Dopamine transients are sufficient and necessary for acquisition of model-based associations
Learning to predict reward is thought to be driven by dopaminergic prediction errors, which reflect discrepancies between actual and expected value. Here the authors show that learning to predict neutral events is also driven by prediction errors and that such value-neutral associative learning is a...
Gespeichert in:
| Veröffentlicht in: | Nature neuroscience Jg. 20; H. 5; S. 735 - 742 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Nature Publishing Group US
01.05.2017
Nature Publishing Group |
| Schlagworte: | |
| ISSN: | 1097-6256, 1546-1726, 1546-1726 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Learning to predict reward is thought to be driven by dopaminergic prediction errors, which reflect discrepancies between actual and expected value. Here the authors show that learning to predict neutral events is also driven by prediction errors and that such value-neutral associative learning is also likely mediated by dopaminergic error signals.
Associative learning is driven by prediction errors. Dopamine transients correlate with these errors, which current interpretations limit to endowing cues with a scalar quantity reflecting the value of future rewards. We tested whether dopamine might act more broadly to support learning of an associative model of the environment. Using sensory preconditioning, we show that prediction errors underlying stimulus–stimulus learning can be blocked behaviorally and reinstated by optogenetically activating dopamine neurons. We further show that suppressing the firing of these neurons across the transition prevents normal stimulus–stimulus learning. These results establish that the acquisition of model-based information about transitions between nonrewarding events is also driven by prediction errors and that, contrary to existing canon, dopamine transients are both sufficient and necessary to support this type of learning. Our findings open new possibilities for how these biological signals might support associative learning in the mammalian brain in these and other contexts. |
|---|---|
| AbstractList | Associative learning is driven by prediction errors. Dopamine transients correlate with these errors, which current interpretations limit to endowing cues with a scalar quantity reflecting the value of future rewards. We tested whether dopamine might act more broadly to support learning of an associative model of the environment. Using sensory preconditioning, we show that prediction errors underlying stimulus-stimulus learning can be blocked behaviorally and reinstated by optogenetically activating dopamine neurons. We further show that suppressing the firing of these neurons across the transition prevents normal stimulus-stimulus learning. These results establish that the acquisition of model-based information about transitions between nonrewarding events is also driven by prediction errors and that, contrary to existing canon, dopamine transients are both sufficient and necessary to support this type of learning. Our findings open new possibilities for how these biological signals might support associative learning in the mammalian brain in these and other contexts. Associative learning is driven by prediction errors. Dopamine transients correlate with these errors, which current interpretations limit to endowing cues with a scalar quantity reflecting the value of future rewards. We tested whether dopamine might act more broadly to support learning of an associative model of the environment. Using sensory preconditioning, we show that prediction errors underlying stimulus-stimulus learning can be blocked behaviorally and reinstated by optogenetically activating dopamine neurons. We further show that suppressing the firing of these neurons across the transition prevents normal stimulus-stimulus learning. These results establish that the acquisition of model-based information about transitions between nonrewarding events is also driven by prediction errors and that, contrary to existing canon, dopamine transients are both sufficient and necessary to support this type of learning. Our findings open new possibilities for how these biological signals might support associative learning in the mammalian brain in these and other contexts.Associative learning is driven by prediction errors. Dopamine transients correlate with these errors, which current interpretations limit to endowing cues with a scalar quantity reflecting the value of future rewards. We tested whether dopamine might act more broadly to support learning of an associative model of the environment. Using sensory preconditioning, we show that prediction errors underlying stimulus-stimulus learning can be blocked behaviorally and reinstated by optogenetically activating dopamine neurons. We further show that suppressing the firing of these neurons across the transition prevents normal stimulus-stimulus learning. These results establish that the acquisition of model-based information about transitions between nonrewarding events is also driven by prediction errors and that, contrary to existing canon, dopamine transients are both sufficient and necessary to support this type of learning. Our findings open new possibilities for how these biological signals might support associative learning in the mammalian brain in these and other contexts. Learning to predict reward is thought to be driven by dopaminergic prediction errors, which reflect discrepancies between actual and expected value. Here the authors show that learning to predict neutral events is also driven by prediction errors and that such value-neutral associative learning is also likely mediated by dopaminergic error signals. Associative learning is driven by prediction errors. Dopamine transients correlate with these errors, which current interpretations limit to endowing cues with a scalar quantity reflecting the value of future rewards. We tested whether dopamine might act more broadly to support learning of an associative model of the environment. Using sensory preconditioning, we show that prediction errors underlying stimulus–stimulus learning can be blocked