2016; 17
Horvitz, Stewart, Jacobs (CR30) 1997; 759
Lammel (CR47) 2008; 57
Colwill (CR9) 1993; 2
Pearce, Hall (CR39) 1980; 87
Schultz (CR1) 1997; 7
Hollerman, Schultz (CR26) 1998; 1
Sharpe, Killcross (CR55) 2014; 24
Eshel (CR13) 2015; 525
Ilango (CR17) 2014; 34
Holland (CR35) 2004; 30
Day, Roitman, Wightman, Carelli (CR34) 2007; 10
Burke, Franz, Miller, Schoenbaum (CR56) 2008; 454
Mackintosh (CR38) 1975; 82
Johnson, Fenton, Kentros, Redish (CR50) 2009; 13
Parker (CR33) 2016; 19
Daw, Niv, Dayan (CR7) 2005; 8
CR23
Wimmer, Shohamy (CR48) 2012; 338
Steinberg (CR12) 2013; 16
Kakade, Dayan (CR29) 2002; 15
Cohen, Haesler, Vong, Lowell, Uchida (CR27) 2012; 482
Deserno (CR45) 2015; 112
Stopper, Tse, Montes, Wiedman, Floresco (CR18) 2014; 84
Holland, Kenmuir (CR54) 2005; 31
AR Adamantidis (BFnn4538_CR16) 2011; 31
S Robinson (BFnn4538_CR49) 2014; 34
JR Hollerman (BFnn4538_CR26) 1998; 1
W-X Pan (BFnn4538_CR25) 2005; 25
CY Chang (BFnn4538_CR14) 2016; 19
RS Sutton (BFnn4538_CR3) 1981; 88
WJ Brogden (BFnn4538_CR19) 1939; 25
KA Burke (BFnn4538_CR56) 2008; 454
ND Daw (BFnn4538_CR7) 2005; 8
EE Steinberg (BFnn4538_CR12) 2013; 16
MA McDannald (BFnn4538_CR52) 2011; 31
GE Wimmer (BFnn4538_CR48) 2012; 338
BFnn4538_CR23
A Ilango (BFnn4538_CR17) 2014; 34
K D'Ardenne (BFnn4538_CR32) 2008; 319
W Schultz (BFnn4538_CR5) 2016; 17
A Johnson (BFnn4538_CR50) 2009; 13
W Schultz (BFnn4538_CR2) 1997; 275
L Deserno (BFnn4538_CR45) 2015; 112
PC Holland (BFnn4538_CR54) 2005; 31
J Gläscher (BFnn4538_CR8) 2010; 66
NJ Mackintosh (BFnn4538_CR38) 1975; 82
RM Colwill (BFnn4538_CR9) 1993; 2
RC Rizley (BFnn4538_CR22) 1972; 81
JJ Day (BFnn4538_CR34) 2007; 10
PN Tobler (BFnn4538_CR24) 2003; 23
HC Tsai (BFnn4538_CR15) 2009; 324
N Eshel (BFnn4538_CR46) 2016; 19
W Schultz (BFnn4538_CR1) 1997; 7
PC Holland (BFnn4538_CR51) 1977; 3
TJ Aitken (BFnn4538_CR44) 2016; 136
MJ Sharpe (BFnn4538_CR55) 2014; 24
PC Holland (BFnn4538_CR35) 2004; 30
H Nakahara (BFnn4538_CR4) 2014; 25
IB Witten (BFnn4538_CR31) 2011; 72
PC Holland (BFnn4538_CR53) 1993; 107
BFnn4538_CR40
N Eshel (BFnn4538_CR13) 2015; 525
JL Jones (BFnn4538_CR21) 2012; 338
AT Popescu (BFnn4538_CR37) 2016; 113
JM Pearce (BFnn4538_CR39) 1980; 87
S Lammel (BFnn4538_CR47) 2008; 57
EC Tolman (BFnn4538_CR6) 1948; 55
YK Takahashi (BFnn4538_CR28) 2009; 62
JJ Cone (BFnn4538_CR42) 2016; 113
ES Bromberg-Martin (BFnn4538_CR43) 2010; 104
BF Sadacca (BFnn4538_CR41) 2016; 5
S Kakade (BFnn4538_CR29) 2002; 15
ND Daw (BFnn4538_CR11) 2011; 69
P Blundell (BFnn4538_CR20) 2003; 23
NF Parker (BFnn4538_CR33) 2016; 19
A Dickinson (BFnn4538_CR36) 1994; 22
CM Stopper (BFnn4538_CR18) 2014; 84
JY Cohen (BFnn4538_CR27) 2012; 482
JC Horvitz (BFnn4538_CR30) 1997; 759
PC Hollland (BFnn4538_CR10) 1975; 1
28745727 - Nat Neurosci. 2017 Jul 26;20(8):1189. doi: 10.1038/nn0817-1189e.