behaviorally and reinstated by optogenetically activating dopamine neurons. We further show that suppressing the firing of these neurons across the transition prevents normal stimulus–stimulus learning. These results establish that the acquisition of model-based information about transitions between nonrewarding events is also driven by prediction errors and that, contrary to existing canon, dopamine transients are both sufficient and necessary to support this type of learning. Our findings open new possibilities for how these biological signals might support associative learning in the mammalian brain in these and other contexts. Associative learning is driven by prediction errors. Dopamine transients correlate with these errors, which current interpretations limit to endowing cues with a scalar quantity reflecting the value of future rewards. Here, we tested whether dopamine might act more broadly to support learning of an associative model of the environment. Using sensory preconditioning, we show that prediction errors underlying stimulus-stimulus learning can be blocked behaviorally and reinstated by optogenetically activating dopamine neurons. We further show that suppressing the firing of these neurons across t transition prevents normal stimulus-stimulus learning. These results establish that the acquisition of model-based information about transitions between non-rewarding events is also driven by prediction errors, and that contrary to existing canon, dopamine transients are both sufficient and necessary to support this type of learning. Our findings open new possibilities for how these biological signals might support associative learning in the mammalian brain in these and other contexts. Learning to predict reward is thought to be driven by dopaminergic prediction errors, which reflect discrepancies between actual and expected value. Here the authors show that learning to predict neutral events is also driven by prediction errors and that such value-neutral associative learning is also likely mediated by dopaminergic error signals. |
| Audience | Academic |
| Author | Sharpe, Melissa J Liu, Melissa A Mueller, Lauren E Jones, Joshua L Schoenbaum, Geoffrey Chang, Chun Yun Batchelor, Hannah M Niv, Yael |
| AuthorAffiliation | 1 NIDA Intramural Research Program, Baltimore, MD 21224 4 Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University, Baltimore, MD 21287 3 Departments of Anatomy & Neurobiology and Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201 2 Department of Psychology and Neuroscience Institute, Princeton University, Princeton, NJ 08544 |
| AuthorAffiliation_xml | – name: 2 Department of Psychology and Neuroscience Institute, Princeton University, Princeton, NJ 08544 – name: 3 Departments of Anatomy & Neurobiology and Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201 – name: 4 Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University, Baltimore, MD 21287 – name: 1 NIDA Intramural Research Program, Baltimore, MD 21224 |
| Author_xml | – sequence: 1 givenname: Melissa J surname: Sharpe fullname: Sharpe, Melissa J email: melissa.sharpe@nih.gov organization: NIDA Intramural Research Program, Department of Psychology and Neuroscience Institute, Princeton University – sequence: 2 givenname: Chun Yun surname: Chang fullname: Chang, Chun Yun organization: NIDA Intramural Research Program – sequence: 3 givenname: Melissa A surname: Liu fullname: Liu, Melissa A organization: NIDA Intramural Research Program – sequence: 4 givenname: Hannah M surname: Batchelor fullname: Batchelor, Hannah M organization: NIDA Intramural Research Program – sequence: 5 givenname: Lauren E surname: Mueller fullname: Mueller, Lauren E organization: NIDA Intramural Research Program – sequence: 6 givenname: Joshua L surname: Jones fullname: Jones, Joshua L organization: NIDA Intramural Research Program – sequence: 7 givenname: Yael orcidid: 0000-0002-0259-8371 surname: Niv fullname: Niv, Yael organization: Department of Psychology and Neuroscience Institute, Princeton University – sequence: 8 givenname: Geoffrey orcidid: 0000-0001-8180-0701 surname: Schoenbaum fullname: Schoenbaum, Geoffrey email: geoffrey.schoenbaum@nih.gov organization: NIDA Intramural Research Program, Departments of Anatomy and of Neurobiology and Psychiatry, University of Maryland School of Medicine, Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28368385$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkluLFDEQhYOsuLuj-A-kwQf1odekc-0XYVlvCwuClzchpNPVY5aeZDbVLfrvTTvjsg4--JQK9XGoc6pOyVFMEQh5zOgZo9y8jPFMSG7ukRMmhaqZbtRRqWmra9VIdUxOEa8ppVqa9gE5bgxXhht5Qr6-Tlu3CRGqKbuIAeKElctQ4TwMwS__ysW-iuAB0eWf1ZBy5fzNHDBMIcUqDdUm9TDWnUPoK4eYfHBLCx-S-4MbER7t3xX58vbN54v39dWHd5cX51e1F62eaqZEZ3gvZM8a4EPTONMb4zgoELo1jHZt51veaCZb6UBLYQZDhXS9oGpgnq_Iq53udu420PsydHaj3eawKRPb5IL9uxPDN7tO360UjBslisDzvUBONzPgZDcBPYyji5BmtMy0mmtDtfkPtAQruGG8oE8P0Os051iSWASb4ocWbEVe7Ki1G8GG6FOc4Me0djOivfz00Z6rYl1IyprCPrlr9Nbhn30W4NkO8DkhZhhuEUbtcik2RrtcSiHrA9KH6ffaSkJh_Ae_941FMa4h3zFzgP4CsKfMbg |
| CODEN | NANEFN |
| CitedBy_id | crossref_primary_10_1016_j_conb_2017_10_006 crossref_primary_10_1016_j_cub_2025_07_021 crossref_primary_10_1152_jn_00648_2020 crossref_primary_10_3390_brainsci11121581 crossref_primary_10_1038_s41593_018_0232_z crossref_primary_10_1016_j_cobeha_2021_01_006 crossref_primary_10_1016_j_conb_2018_02_005 crossref_primary_10_1038_s41583_020_0355_6 crossref_primary_10_1016_j_neubiorev_2022_104687 crossref_primary_10_1093_schbul_sbz043 crossref_primary_10_1016_j_tics_2023_08_019 crossref_primary_10_1038_s41583_019_0234_1 crossref_primary_10_1073_pnas_1904249116 crossref_primary_10_1038_s41467_019_13953_1 crossref_primary_10_1038_s41593_018_0258_2 crossref_primary_10_1002_jnr_24587 crossref_primary_10_1016_j_tics_2019_12_005 crossref_primary_10_1111_desc_13296 crossref_primary_10_1016_j_neubiorev_2021_08_002 crossref_primary_10_1111_ejn_14152 crossref_primary_10_1016_j_neuron_2022_05_021 crossref_primary_10_1016_j_cobeha_2020_07_003 crossref_primary_10_1016_j_tics_2021_04_007 crossref_primary_10_1523_JNEUROSCI_1839_17_2017 crossref_primary_10_1177_1073858420907591 crossref_primary_10_1523_JNEUROSCI_1551_24_2025 crossref_primary_10_1016_j_ejphar_2020_173638 crossref_primary_10_1038_s41386_024_01912_4 crossref_primary_10_7554_eLife_58321 crossref_primary_10_1016_j_neubiorev_2021_06_024 crossref_primary_10_1038_s42255_023_00859_y crossref_primary_10_1371_journal_pone_0306797 crossref_primary_10_1038_s41593_024_01643_1 crossref_primary_10_1146_annurev_neuro_112723_025228 crossref_primary_10_1038_s41467_023_44632_x crossref_primary_10_1523_JNEUROSCI_1113_22_2022 crossref_primary_10_3389_fnbeh_2022_954646 crossref_primary_10_1016_j_dcn_2019_100732 crossref_primary_10_1073_pnas_2316658121 crossref_primary_10_1038_s41583_024_00898_8 crossref_primary_10_1162_jocn_a_01784 crossref_primary_10_1016_j_conb_2017_08_015 crossref_primary_10_1126_sciadv_adq9684 crossref_primary_10_1016_j_tics_2019_02_006 crossref_primary_10_1038_s41467_019_08922_7 crossref_primary_10_1016_j_cub_2022_06_035 crossref_primary_10_1016_j_cub_2018_11_050 crossref_primary_10_3758_s13420_018_0362_x crossref_primary_10_1016_j_tics_2023_06_006 crossref_primary_10_1038_s41593_023_01310_x crossref_primary_10_7554_eLife_28362 crossref_primary_10_1038_s42256_019_0053_0 crossref_primary_10_1016_j_conb_2020_10_012 crossref_primary_10_1523_JNEUROSCI_0120_24_2024 crossref_primary_10_1523_JNEUROSCI_0144_18_2018 crossref_primary_10_1111_ejn_14732 crossref_primary_10_1016_j_cub_2022_11_008 crossref_primary_10_1162_neco_a_01705 crossref_primary_10_1038_s41586_025_09089_6 crossref_primary_10_1111_ejn_16199 crossref_primary_10_1038_s41467_021_23906_2 crossref_primary_10_1016_j_neubiorev_2021_01_016 crossref_primary_10_1523_JNEUROSCI_2219_18_2018 crossref_primary_10_1016_j_neuron_2018_11_025 crossref_primary_10_1038_s42003_024_07440_7 crossref_primary_10_1016_j_cobeha_2021_04_020 crossref_primary_10_1038_s41467_023_43747_5 crossref_primary_10_7554_eLife_42383 crossref_primary_10_1038_s41380_022_01861_8 crossref_primary_10_17816_RCF651161 crossref_primary_10_1038_s41593_018_0191_4 crossref_primary_10_1523_JNEUROSCI_0194_19_2019 crossref_primary_10_1016_j_tics_2023_11_004 crossref_primary_10_7554_eLife_30373 crossref_primary_10_1016_j_neuron_2022_07_005 crossref_primary_10_1016_j_neuron_2020_09_015 crossref_primary_10_7554_eLife_49315 crossref_primary_10_1016_j_cub_2017_09_049 crossref_primary_10_1523_JNEUROSCI_1114_22_2022 crossref_primary_10_1146_annurev_neuro_110920_011929 crossref_primary_10_1016_j_plrev_2020_11_005 crossref_primary_10_1038_s41593_025_02015_z crossref_primary_10_7554_eLife_43962 crossref_primary_10_1016_j_cobeha_2021_04_014 crossref_primary_10_7554_eLife_67778 crossref_primary_10_1016_j_neubiorev_2020_10_029 crossref_primary_10_1371_journal_pcbi_1011388 crossref_primary_10_1016_j_cub_2024_07_105 crossref_primary_10_1162_jocn_a_02215 crossref_primary_10_1016_j_neuron_2017_08_025 crossref_primary_10_1016_j_neunet_2020_03_005 crossref_primary_10_1038_s41593_022_01126_1 crossref_primary_10_1093_schbul_sby154 crossref_primary_10_3389_fnbeh_2022_1022713 crossref_primary_10_1016_j_conb_2020_08_014 crossref_primary_10_1038_nn0817_1189e crossref_primary_10_1523_JNEUROSCI_0911_24_2025 crossref_primary_10_3389_fnins_2023_1209398 crossref_primary_10_1073_pnas_1809855116 crossref_primary_10_1016_j_cub_2017_12_059 crossref_primary_10_3389_fnbeh_2021_740992 crossref_primary_10_1017_S0140525X22000218 crossref_primary_10_1016_j_cobeha_2021_02_017 crossref_primary_10_1016_j_nlm_2023_107794 crossref_primary_10_1016_j_cub_2021_05_045 crossref_primary_10_1038_s41386_021_01188_y crossref_primary_10_1016_j_cub_2024_05_069 crossref_primary_10_1523_JNEUROSCI_0028_23_2023 crossref_primary_10_1038_s41386_021_01264_3 crossref_primary_10_1038_s41562_023_01573_1 crossref_primary_10_1016_j_cobeha_2017_12_001 crossref_primary_10_1016_j_cobeha_2024_101464 crossref_primary_10_1016_j_neuron_2020_10_029 crossref_primary_10_1016_j_cobeha_2020_10_010 crossref_primary_10_1016_j_neubiorev_2019_12_025 crossref_primary_10_3389_fnbeh_2021_722796 crossref_primary_10_1016_j_neubiorev_2023_105085 crossref_primary_10_1016_j_cub_2025_07_083 crossref_primary_10_1016_j_neuroscience_2019_04_035 crossref_primary_10_1111_ejn_16426 crossref_primary_10_1016_j_cell_2023_12_018 crossref_primary_10_1038_s41467_024_45880_1 crossref_primary_10_3389_fnbeh_2021_749517 crossref_primary_10_1016_j_neuron_2021_09_034 crossref_primary_10_1038_s41593_020_00791_4 crossref_primary_10_1371_journal_pcbi_1008317 crossref_primary_10_1038_s41467_022_32679_1 crossref_primary_10_1176_appi_ajp_20240556 crossref_primary_10_1016_j_cell_2020_08_035 crossref_primary_10_1038_s42256_019_0025_4 crossref_primary_10_1002_wcs_70012 crossref_primary_10_1126_science_abq6740 crossref_primary_10_1523_JNEUROSCI_0078_24_2024 crossref_primary_10_1016_j_cub_2025_06_075 crossref_primary_10_1038_s41583_024_00893_z crossref_primary_10_1073_pnas_1809298115 crossref_primary_10_1038_s41583_019_0189_2 crossref_primary_10_1016_j_cub_2025_06_076 crossref_primary_10_1038_s41467_018_04055_5 crossref_primary_10_1038_s41593_019_0567_0 crossref_primary_10_1038_s41467_024_51729_4 crossref_primary_10_3389_fnbeh_2021_745388 crossref_primary_10_1016_j_cub_2024_12_031 crossref_primary_10_1038_s41562_020_0905_y crossref_primary_10_1038_s41598_019_42244_4 crossref_primary_10_1007_s11229_023_04168_5 crossref_primary_10_1038_s41598_022_05637_6 crossref_primary_10_1016_j_tics_2018_12_001 crossref_primary_10_1007_s11055_019_00815_y crossref_primary_10_1038_s41593_019_0574_1 crossref_primary_10_1371_journal_pcbi_1009003 crossref_primary_10_1523_JNEUROSCI_0170_25_2025 crossref_primary_10_1016_j_cobeha_2024_101443 crossref_primary_10_1016_j_cobeha_2021_07_004 crossref_primary_10_1016_j_cub_2021_08_052 crossref_primary_10_1038_s41593_024_01705_4 crossref_primary_10_1016_j_tins_2025_02_006 |