30018354 - Nat Neurosci. 2018 Oct;21(10):1493. doi: 10.1038/s41593-018-0202-5.
References_xml – volume: 84
  start-page: 177
  year: 2014
  end-page: 189
  ident: CR18
  article-title: Overriding phasic dopamine signals redirects action selection during risk/reward decision making
  publication-title: Neuron
– volume: 72
  start-page: 721
  year: 2011
  end-page: 733
  ident: CR31
  article-title: Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement
  publication-title: Neuron
– volume: 66
  start-page: 585
  year: 2010
  end-page: 595
  ident: CR8
  article-title: States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.04.016
– volume: 338
  start-page: 953
  year: 2012
  end-page: 956
  ident: CR21
  article-title: Orbitofrontal cortex supports behavior and learning using inferred but not cached values
  publication-title: Science
– volume: 13
  start-page: 55
  year: 2009
  end-page: 64
  ident: CR50
  article-title: Looking for cognition in the structure within the noise
  publication-title: Trends Cogn. Sci.
– volume: 19
  start-page: 111
  year: 2016
  end-page: 116
  ident: CR14
  article-title: Brief optogenetic inhibition of dopamine neurons mimics endogenous negative prediction errors
  publication-title: Nat. Neurosci.
– volume: 454
  start-page: 340
  year: 2008
  end-page: 344
  ident: CR56
  article-title: The role of the orbitofrontal cortex in the pursuit of happiness and more specific rewards
  publication-title: Nature
– volume: 55
  start-page: 189
  year: 1948
  end-page: 208
  ident: CR6
  article-title: Cognitive maps in rats and men
  publication-title: Psychol. Rev.
– volume: 15
  start-page: 549
  year: 2002
  end-page: 559
  ident: CR29
  article-title: Dopamine: generalization and bonuses
  publication-title: Neural Netw.
– volume: 759
  start-page: 251
  year: 1997
  end-page: 258
  ident: CR30
  article-title: Burst activity of ventral tegmental dopamine neurons is elicited by sensory stimuli in the awake cat
  publication-title: Brain Res.
– volume: 2
  start-page: 111
  year: 1993
  end-page: 116
  ident: CR9
  article-title: An associative analysis of instrumental learning
  publication-title: Curr. Dir. Psychol. Sci.
– volume: 104
  start-page: 1068
  year: 2010
  end-page: 1076
  ident: CR43
  article-title: A pallidus-habenula-dopamine pathway signals inferred stimulus values
  publication-title: J. Neurophysiol.
– volume: 25
  start-page: 123
  year: 2014
  end-page: 129
  ident: CR4
  article-title: Multiplexing signals in reinforcement learning with internal models and dopamine
  publication-title: Curr. Opin. Neurobiol.
– volume: 30
  start-page: 104
  year: 2004
  end-page: 117
  ident: CR35
  article-title: Relations between Pavlovian-instrumental transfer and reinforcer devaluation
  publication-title: J. Exp. Psychol. Anim. Behav. Process.