| Cites_doi | 10.1016/j.neuron.2010.04.016 10.1126/science.275.5306.1593 10.1523/JNEUROSCI.1478-05.2005 10.1038/nn.4191 10.1038/1124 10.1038/nature10754 10.1093/cercor/bhs393 10.1038/nature06993 10.1016/S0959-4388(97)80007-4 10.7554/eLife.13665 10.1016/j.neuron.2011.02.027 10.1038/nn.4239 10.1073/pnas.1519643113 10.1111/jnc.13494 10.1016/S0006-8993(97)00265-5 10.1126/science.1168878 10.1037/0033-295X.87.6.532 10.1098/rspb.2011.0836 10.1523/JNEUROSCI.1703-13.2014 10.1038/nn.3413 10.1037/h0076778 10.1037/h0033333 10.1523/JNEUROSCI.2246-11.2011 10.1016/j.neuron.2014.08.033 10.1126/science.1223252 10.1523/JNEUROSCI.23-32-10402.2003 10.1016/S0893-6080(02)00048-5 10.1038/nn1923 10.1523/JNEUROSCI.5499-10.2011 10.1073/pnas.1417219112 10.1037/0097-7403.1.4.355 10.1016/j.neuron.2009.03.005 10.1038/nature14855 10.1111/1467-8721.ep10772598 10.1037/0097-7403.31.2.155 10.1126/science.1150605 10.1016/j.neuron.2008.01.022 10.1038/nn1560 10.1037/0735-7044.107.2.235 10.3758/BF03199951 10.1126/science.1227489 10.1016/j.conb.2014.01.001 10.1073/pnas.1606098113 10.1038/nrn.2015.26 10.1523/JNEUROSCI.23-20-07702.2003 10.1038/nn.4287 10.1037/0097-7403.3.1.77 10.1037/h0061626 10.1037/0033-295X.88.2.135 10.1037/0097-7403.30.2.104 10.1523/JNEUROSCI.1349-14.2014 10.1016/j.tics.2008.11.005 10.1037/h0058944 10.1016/j.neuron.2011.10.028 10.1152/jn.00158.2010 |
| ContentType | Journal Article |
| Copyright | Springer Nature America, Inc. 2017 COPYRIGHT 2017 Nature Publishing Group Copyright Nature Publishing Group May 2017 |
| Copyright_xml | – notice: Springer Nature America, Inc. 2017 – notice: COPYRIGHT 2017 Nature Publishing Group – notice: Copyright Nature Publishing Group May 2017 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QG 7QP 7QR 7TK 7TM 7U7 7U9 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM |
| DOI | 10.1038/nn.4538 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Toxicology Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea AIDS and Cancer Research Abstracts ProQuest Central Basic Toxicology Abstracts ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic Neurosciences Abstracts MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1546-1726 |
| EndPage | 742 |
| ExternalDocumentID | PMC5413864 4322024461 A632745012 28368385 10_1038_nn_4538 |
| Genre | Journal Article |
| GeographicLocations | United States United States--US Maryland Baltimore Maryland |
| GeographicLocations_xml | – name: United States – name: Maryland – name: United States--US – name: Baltimore Maryland |
| GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH098861 – fundername: Intramural NIH HHS grantid: ZIA DA000587 |
| GroupedDBID | --- -DZ .55 .GJ 0R~ 123 29M 2FS 36B 39C 3V. 4.4 53G 5BI 5RE 70F 7X7 85S 88E 8AO 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABIVO ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACNCT ACPRK ACUHS ADBBV AENEX AFBBN AFKRA AFRAH AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D0L DB5 DU5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL EPS ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR INH INR IPY ISR ITC M1P M2M M7P MVM N9A NNMJJ O9- ODYON P2P PQQKQ PROAC PSQYO PSYQQ Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP X7M XJT YNT YQT ZGI ~8M AAYXX ABFSG AETEA AFANA AFFHD AGSTI ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB ACSTC ADXHL AEZWR AFHIU AHWEU AIXLP CGR CUY CVF ECM EIF NFIDA NPM 7QG 7QP 7QR 7TK 7TM 7U7 7U9 7XB 8FD 8FE 8FH 8FK C1K FR3 H94 K9. LK8 P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c497t-164b83d45d12e3f22a8d88a3e6e479810b9bc93271595ae7548f8045ad406f1c3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 188 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000400004300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1097-6256 1546-1726 |
| IngestDate | Tue Nov 04 01:49:51 EST 2025 Sun Nov 09 11:52:03 EST 2025 Thu Oct 02 11:56:23 EDT 2025 Tue Oct 07 05:13:48 EDT 2025 Thu Nov 13 14:58:52 EST 2025 Mon Jul 21 06:02:41 EDT 2025 Sat Nov 29 05:28:41 EST 2025 Tue Nov 18 21:03:52 EST 2025 Fri Feb 21 02:39:30 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c497t-164b83d45d12e3f22a8d88a3e6e479810b9bc93271595ae7548f8045ad406f1c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0259-8371 0000-0001-8180-0701 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5413864 |
| PMID | 28368385 |
| PQID | 1892271081 |
| PQPubID | 44706 |
| PageCount | 8 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5413864 proquest_miscellaneous_1897378078 proquest_miscellaneous_1883843813 proquest_journals_1892271081 gale_incontextgauss_ISR_A632745012 pubmed_primary_28368385 crossref_primary_10_1038_nn_4538 crossref_citationtrail_10_1038_nn_4538 springer_journals_10_1038_nn_4538 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-05-01 |
| PublicationDateYYYYMMDD | 2017-05-01 |
| PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Nature neuroscience |
| PublicationTitleAbbrev | Nat Neurosci |
| PublicationTitleAlternate | Nat Neurosci |
| PublicationYear | 2017 |
| Publisher | Nature Publishing Group US Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
| References | Sadacca, Jones, Schoenbaum (CR41) 2016; 5 McDannald, Lucantonio, Burke, Niv, Schoenbaum (CR52) 2011; 31 Dickinson, Balleine (CR36) 1994; 22 Popescu, Zhou, Poo (CR37) 2016; 113 Bromberg-Martin, Matsumoto, Hong, Hikosaka (CR43) 2010; 104 Schultz, Dayan, Montague (CR2) 1997; 275 Gläscher, Daw, Dayan, O'Doherty (CR8) 2010; 66 Cone (CR42) 2016; 113 Tobler, Dickinson, Schultz (CR24) 2003; 23 Takahashi (CR28) 2009; 62 Pan, Schmidt, Wickens, Hyland (CR25) 2005; 25 D'Ardenne, McClure, Nystrom, Cohen (CR32) 2008; 319 Nakahara (CR4) 2014; 25 Tsai (CR15) 2009; 324 Brogden (CR19) 1939; 25 Rizley, Rescorla (CR22) 1972; 81 Holland (CR51) 1977; 3 Blundell, Hall, Killcross (CR20) 2003; 23 Tolman (CR6) 1948; 55 Witten (CR31) 2011; 72 Eshel, Tian, Bukwich, Uchida (CR46) 2016; 19 Sutton, Barto (CR3) 1981; 88 Daw, Gershman, Seymour, Dayan, Dolan (CR11) 2011; 69 Jones (CR21) 2012; 338 Holland, Gallagher (CR53) 1993; 107 Adamantidis (CR16) 2011; 31 CR40 Chang (CR14) 2016; 19 Robinson (CR49) 2014; 34 Hollland, Rescorla (CR10) 1975; 1 Aitken, Greenfield, Wassum (CR44) 2016; 136 Schultz (CR5) 2016; 17 Horvitz, Stewart, Jacobs (CR30) 1997; 759 Lammel (CR47) 2008; 57 Colwill (CR9) 1993; 2 Pearce, Hall (CR39) 1980; 87 Schultz (CR1) 1997; 7 Hollerman, Schultz (CR26) 1998; 1 Sharpe, Killcross (CR55) 2014; 24 Eshel (CR13) 2015; 525 Ilango (CR17) 2014; 34 Holland (CR35) 2004; 30 Day, Roitman, Wightman, Carelli (CR34) 2007; 10 Burke, Franz, Miller, Schoenbaum (CR56) 2008; 454 Mackintosh (CR38) 1975; 82 Johnson, Fenton, Kentros, Redish (CR50) 2009; 13 Parker (CR33) 2016; 19 Daw, Niv, Dayan (CR7) 2005; 8 CR23 Wimmer, Shohamy (CR48) 2012; 338 Steinberg (CR12) 