– volume: 319
  start-page: 1264
  year: 2008
  end-page: 1267
  ident: CR32
  article-title: BOLD responses reflecting dopaminergic signals in the human ventral tegmental area
  publication-title: Science
– volume: 81
  start-page: 1
  year: 1972
  end-page: 11
  ident: CR22
  article-title: Associations in second-order conditioning and sensory preconditioning
  publication-title: J Comp Physiol Psychol
– volume: 3
  start-page: 77
  year: 1977
  end-page: 104
  ident: CR51
  article-title: Conditioned stimulus as a determinant of the form of the Pavlovian conditioned response
  publication-title: J. Exp. Psychol. Anim. Behav. Process.
– volume: 17
  start-page: 183
  year: 2016
  end-page: 195
  ident: CR5
  article-title: Dopamine reward prediction-error signalling: a two-component response
  publication-title: Nat. Rev. Neurosci.
– volume: 23
  start-page: 10402
  year: 2003
  end-page: 10410
  ident: CR24
  article-title: Coding of predicted reward omission by dopamine neurons in a conditioned inhibition paradigm
  publication-title: J. Neurosci.
– volume: 16
  start-page: 966
  year: 2013
  end-page: 973
  ident: CR12
  article-title: A causal link between prediction errors, dopamine neurons and learning
  publication-title: Nat. Neurosci.
– volume: 23
  start-page: 7702
  year: 2003
  end-page: 7709
  ident: CR20
  article-title: Preserved sensitivity to outcome value after lesions of the basolateral amygdala
  publication-title: J. Neurosci.
– volume: 19
  start-page: 845
  year: 2016
  end-page: 854
  ident: CR33
  article-title: Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target
  publication-title: Nat. Neurosci.
– volume: 62
  start-page: 269
  year: 2009
  end-page: 280
  ident: CR28
  article-title: The orbitofrontal cortex and ventral tegmental area are necessary for learning from unexpected outcomes
  publication-title: Neuron
– volume: 324
  start-page: 1080
  year: 2009
  end-page: 1084
  ident: CR15
  article-title: Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning
  publication-title: Science
– volume: 82
  start-page: 276
  year: 1975
  end-page: 298
  ident: CR38
  article-title: A theory of attention: variations in the associability of stimuli with reinforcement
  publication-title: Psychol. Rev.
– volume: 31
  start-page: 155
  year: 2005
  end-page: 171
  ident: CR54
  article-title: Variations in unconditioned stimulus processing in unblocking
  publication-title: J. Exp. Psychol. Anim. Behav. Process.
– volume: 1
  start-page: 355
  year: 1975
  end-page: 363
  ident: CR10
  article-title: The effect of two ways of devaluing the unconditioned stimulus after first- and second-order appetitive conditioning
  publication-title: J. Exp. Psychol. Anim. Behav. Process.
– volume: 136
  start-page: 1026
  year: 2016
  end-page: 1036
  ident: CR44
  article-title: Nucleus accumbens core dopamine signaling tracks the need-based motivational value of food-paired cues
  publication-title: J. Neurochem.
– volume: 5
  start-page: e13665
  year: 2016
  ident: CR41
  article-title: Midbrain dopamine neurons compute inferred and cached value prediction errors in a common framework
  publication-title: eLife
– volume: 31
  start-page: 10829
  year: 2011
  end-page: 10835
  ident: CR16
  article-title: Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior
  publication-title: J. Neurosci.
– volume: 25
  start-page: 6235
  year: 2005
  end-page: 6242
  ident: CR25
  article-title: Dopamine cells respond to predicted events during classical conditioning: evidence for eligibility traces in the reward-learning network
  publication-title: J. Neurosci.
– volume: 19
  start-page: 479
  year: 2016
  end-page: 486
  ident: CR46
  article-title: Dopamine neurons share common response function for reward prediction error
  publication-title: Nat. Neurosci.
– volume: 22
  start-page: 1
  year: 1994
  end-page: 18
  ident: CR36
  article-title: Motivational control of goal-directed action
  publication-title: Anim. Learn. Behav.
– volume: 112
  start-page: 1595
  year: 2015
  end-page: 1600
  ident: CR45
  article-title: Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 34
  start-page: 817
  year: 2014
  end-page: 822
  ident: CR17
  article-title: Similar roles of substantia nigra and ventral tegmental dopamine neurons in reward and aversion
  publication-title: J. Neurosci.
– volume: 107
  start-page: 235
  year: 1993
  end-page: 245
  ident: CR53
  article-title: Effects of amygdala central nucleus lesions on blocking and unblocking
  publication-title: Behav. Neurosci.
– ident: CR40
– volume: 34
  start-page: 10982
  year: 2014
  end-page: 10988
  ident: CR49
  article-title: Chemogenetic silencing of neurons in retrosplenial cortex disrupts sensory preconditioning
  publication-title: J. Neurosci.
– ident: CR23
– volume: 113
  start-page: E3169
  year: 2016
  end-page: E3176
  ident: CR37
  article-title: Phasic dopamine release in the medial prefrontal cortex enhances stimulus discrimination
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 338
  start-page: 270
  year: 2012
  end-page: 273
  ident: CR48
  article-title: Preference by association: how memory mechanisms in the hippocampus bias decisions
  publication-title: Science
– volume: 8
  start-page: 1704
  year: 2005
  end-page: 1711
  ident: CR7
  article-title: Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control
  publication-title: Nat. Neurosci.
– volume: 69
  start-page: 1204
  year: 2011
  end-page: 1215
  ident: CR11
  article-title: Model-based influences on humans' choices and striatal prediction errors
  publication-title: Neuron
– volume: 482
  start-page: 85
  year: 2012
  end-page: 88
  ident: CR27
  article-title: Neuron-type-specific signals for reward and punishment in the ventral tegmental area
  publication-title: Nature
– volume: 1
  start-page: 304
  year: 1998
  end-page: 309
  ident: CR26
  article-title: Dopamine neurons report an error in the temporal prediction of reward during learning
  publication-title: Nat. Neurosci.
– volume: 31
  start-page: 2700
  year: 2011
  end-page: 2705
  ident: CR52
  article-title: Ventral striatum and orbitofrontal cortex are both required for model-based, but not model-free, reinforcement learning
  publication-title: J. Neurosci.
– volume: 275
  start-page: 1593
  year: 1997
  end-page: 1599
  ident: CR2
  article-title: A neural substrate of prediction and reward
  publication-title: Science
  doi: 10.1126/science.275.5306.1593
– volume: 10
  start-page: 1020
  year: 2007
  end-page: 1028
  ident: CR34
  article-title: Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens
  publication-title: Nat. Neurosci.
– volume: 24
  start-page: 1066
  year: 2014
  end-page: 1074
  ident: CR55
  article-title: The prelimbic cortex contributes to the down-regulation of attention toward redundant cues
  publication-title: Cereb. Cortex
– volume: 57
  start-page: 760
  year: 2008
  end-page: 773
  ident: CR47
  article-title: Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system
  publication-title: Neuron
– volume: 88
  start-page: 135
  year: 1981
  end-page: 170
  ident: CR3
  article-title: Toward a modern theory of adaptive networks: expectation and prediction
  publication-title: Psychol. Rev.
– volume: 87
  start-page: 532
  year: 1980
  end-page: 552
  ident: CR39
  article-title: A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli
  publication-title: Psychol. Rev.
– volume: 7
  start-page: 191
  year: 1997
  end-page: 197
  ident: CR1
  article-title: Dopamine neurons and their role in reward mechanisms
  publication-title: Curr. Opin. Neurobiol.
– volume: 113
  start-page: 1943
  year: 2016
  end-page: 1948
  ident: CR42
  article-title: Physiological state gates acquisition and expression of mesolimbic reward prediction signals
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 525
  start-page: 243
  year: 2015
  end-page: 246
  ident: CR13
  article-title: Arithmetic and local circuitry underlying dopamine prediction errors
  publication-title: Nature
– volume: 25
  start-page: 323
  year: 1939
  end-page: 332
  ident: CR19
  article-title: Sensory pre-conditioning
  publication-title: J. Exp. Psychol.