2013; 16 Kakade, Dayan (CR29) 2002; 15 Cohen, Haesler, Vong, Lowell, Uchida (CR27) 2012; 482 Deserno (CR45) 2015; 112 Stopper, Tse, Montes, Wiedman, Floresco (CR18) 2014; 84 Holland, Kenmuir (CR54) 2005; 31 AR Adamantidis (BFnn4538_CR16) 2011; 31 S Robinson (BFnn4538_CR49) 2014; 34 JR Hollerman (BFnn4538_CR26) 1998; 1 W-X Pan (BFnn4538_CR25) 2005; 25 CY Chang (BFnn4538_CR14) 2016; 19 RS Sutton (BFnn4538_CR3) 1981; 88 WJ Brogden (BFnn4538_CR19) 1939; 25 KA Burke (BFnn4538_CR56) 2008; 454 ND Daw (BFnn4538_CR7) 2005; 8 EE Steinberg (BFnn4538_CR12) 2013; 16 MA McDannald (BFnn4538_CR52) 2011; 31 GE Wimmer (BFnn4538_CR48) 2012; 338 BFnn4538_CR23 A Ilango (BFnn4538_CR17) 2014; 34 K D'Ardenne (BFnn4538_CR32) 2008; 319 W Schultz (BFnn4538_CR5) 2016; 17 A Johnson (BFnn4538_CR50) 2009; 13 W Schultz (BFnn4538_CR2) 1997; 275 L Deserno (BFnn4538_CR45) 2015; 112 PC Holland (BFnn4538_CR54) 2005; 31 J Gläscher (BFnn4538_CR8) 2010; 66 NJ Mackintosh (BFnn4538_CR38) 1975; 82 RM Colwill (BFnn4538_CR9) 1993; 2 RC Rizley (BFnn4538_CR22) 1972; 81 JJ Day (BFnn4538_CR34) 2007; 10 PN Tobler (BFnn4538_CR24) 2003; 23 HC Tsai (BFnn4538_CR15) 2009; 324 N Eshel (BFnn4538_CR46) 2016; 19 W Schultz (BFnn4538_CR1) 1997; 7 PC Holland (BFnn4538_CR51) 1977; 3 TJ Aitken (BFnn4538_CR44) 2016; 136 MJ Sharpe (BFnn4538_CR55) 2014; 24 PC Holland (BFnn4538_CR35) 2004; 30 H Nakahara (BFnn4538_CR4) 2014; 25 IB Witten (BFnn4538_CR31) 2011; 72 PC Holland (BFnn4538_CR53) 1993; 107 BFnn4538_CR40 N Eshel (BFnn4538_CR13) 2015; 525 JL Jones (BFnn4538_CR21) 2012; 338 AT Popescu (BFnn4538_CR37) 2016; 113 JM Pearce (BFnn4538_CR39) 1980; 87 S Lammel (BFnn4538_CR47) 2008; 57 EC Tolman (BFnn4538_CR6) 1948; 55 YK Takahashi (BFnn4538_CR28) 2009; 62 JJ Cone (BFnn4538_CR42) 2016; 113 ES Bromberg-Martin (BFnn4538_CR43) 2010; 104 BF Sadacca (BFnn4538_CR41) 2016; 5 S Kakade (BFnn4538_CR29) 2002; 15 ND Daw (BFnn4538_CR11) 2011; 69 P Blundell (BFnn4538_CR20) 2003; 23 NF Parker (BFnn4538_CR33) 2016; 19 A Dickinson (BFnn4538_CR36) 1994; 22 CM Stopper (BFnn4538_CR18) 2014; 84 JY Cohen (BFnn4538_CR27) 2012; 482 JC Horvitz (BFnn4538_CR30) 1997; 759 PC Hollland (BFnn4538_CR10) 1975; 1 28745727 - Nat Neurosci. 2017 Jul 26;20(8):1189. doi: 10.1038/nn0817-1189e. 30018354 - Nat Neurosci. 2018 Oct;21(10):1493. doi: 10.1038/s41593-018-0202-5. |
| References_xml | – volume: 84 start-page: 177 year: 2014 end-page: 189 ident: CR18 article-title: Overriding phasic dopamine signals redirects action selection during risk/reward decision making publication-title: Neuron – volume: 72 start-page: 721 year: 2011 end-page: 733 ident: CR31 article-title: Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement publication-title: Neuron – volume: 66 start-page: 585 year: 2010 end-page: 595 ident: CR8 article-title: States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning publication-title: Neuron doi: 10.1016/j.neuron.2010.04.016 – volume: 338 start-page: 953 year: 2012 end-page: 956 ident: CR21 article-title: Orbitofrontal cortex supports behavior and learning using inferred but not cached values publication-title: Science – volume: 13 start-page: 55 year: 2009 end-page: 64 ident: CR50 article-title: Looking for cognition in the structure within the noise publication-title: Trends Cogn. Sci. – volume: 19 start-page: 111 year: 2016 end-page: 116 ident: CR14 article-title: Brief optogenetic inhibition of dopamine neurons mimics endogenous negative prediction errors publication-title: Nat. Neurosci. – volume: 454 start-page: 340 year: 2008 end-page: 344 ident: CR56 article-title: The role of the orbitofrontal cortex in the pursuit of happiness and more specific rewards publication-title: Nature – volume: 55 start-page: 189 year: 1948 end-page: 208 ident: CR6 article-title: Cognitive maps in rats and men publication-title: Psychol. Rev. – volume: 15 start-page: 549 year: 2002 end-page: 559 ident: CR29 article-title: Dopamine: generalization and bonuses publication-title: Neural Netw. – volume: 759 start-page: 251 year: 1997 end-page: 258 ident: CR30 article-title: Burst activity of ventral tegmental dopamine neurons is elicited by sensory stimuli in the awake cat publication-title: Brain Res. – volume: 2 start-page: 111 year: 1993 end-page: 116 ident: CR9 article-title: An associative analysis of instrumental learning publication-title: Curr. Dir. Psychol. Sci. – volume: 104 start-page: 1068 year: 2010 end-page: 1076 ident: CR43 article-title: A pallidus-habenula-dopamine pathway signals inferred stimulus values publication-title: J. Neurophysiol. – volume: 25 start-page: 123 year: 2014 end-page: 129 ident: CR4 article-title: Multiplexing signals in reinforcement learning with internal models and dopamine publication-title: Curr. Opin. Neurobiol. – volume: 30 start-page: 104 year: 2004 end-page: 117 ident: CR35 article-title: Relations between Pavlovian-instrumental transfer and reinforcer devaluation publication-title: J. Exp. Psychol. Anim. Behav. Process. – volume: 319 start-page: 1264 year: 2008 end-page: 1267 ident: CR32 article-title: BOLD responses reflecting dopaminergic signals in the human ventral tegmental area publication-title: Science – volume: 81 start-page: 1 year: 1972 end-page: 11 ident: CR22 article-title: Associations in second-order conditioning and sensory preconditioning publication-title: J Comp Physiol Psychol – volume: 3 start-page: 77 year: 1977 end-page: 104 ident: CR51 article-title: Conditioned stimulus as a determinant of the form of the Pavlovian conditioned response publication-title: J. Exp. Psychol. Anim. Behav. Process. – volume: 17 start-page: 183 year: 2016 end-page: 195 ident: CR5 article-title: Dopamine reward prediction-error signalling: a two-component response publication-title: Nat. Rev. Neurosci. – volume: 23 start-page: 10402 year: 2003 end-page: 10410 ident: CR24 article-title: Coding of predicted reward omission by dopamine neurons in a conditioned inhibition paradigm publication-title: J. Neurosci. – volume: 16 start-page: 966 year: 2013 end-page: 973 ident: CR12 article-title: A causal link between prediction errors, dopamine neurons and learning publication-title: Nat. Neurosci. – volume: 23 start-page: 7702 year: 2003 end-page: 7709 ident: CR20 article-title: Preserved sensitivity to outcome value after lesions of the basolateral amygdala publication-title: J. Neurosci. – volume: 19 start-page: 845 year: 2016 end-page: 854 ident: CR33 article-title: Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target publication-title: Nat. Neurosci. – volume: 62 start-page: 269 year: 2009 end-page: 280 ident: CR28 article-title: The orbitofrontal cortex and ventral tegmental area are necessary for learning from unexpected outcomes publication-title: Neuron – volume: 324 start-page: 1080 year: 2009 end-page: 1084 ident: CR15 article-title: Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning publication-title: Science – volume: 82 start-page: 276 year: 1975 end-page: 298 ident: CR38 article-title: A theory of attention: variations in the associability of stimuli with reinforcement publication-title: Psychol. Rev. – volume: 31 start-page: 155 year: 2005 end-page: 171 ident: CR54 article-title: Variations in unconditioned stimulus processing in unblocking publication-title: J. Exp. Psychol. Anim. Behav. Process. – volume: 1 start-page: 355 year: 1975 end-page: 363 ident: CR10 article-title: The effect of two ways of devaluing the unconditioned stimulus after first- and second-order appetitive conditioning publication-title: J. Exp. Psychol. Anim. Behav. Process. – volume: 136 start-page: 1026 year: 2016 end-page: 1036 ident: CR44 article-title: Nucleus accumbens core dopamine signaling tracks the need-based motivational value of food-paired cues publication-title: J. Neurochem. – volume: 5 start-page: e13665 year: 2016 ident: CR41 article-title: Midbrain dopamine neurons compute inferred and cached value prediction errors in a common framework publication-title: eLife – volume: 31 start-page: 10829 year: 2011 end-page: 10835 ident: CR16 article-title: Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior publication-title: J. Neurosci. – volume: 25 start-page: 6235 year: 2005 end-page: 6242 ident: CR25 article-title: Dopamine cells respond to predicted events during classical conditioning: evidence for eligibility traces in the reward-learning network publication-title: J. Neurosci. – volume: 19 start-page: 479 year: 2016 end-page: 486 ident: CR46 article-title: Dopamine neurons share common response function for reward prediction error publication-title: Nat. Neurosci. – volume: 22 start-page: 1 year: 1994 end-page: 18 ident: CR36 article-title: Motivational control of goal-directed action publication-title: Anim. Learn. Behav. – volume: 112 start-page: 1595 year: 2015 end-page: 1600 ident: CR45 article-title: Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making publication-title: Proc. Natl. Acad. Sci. USA – volume: 34 start-page: 817 year: 2014 end-page: 822 ident: CR17 article-title: Similar roles of substantia nigra and ventral tegmental dopamine neurons in reward and aversion publication-title: J. Neurosci. – volume: 107 start-page: 235 year: 1993 end-page: 245 ident: CR53 article-title: Effects of amygdala central nucleus lesions on blocking and unblocking publication-title: Behav. Neurosci. – ident: CR40 – volume: 34 start-page: 10982 year: 2014 end-page: 10988 ident: CR49 article-title: Chemogenetic silencing of neurons in retrosplenial cortex disrupts sensory preconditioning publication-title: J. Neurosci. – ident: CR23 – volume: 113 start-page: E3169 year: 2016 end-page: E3176 ident: CR37 article-title: Phasic dopamine release in the medial prefrontal cortex enhances stimulus discrimination publication-title: Proc. Natl. Acad. Sci. USA – volume: 338 start-page: 270 year: 2012 end-page: 273 ident: CR48 article-title: Preference by association: how memory mechanisms in the hippocampus bias decisions publication-title: Science – volume: 8 start-page: 1704 year: 2005 end-page: 1711 ident: CR7 article-title: Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control publication-title: Nat. Neurosci. – volume: 69 start-page: 1204 year: 2011 end-page: 1215 ident: CR11 article-title: Model-based influences on humans' choices and striatal prediction errors publication-title: Neuron – volume: 482 start-page: 85 year: 2012 end-page: 88 ident: CR27 article-title: Neuron-type-specific signals for reward and punishment in the ventral tegmental area publication-title: Nature – volume: 1 start-page: 304 year: 1998 end-page: 309 ident: CR26 article-title: Dopamine neurons report an error in the temporal prediction of reward during learning publication-title: Nat. Neurosci. – volume: 31 start-page: 2700 year: 2011 end-page: 2705 ident: CR52 article-title: Ventral striatum and orbitofrontal cortex are both required for model-based, but not model-free, reinforcement learning publication-title: J. Neurosci. – volume: 275 start-page: 1593 year: 1997 end-page: 1599 ident: CR2 article-title: A neural substrate of prediction and reward publication-title: Science doi: 10.1126/science.275.5306.1593 – volume: 10 start-page: 1020 year: 2007 end-page: 1028 ident: CR34 article-title: Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens publication-title: Nat. Neurosci. – volume: 24 start-page: 1066 year: 2014 end-page: 1074 ident: CR55 article-title: The prelimbic cortex contributes to the down-regulation of attention toward redundant cues publication-title: Cereb. Cortex – volume: 57 start-page: 760 year: 2008 end-page: 773 ident: CR47 article-title: Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system publication-title: Neuron – volume: 88 start-page: 135 year: 1981 end-page: 170 ident: CR3 article-title: Toward a modern theory of adaptive networks: expectation and prediction publication-title: Psychol. Rev. – volume: 87 start-page: 532 year: 1980 end-page: 552 ident: CR39 article-title: A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli publication-title: Psychol. Rev. – volume: 7 start-page: 191 year: 1997 end-page: 197 ident: CR1 article-title: Dopamine neurons and their role in reward mechanisms publication-title: Curr. Opin. Neurobiol. – volume: 113 start-page: 1943 year: 2016 end-page: 1948 ident: CR42 article-title: Physiological state gates acquisition and expression of mesolimbic reward prediction signals publication-title: Proc. Natl. Acad. Sci. USA – volume: 