– volume: 25
  start-page: 6235
  year: 2005
  ident: BFnn4538_CR25
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1478-05.2005
– volume: 19
  start-page: 111
  year: 2016
  ident: BFnn4538_CR14
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4191
– volume: 1
  start-page: 304
  year: 1998
  ident: BFnn4538_CR26
  publication-title: Nat. Neurosci.
  doi: 10.1038/1124
– volume: 482
  start-page: 85
  year: 2012
  ident: BFnn4538_CR27
  publication-title: Nature
  doi: 10.1038/nature10754
– volume: 24
  start-page: 1066
  year: 2014
  ident: BFnn4538_CR55
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhs393
– volume: 454
  start-page: 340
  year: 2008
  ident: BFnn4538_CR56
  publication-title: Nature
  doi: 10.1038/nature06993
– volume: 7
  start-page: 191
  year: 1997
  ident: BFnn4538_CR1
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/S0959-4388(97)80007-4
– volume: 5
  start-page: e13665
  year: 2016
  ident: BFnn4538_CR41
  publication-title: eLife
  doi: 10.7554/eLife.13665
– volume: 69
  start-page: 1204
  year: 2011
  ident: BFnn4538_CR11
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.02.027
– volume: 19
  start-page: 479
  year: 2016
  ident: BFnn4538_CR46
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4239
– volume: 113
  start-page: 1943
  year: 2016
  ident: BFnn4538_CR42
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1519643113
– volume: 136
  start-page: 1026
  year: 2016
  ident: BFnn4538_CR44
  publication-title: J. Neurochem.
  doi: 10.1111/jnc.13494
– volume: 759
  start-page: 251
  year: 1997
  ident: BFnn4538_CR30
  publication-title: Brain Res.
  doi: 10.1016/S0006-8993(97)00265-5
– volume: 324
  start-page: 1080
  year: 2009
  ident: BFnn4538_CR15
  publication-title: Science
  doi: 10.1126/science.1168878
– ident: BFnn4538_CR23
– volume: 87
  start-page: 532
  year: 1980
  ident: BFnn4538_CR39
  publication-title: Psychol. Rev.
  doi: 10.1037/0033-295X.87.6.532
– volume: 66
  start-page: 585
  year: 2010
  ident: BFnn4538_CR8
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.04.016
– ident: BFnn4538_CR40
  doi: 10.1098/rspb.2011.0836
– volume: 34
  start-page: 817
  year: 2014
  ident: BFnn4538_CR17
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1703-13.2014
– volume: 16
  start-page: 966
  year: 2013
  ident: BFnn4538_CR12
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3413
– volume: 82
  start-page: 276
  year: 1975
  ident: BFnn4538_CR38
  publication-title: Psychol. Rev.
  doi: 10.1037/h0076778
– volume: 81
  start-page: 1
  year: 1972
  ident: BFnn4538_CR22
  publication-title: J Comp Physiol Psychol
  doi: 10.1037/h0033333
– volume: 31
  start-page: 10829
  year: 2011
  ident: BFnn4538_CR16
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2246-11.2011
– volume: 84
  start-page: 177
  year: 2014
  ident: BFnn4538_CR18
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.08.033
– volume: 338
  start-page: 270
  year: 2012
  ident: BFnn4538_CR48
  publication-title: Science
  doi: 10.1126/science.1223252
– volume: 23
  start-page: 10402
  year: 2003
  ident: BFnn4538_CR24
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-32-10402.2003
– volume: 15
  start-page: 549
  year: 2002
  ident: BFnn4538_CR29
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(02)00048-5
– volume: 10
  start-page: 1020
  year: 2007
  ident: BFnn4538_CR34
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1923
– volume: 31
  start-page: 2700
  year: 2011
  ident: BFnn4538_CR52
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5499-10.2011
– volume: 112
  start-page: 1595
  year: 2015
  ident: BFnn4538_CR45
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1417219112
– volume: 1
  start-page: 355
  year: 1975
  ident: BFnn4538_CR10
  publication-title: J. Exp. Psychol. Anim. Behav. Process.