525 start-page: 243 year: 2015 end-page: 246 ident: CR13 article-title: Arithmetic and local circuitry underlying dopamine prediction errors publication-title: Nature – volume: 25 start-page: 323 year: 1939 end-page: 332 ident: CR19 article-title: Sensory pre-conditioning publication-title: J. Exp. Psychol. – volume: 25 start-page: 6235 year: 2005 ident: BFnn4538_CR25 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1478-05.2005 – volume: 19 start-page: 111 year: 2016 ident: BFnn4538_CR14 publication-title: Nat. Neurosci. doi: 10.1038/nn.4191 – volume: 1 start-page: 304 year: 1998 ident: BFnn4538_CR26 publication-title: Nat. Neurosci. doi: 10.1038/1124 – volume: 482 start-page: 85 year: 2012 ident: BFnn4538_CR27 publication-title: Nature doi: 10.1038/nature10754 – volume: 24 start-page: 1066 year: 2014 ident: BFnn4538_CR55 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhs393 – volume: 454 start-page: 340 year: 2008 ident: BFnn4538_CR56 publication-title: Nature doi: 10.1038/nature06993 – volume: 7 start-page: 191 year: 1997 ident: BFnn4538_CR1 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/S0959-4388(97)80007-4 – volume: 5 start-page: e13665 year: 2016 ident: BFnn4538_CR41 publication-title: eLife doi: 10.7554/eLife.13665 – volume: 69 start-page: 1204 year: 2011 ident: BFnn4538_CR11 publication-title: Neuron doi: 10.1016/j.neuron.2011.02.027 – volume: 19 start-page: 479 year: 2016 ident: BFnn4538_CR46 publication-title: Nat. Neurosci. doi: 10.1038/nn.4239 – volume: 113 start-page: 1943 year: 2016 ident: BFnn4538_CR42 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1519643113 – volume: 136 start-page: 1026 year: 2016 ident: BFnn4538_CR44 publication-title: J. Neurochem. doi: 10.1111/jnc.13494 – volume: 759 start-page: 251 year: 1997 ident: BFnn4538_CR30 publication-title: Brain Res. doi: 10.1016/S0006-8993(97)00265-5 – volume: 324 start-page: 1080 year: 2009 ident: BFnn4538_CR15 publication-title: Science doi: 10.1126/science.1168878 – ident: BFnn4538_CR23 – volume: 87 start-page: 532 year: 1980 ident: BFnn4538_CR39 publication-title: Psychol. Rev. doi: 10.1037/0033-295X.87.6.532 – volume: 66 start-page: 585 year: 2010 ident: BFnn4538_CR8 publication-title: Neuron doi: 10.1016/j.neuron.2010.04.016 – ident: BFnn4538_CR40 doi: 10.1098/rspb.2011.0836 – volume: 34 start-page: 817 year: 2014 ident: BFnn4538_CR17 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1703-13.2014 – volume: 16 start-page: 966 year: 2013 ident: BFnn4538_CR12 publication-title: Nat. Neurosci. doi: 10.1038/nn.3413 – volume: 82 start-page: 276 year: 1975 ident: BFnn4538_CR38 publication-title: Psychol. Rev. doi: 10.1037/h0076778 – volume: 81 start-page: 1 year: 1972 ident: BFnn4538_CR22 publication-title: J Comp Physiol Psychol doi: 10.1037/h0033333 – volume: 31 start-page: 10829 year: 2011 ident: BFnn4538_CR16 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2246-11.2011 – volume: 84 start-page: 177 year: 2014 ident: BFnn4538_CR18 publication-title: Neuron doi: 10.1016/j.neuron.2014.08.033 – volume: 338 start-page: 270 year: 2012 ident: BFnn4538_CR48 publication-title: Science doi: 10.1126/science.1223252 – volume: 23 start-page: 10402 year: 2003 ident: BFnn4538_CR24 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-32-10402.2003 – volume: 15 start-page: 549 year: 2002 ident: BFnn4538_CR29 publication-title: Neural Netw. doi: 10.1016/S0893-6080(02)00048-5 – volume: 10 start-page: 1020 year: 2007 ident: BFnn4538_CR34 publication-title: Nat. Neurosci. doi: 10.1038/nn1923 – volume: 31 start-page: 2700 year: 2011 ident: BFnn4538_CR52 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5499-10.2011 – volume: 112 start-page: 1595 year: 2015 ident: BFnn4538_CR45 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1417219112 – volume: 1 start-page: 355 year: 1975 ident: BFnn4538_CR10 publication-title: J. Exp. Psychol. Anim. Behav. Process. doi: 10.1037/0097-7403.1.4.355 – volume: 62 start-page: 269 year: 2009 ident: BFnn4538_CR28 publication-title: Neuron doi: 10.1016/j.neuron.2009.03.005 – volume: 525 start-page: 243 year: 2015 ident: BFnn4538_CR13 publication-title: Nature doi: 10.1038/nature14855 – volume: 2 start-page: 111 year: 1993 ident: BFnn4538_CR9 publication-title: Curr. Dir. Psychol. Sci. doi: 10.1111/1467-8721.ep10772598 – volume: 31 start-page: 155 year: 2005 ident: BFnn4538_CR54 publication-title: J. Exp. Psychol. Anim. Behav. Process. doi: 10.1037/0097-7403.31.2.155 – volume: 319 start-page: 1264 year: 2008 ident: BFnn4538_CR32 publication-title: Science doi: 10.1126/science.1150605 – volume: 57 start-page: 760 year: 2008 ident: BFnn4538_CR47 publication-title: Neuron doi: 10.1016/j.neuron.2008.01.022 – volume: 8 start-page: 1704 year: 2005 ident: BFnn4538_CR7 publication-title: Nat. Neurosci. doi: 10.1038/nn1560 – volume: 107 start-page: 235 year: 1993 ident: BFnn4538_CR53 publication-title: Behav. Neurosci. doi: 10.1037/0735-7044.107.2.235 – volume: 22 start-page: 1 year: 1994 ident: BFnn4538_CR36 publication-title: Anim. Learn. Behav. doi: 10.3758/BF03199951 – volume: 338 start-page: 953 year: 2012 ident: BFnn4538_CR21 publication-title: Science doi: 10.1126/science.1227489 – volume: 275 start-page: 1593 year: 1997 ident: BFnn4538_CR2 publication-title: Science doi: 10.1126/science.275.5306.1593 – volume: 25 start-page: 123 year: 2014 ident: BFnn4538_CR4 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2014.01.001 – volume: 113 start-page: E3169 year: 2016 ident: BFnn4538_CR37 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1606098113 – volume: 17 start-page: 183 year: 2016 ident: BFnn4538_CR5 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn.2015.26 – volume: 23 start-page: 7702 year: 2003 ident: BFnn4538_CR20 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-20-07702.2003 – volume: 19 start-page: 845 year: 2016 ident: BFnn4538_CR33 publication-title: Nat. Neurosci. doi: 10.1038/nn.4287 – volume: 3 start-page: 77 year: 1977 ident: BFnn4538_CR51 publication-title: J. Exp. Psychol. Anim. Behav. Process. doi: 10.1037/0097-7403.3.1.77 – volume: 55 start-page: 189 year: 1948 ident: BFnn4538_CR6 publication-title: Psychol. Rev. doi: 10.1037/h0061626 – volume: 88 start-page: 135 year: 1981 ident: BFnn4538_CR3 publication-title: Psychol. Rev. doi: 10.1037/0033-295X.88.2.135 – volume: 30 start-page: 104 year: 2004 ident: BFnn4538_CR35 publication-title: J. Exp. Psychol. Anim. Behav. Process. doi: 10.1037/0097-7403.30.2.104 – volume: 34 start-page: 10982 year: 2014 ident: BFnn4538_CR49 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1349-14.2014 – volume: 13 start-page: 55 year: 2009 ident: BFnn4538_CR50 publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2008.11.005 – volume: 25 start-page: 323 year: 1939 ident: BFnn4538_CR19 publication-title: J. Exp. Psychol. doi: 10.1037/h0058944 – volume: 72 start-page: 721 year: 2011 ident: BFnn4538_CR31 publication-title: Neuron doi: 10.1016/j.neuron.2011.10.028 – volume: 104 start-page: 1068 year: 2010 ident: BFnn4538_CR43 publication-title: J. Neurophysiol. doi: 10.1152/jn.00158.2010 – reference: 28745727 - Nat Neurosci. 2017 Jul 26;20(8):1189. doi: 10.1038/nn0817-1189e. – reference: 30018354 - Nat Neurosci. 2018 Oct;21(10):1493. doi: 10.1038/s41593-018-0202-5. |
| SSID | ssj0007589 |
| Score | 2.6148155 |
| Snippet | Learning to predict reward is thought to be driven by dopaminergic prediction errors, which reflect discrepancies between actual and expected value. Here the... Associative learning is driven by prediction errors. Dopamine transients correlate with these errors, which current interpretations limit to endowing cues with... |
| SourceID | pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 735 |
| SubjectTerms | 631/378/116 631/378/1595 Animal Genetics and Genomics Animals Animals, Genetically Modified Association Learning - physiology Behavior Behavioral Sciences Biological Techniques Biomedicine Conditioning, Psychological Cues Dopamine Dopaminergic Neurons - physiology Female Health aspects Male Neurobiology Neurons Neurosciences Physiological aspects Psychological aspects Rats Reward Rewards (Psychology) Ventral Tegmental Area - physiology |
| Title | Dopamine transients are sufficient and necessary for acquisition of model-based associations |
| URI | https://link.springer.com/article/10.1038/nn.4538 https://www.ncbi.nlm.nih.gov/pubmed/28368385 https://www.proquest.com/docview/1892271081 https://www.proquest.com/docview/1883843813 https://www.proquest.com/docview/1897378078 https://pubmed.ncbi.nlm.nih.gov/PMC5413864 |
| Volume | 20 |
| WOSCitedRecordID | wos000400004300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1546-1726 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0007589 issn: 1097-6256 databaseCode: M7P dateStart: 19980601 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1546-1726 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0007589 issn: 1097-6256 databaseCode: 7X7 dateStart: 19980601 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1546-1726 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0007589 issn: 1097-6256 databaseCode: BENPR dateStart: 19980601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1546-1726 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0007589 issn: 1097-6256 databaseCode: M2M dateStart: 19980601 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbYxgMv48eABUZlENqbWRI7sf2ECmyCh1XVAKkPSJHjOFCJuVvTIO2_585Ju7ZIe-GlUpRTa_fOvu985-8IeRvHVSkkz5ksrWNCG8mMiCuWG2cSDgFLYuvQbEKORmoy0eP-wK3pyyqXe2LYqKuZxTPyk0TpNAV3qJL3V9cMu0ZhdrVvobFD9pAlIQ2le-PVTgxYWIdsp5YMcH7eXZpFSvAT79-JDC-lrHmj7T15zSltF0xuZU2DMzp7-L_TeET2exhKh53dPCb3nH9CDoYeQvDLG3pMQ2FoOHE_ID8-QWB9CWiULtCx4QXKhpq5o00b-CfgmRpfUe_wyoGZ31AAwtTY63baFYTRWU1Dxx2GPrOi5tYkmqfk-9npt4-fWd-UgVmh5YJBeFUqXomsSlLH6zQ1qlLKcJc7IbVK4lKXFkChBJyUGSchIqoV4EZTAXSoE8ufkV0_8-6QUKecSJ2OM6tKoUujlZWOJ3klQHFGZxE5XiqnsD1jOTbO-F2EzDlXhfcFajEidCV41ZF0_CvyBrVbIOWFx5qan6ZtmuLL14timMNoRQaeOiJHS6UV_VJuiluNReT16jUsQsysGO9mLcoorpAsjd8loyWXSO8fkeedOa0GCxgvh2-AGcsNQ1sJIAn45hs__RXIwDNAISoX8LtLk1wb-uZ_8OLu6b0kD1LELKGa84jsLuate0Xu2z-LaTMfkB05keFTDcjeh9PR-AKeztPzQVhzfwE-yzK0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQGIv3MYlMMAg2FtYEzux_YBQxZhWbasQDGkPk4LjuKMSc7qmAfVP8Rs5x2m6tkh72wOPUY4S2_l8zuecGyFvOp0i54KlociNDbnSItS8U4SptjpicGCJzMA3mxD9vjw5UZ_XyJ82FwbDKlud6BV1URr8R74TSRXHYA5l9GF0EWLXKPSuti00Glgc2OlvOLJV73u78H3fxvHep-OP--Gsq0BouBKTEM4HuWQFT4ootmwQx1oWUmpmU8uFklEnV7kBViPA0CfaCqD0AwnERxdg-waRYfDcG-Qmx5RRDBWMj-aaH7i38t5VJUI4V6RNki6WIN9x7h1PMAlmwfqt2oAFI7gaoLnipfXGb-_u_7Zs98idGc2m3WZf3Cdr1j0gm12nJ-X5lG5TH_jqPQqb5HS3HOlzYNt0goYbE0QrqseWVrWvrwHXVLuCOospFXo8pUD0qTYX9bAJeKPlgPqOQiFygoLqS8hXD8m3a5nnI7LuSmefEGql5bFVncTInKtcK2mEZVFacACKVklAtlswZGZWkR0bg_zMfGQAk5lzGaImIHQuOGqKkPwr8hrRlGFJD4cxQ2e6rqqs9_VL1k1htDwBJhKQrRYk2UxVVdklQgLyan4blAx6jrSzZY0ykkksBseuklGCCWxfEJDHDXzngwUOm8ITYMZiCdhzASxyvnzHDX_4YucJsCyZcnhvuwUWhr68Bk-vnt5Lcnv_-OgwO-z1D56RjRj5mY9c3SLrk3Ftn5Nb5tdkWI1f-F1Nyffr3g9_AVV2iPU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCEuvMojUGBB0JtJ7F17dw8IBdKIqCiKCkg9VDJrew2R6DqNE1D-Gr-O2bWdJkHqrQeOkUfOrv3NzjeeF8CrbjdLGKeRx5NUe0wq7inWzbxIaeVTdFj8NHfDJvhoJE5O5HgH_jS1MDatsjkT3UGdFan9Rt7xhQwCNIfC7-R1WsS4P3g3PffsBCkbaW3GaVQQOdLL3-i-lW-HfXzXr4NgcPjlw0evnjDgpUzyuYe-QiJoxsLMDzTNg0CJTAhFdaQZl8LvJjJJkeFwNPqh0hzpfS6QBKkM7WDupxTvew12OZIM1oLd94ej8fHKDiATly7WKrmHXkZUlezahuQdY96w0JbErNnCbYuwZhK30zW3YrbOFA5u_88P8Q7cqgk46VUacxd2tLkHez2j5sXZkhwQlxLrYg17cNovpuoMeTiZW5NuS0dLomaalAvXeQN_E2UyYrQttlCzJUEXgKj0fDGpUuFIkRM3a8izbCEj6kIZyvvw9Ur2-QBapjD6ERAtNAu07IapSJhMlBQp19SPMoagUTJsw0EDjDite7XbkSE_Y5czQEVsTGwR1AayEpxW7Un-FXlpkRXbZh_GvvHvalGW8fDzcdyLcLUsRI7Shv0GMHF9iJXxBVra8GJ1GY8fG1NSRhcLKyOosG3i6GUyklNuBxu04WEF5dVikd1GeAfcMd8A-UrAtj_fvGImP1wb9BD5l4gY_m-jDmtL33wGjy_f3nO4gWoQfxqOjp7AzcASN5fSug-t-Wyhn8L19Nd8Us6e1SpO4NtVK8RfixKTDw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dopamine+transients+are+sufficient+and+necessary+for+acquisition+of+model-based+associations&rft.jtitle=Nature+neuroscience&rft.au=Sharpe%2C+Melissa+J&rft.au=Chang%2C+Chun+Yun&rft.au=Liu%2C+Melissa+A&rft.au=Batchelor%2C+Hannah+M&rft.date=2017-05-01&rft.pub=Nature+Publishing+Group&rft.issn=1097-6256&rft.volume=20&rft.issue=5&rft.spage=735&rft_id=info:doi/10.1038%2Fnn.4538&rft.externalDBID=ISR&rft.externalDocID=A632745012 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-6256&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-6256&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-6256&client=summon |