  doi: 10.1037/0097-7403.1.4.355
– volume: 62
  start-page: 269
  year: 2009
  ident: BFnn4538_CR28
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.03.005
– volume: 525
  start-page: 243
  year: 2015
  ident: BFnn4538_CR13
  publication-title: Nature
  doi: 10.1038/nature14855
– volume: 2
  start-page: 111
  year: 1993
  ident: BFnn4538_CR9
  publication-title: Curr. Dir. Psychol. Sci.
  doi: 10.1111/1467-8721.ep10772598
– volume: 31
  start-page: 155
  year: 2005
  ident: BFnn4538_CR54
  publication-title: J. Exp. Psychol. Anim. Behav. Process.
  doi: 10.1037/0097-7403.31.2.155
– volume: 319
  start-page: 1264
  year: 2008
  ident: BFnn4538_CR32
  publication-title: Science
  doi: 10.1126/science.1150605
– volume: 57
  start-page: 760
  year: 2008
  ident: BFnn4538_CR47
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.01.022
– volume: 8
  start-page: 1704
  year: 2005
  ident: BFnn4538_CR7
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1560
– volume: 107
  start-page: 235
  year: 1993
  ident: BFnn4538_CR53
  publication-title: Behav. Neurosci.
  doi: 10.1037/0735-7044.107.2.235
– volume: 22
  start-page: 1
  year: 1994
  ident: BFnn4538_CR36
  publication-title: Anim. Learn. Behav.
  doi: 10.3758/BF03199951
– volume: 338
  start-page: 953
  year: 2012
  ident: BFnn4538_CR21
  publication-title: Science
  doi: 10.1126/science.1227489
– volume: 275
  start-page: 1593
  year: 1997
  ident: BFnn4538_CR2
  publication-title: Science
  doi: 10.1126/science.275.5306.1593
– volume: 25
  start-page: 123
  year: 2014
  ident: BFnn4538_CR4
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2014.01.001
– volume: 113
  start-page: E3169
  year: 2016
  ident: BFnn4538_CR37
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1606098113
– volume: 17
  start-page: 183
  year: 2016
  ident: BFnn4538_CR5
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn.2015.26
– volume: 23
  start-page: 7702
  year: 2003
  ident: BFnn4538_CR20
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-20-07702.2003
– volume: 19
  start-page: 845
  year: 2016
  ident: BFnn4538_CR33
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4287
– volume: 3
  start-page: 77
  year: 1977
  ident: BFnn4538_CR51
  publication-title: J. Exp. Psychol. Anim. Behav. Process.
  doi: 10.1037/0097-7403.3.1.77
– volume: 55
  start-page: 189
  year: 1948
  ident: BFnn4538_CR6
  publication-title: Psychol. Rev.
  doi: 10.1037/h0061626
– volume: 88
  start-page: 135
  year: 1981
  ident: BFnn4538_CR3
  publication-title: Psychol. Rev.
  doi: 10.1037/0033-295X.88.2.135
– volume: 30
  start-page: 104
  year: 2004
  ident: BFnn4538_CR35
  publication-title: J. Exp. Psychol. Anim. Behav. Process.
  doi: 10.1037/0097-7403.30.2.104
– volume: 34
  start-page: 10982
  year: 2014
  ident: BFnn4538_CR49
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1349-14.2014
– volume: 13
  start-page: 55
  year: 2009
  ident: BFnn4538_CR50
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2008.11.005
– volume: 25
  start-page: 323
  year: 1939
  ident: BFnn4538_CR19
  publication-title: J. Exp. Psychol.
  doi: 10.1037/h0058944
– volume: 72
  start-page: 721
  year: 2011
  ident: BFnn4538_CR31
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.10.028
– volume: 104
  start-page: 1068
  year: 2010
  ident: BFnn4538_CR43
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00158.2010
– reference: 28745727 - Nat Neurosci. 2017 Jul 26;20(8):1189. doi: 10.1038/nn0817-1189e.
– reference: 30018354 - Nat Neurosci. 2018 Oct;21(10):1493. doi: 10.1038/s41593-018-0202-5.
SSID ssj0007589
Score 2.6146321
Snippet Learning to predict reward is thought to be driven by dopaminergic prediction errors, which reflect discrepancies between actual and expected value. Here the...
Associative learning is driven by prediction errors. Dopamine transients correlate with these errors, which current interpretations limit to endowing cues with...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 735
SubjectTerms 631/378/116
631/378/1595
Animal Genetics and Genomics
Animals
Animals, Genetically Modified
Association Learning - physiology
Behavior
Behavioral Sciences
Biological Techniques
Biomedicine
Conditioning, Psychological
Cues
Dopamine
Dopaminergic Neurons - physiology
Female
Health aspects
Male
Neurobiology
Neurons
Neurosciences
Physiological aspects
Psychological aspects
Rats
Reward
Rewards (Psychology)
Ventral Tegmental Area - physiology
Title Dopamine transients are sufficient and necessary for acquisition of model-based associations
URI https://link.springer.com/article/10.1038/nn.4538
https://www.ncbi.nlm.nih.gov/pubmed/28368385
https://www.proquest.com/docview/1892271081
https://www.proquest.com/docview/1883843813
https://www.proquest.com/docview/1897378078
https://pubmed.ncbi.nlm.nih.gov/PMC5413864
Volume 20
WOSCitedRecordID wos000400004300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1546-1726
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0007589
  issn: 1097-6256
  databaseCode: M7P
  dateStart: 19980601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1546-1726
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0007589
  issn: 1097-6256
  databaseCode: 7X7
  dateStart: 19980601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-1726
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0007589
  issn: 1097-6256
  databaseCode: BENPR
  dateStart: 19980601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database (ProQuest)
  customDbUrl:
  eissn: 1546-1726
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0007589
  issn: 1097-6256
  databaseCode: M2M
  dateStart: 19980601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xjQde-DUYgVEZhPYW1sRJbD-hAptAYlU1QOoDUuTEDlRi7tY0SPvvuXPSrC3SXniJFOXUOL2z7zvf3WeAN0WVSWN4EepKmjCx6TAs0I-EtkzscKhVVSjfKPxFjMdyOlWTbsOt7soqV2uiX6jNvKQ98uNIqjhGdyijd5dXIZ0aRdnV7giNHdgjloTYl-5N-pUYsbDy2U4lQsT5Wds0S5Tgx869TVJqSlnzRttr8ppT2i6Y3Mqaemd0-uB_P-Mh3O9gKBu1dvMI7lj3GPZHDkPwi2t2xHxhqN9x34cfHzGwvkA0ypbk2KiBsmZ6YVndeP4JvGfaGeYstRzoxTVDIMx0edXM2oIwNq-YP3EnJJ9pmL4xifoJfD89-fbhU9gdyhCWiRLLEMOrQnKTpCaKLa_iWEsjpeY2s4lQMhoWqigRFArESam2AiOiSiJu1AahQxWV_Cnsurmzz4DxjGSJTx9xY1pG2nATobOsKqMwbi0DOFopJy87xnI6OON37jPnXObO5aTFAFgveNmSdPwr8pq0mxPlhaOamp-6qev889fzfJThaJMUPXUAhyul5d1UrvMbjQXwqn-Mk5AyK9rZeUMykksiS-O3ySjBBdH7B3DQmlM_WMR4Gf5CGoDYMLRegEjAN5-42S9PBp4iCpFZgu9dmeTa0Df_g-e3f94LuBcTZvHVnIewu1w09iXcLf8sZ_ViADtiKvxVDmDv_cl4co53Z_HZwM-5v1MgM3A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQXXuVhKLAg6M009vqxe0AoolSNmkYIitRDJbP2riESXadxAsqf4jcys47TJEi99cAx8shZO9_O923mBfA6LxOhNc99VQrtRybu-DnyiG-KyHQ6Spa5dIXC_XQwECcn8tMG_GlrYSitsvWJzlHrqqD_yHcDIcMQ6VAE70fnPk2NouhqO0KjgcWhmf3GI1v9rreHv--bMNz_ePzhwJ9PFfCLSKYTH88HueA6inUQGl6GoRJaCMVNYqJUiqCTy7xAVZMi0cfKpCjpS4HCR2nkvjIoON73GlyPqGSUUgXDo4XnR-0tXXRVpj6eK5KmSJdakO9a-zaKqQhmif3WOWCJBNcTNNeitI789u_8b6_tLtyey2zWbfbFPdgw9j5sda2aVGcztsNc4quLKGzB6V41UmeottmEiJsKRGumxobVU9dfAz8zZTWzhkoq1HjGUOgzVZxPh03CG6tK5iYK-aQJNFMXkK8fwNcrec6HsGkrax4D4wnZ0rwA1MVxESjNdYBioCy1xHN54cFOC4asmHdkp8EgPzOXGcBFZm1GqPGALQxHTROSf01eEZoyaulhKWfou5rWddb78jnrJrjaKEYl4sF2C5Js7qrq7AIhHrxcXEYnQ5EjZU01JRvBBTWD45fZyJSnNL7Ag0cNfBeLRQ2b4B1iD9IVYC8MqMn56hU7_OGanceoskQS4fe2W2Bp6avv4Mnlj_cCbh4cH_Wzfm9w-BRuhaTPXObqNmxOxlPzDG4UvybDevzc7WoG3656P_wFZUaJsQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCEuvMrDUGBB0JtJ_F4fEAqkEVGrKCog9YBk1t41RKLrNI5B-Wv8OmbWdpoEqbceOFoe2Wt7Zr9vPC-AV2kecim91BY5l7avgp6dIo7YKvNVryfiPI1NofBxNB7z09N4sgN_2loYSqts90SzUcsio3_kXYfHrotwyJ1u3qRFTAbDd7NzmyZIUaS1HadRq8iRWv5G9618Oxrgt37tusPDzx8-2s2EATvz42hho6-Qck_6gXRc5eWuK7jkXHgqVH4Uc6eXxmmGDCdC0A-EipDe5xxJkJCIg7mTeXjda7AbIcnwO7D7_nA8OVnhADLx2MRa48hGLyOsS3apIXlX6zd-QCUxa1i4jQhrkLidrrkVszVQOLz9P7_EO3CrIeCsX1vMXdhR-h7s9bVYFGdLdsBMSqyJNezB10ExE2fIw9mCIJ1KR0sm5oqVlem8gcdMaMm0omILMV8ydAGYyM6raZ0Kx4qcmVlDNrEFycSFMZT34cuVPOcD6OhCq0fAvJBkaZIAMuYgc4T0pIM0Ic9ljB57ZsFBqxhJ1vRqp5EhPxOTM-DxROuENMgCthKc1e1J_hV5SZqVULMPTV_8u6jKMhl9Okn6Ia7WD5CjWLDfKkzSbGJlcqEtFrxYncbth2JKQquiIhnucWoT510mE0deRIMNLHhYq_JqschuQ7xCYEG0oeQrAWp_vnlGT3-YNugB8i8e-njf1hzWlr75Dh5f_njP4QaaQXI8Gh89gZsuETeT0roPncW8Uk_hevZrMS3nzxoTZ_Dtqg3iL7GOk8s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dopamine+transients+are+sufficient+and+necessary+for+acquisition+of+model-based+associations&rft.jtitle=Nature+neuroscience&rft.au=Sharpe%2C+Melissa+J&rft.au=Chang%2C+Chun+Yun&rft.au=Liu%2C+Melissa+A&rft.au=Batchelor%2C+Hannah+M&rft.date=2017-05-01&rft.eissn=1546-1726&rft.volume=20&rft.issue=5&rft.spage=735&rft_id=info:doi/10.1038%2Fnn.4538&rft_id=info%3Apmid%2F28368385&rft.externalDocID=28368385
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-6256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-6256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-6256&client=summon