Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth: Connecting TGF-β signaling with "Warburg-like" cancer metabolism and L-lactate production
We have previously shown that a loss of stromal Cav-1 is a biomarker of poor prognosis in breast cancers. Mechanistically, a loss of Cav-1 induces the metabolic reprogramming of stromal cells, with increased autophagy/mitophagy, mitochondrial dysfunction and aerobic glycolysis. As a consequence, Cav...
Gespeichert in:
| Veröffentlicht in: | Cell cycle (Georgetown, Tex.) Jg. 11; H. 16; S. 3019 - 3035 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Taylor & Francis
15.08.2012
Landes Bioscience |
| Schlagworte: | |
| ISSN: | 1538-4101, 1551-4005, 1551-4005 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We have previously shown that a loss of stromal Cav-1 is a biomarker of poor prognosis in breast cancers. Mechanistically, a loss of Cav-1 induces the metabolic reprogramming of stromal cells, with increased autophagy/mitophagy, mitochondrial dysfunction and aerobic glycolysis. As a consequence, Cav-1-low CAFs generate nutrients (such as L-lactate) and chemical building blocks that fuel mitochondrial metabolism and the anabolic growth of adjacent breast cancer cells. It is also known that a loss of Cav-1 is associated with hyperactive TGF-β signaling. However, it remains unknown whether hyperactivation of the TGF-β signaling pathway contributes to the metabolic reprogramming of Cav-1-low CAFs. To address these issues, we overexpressed TGF-β ligands and the TGF-β receptor I (TGFβ-RI) in stromal fibroblasts and breast cancer cells. Here, we show that the role of TGF-β in tumorigenesis is compartment-specific, and that TGF-β promotes tumorigenesis by shifting cancer-associated fibroblasts toward catabolic metabolism. Importantly, the tumor-promoting effects of TGF-β are independent of the cell type generating TGF-β. Thus, stromal-derived TGF-β activates signaling in stromal cells in an autocrine fashion, leading to fibroblast activation, as judged by increased expression of myofibroblast markers, and metabolic reprogramming, with a shift toward catabolic metabolism and oxidative stress. We also show that TGF-β-activated fibroblasts promote the mitochondrial activity of adjacent cancer cells, and in a xenograft model, enhancing the growth of breast cancer cells, independently of angiogenesis. Conversely, activation of the TGF-β pathway in cancer cells does not influence tumor growth, but cancer cell-derived-TGF-β ligands affect stromal cells in a paracrine fashion, leading to fibroblast activation and enhanced tumor growth. In conclusion, ligand-dependent or cell-autonomous activation of the TGF-β pathway in stromal cells induces their metabolic reprogramming, with increased oxidative stress, autophagy/mitophagy and glycolysis, and downregulation of Cav-1. These metabolic alterations can spread among neighboring fibroblasts and greatly sustain the growth of breast cancer cells. Our data provide novel insights into the role of the TGF-β pathway in breast tumorigenesis, and establish a clear causative link between the tumor-promoting effects of TGF-β signaling and the metabolic reprogramming of the tumor microenvironment. |
|---|---|
| AbstractList | We have previously shown that a loss of stromal Cav-1 is a biomarker of poor prognosis in breast cancers. Mechanistically, a loss of Cav-1 induces the metabolic reprogramming of stromal cells, with increased autophagy/mitophagy, mitochondrial dysfunction and aerobic glycolysis. As a consequence, Cav-1-low CAFs generate nutrients (such as L-lactate) and chemical building blocks that fuel mitochondrial metabolism and the anabolic growth of adjacent breast cancer cells. It is also known that a loss of Cav-1 is associated with hyperactive TGF-β signaling. However, it remains unknown whether hyperactivation of the TGF-β signaling pathway contributes to the metabolic reprogramming of Cav-1-low CAFs. To address these issues, we overexpressed TGF-β ligands and the TGF-β receptor I (TGFβ-RI) in stromal fibroblasts and breast cancer cells. Here, we show that the role of TGF-β in tumorigenesis is compartment-specific, and that TGF-β promotes tumorigenesis by shifting cancer-associated fibroblasts toward catabolic metabolism. Importantly, the tumor-promoting effects of TGF-β are independent of the cell type generating TGF-β. Thus, stromal-derived TGF-β activates signaling in stromal cells in an autocrine fashion, leading to fibroblast activation, as judged by increased expression of myofibroblast markers, and metabolic reprogramming, with a shift toward catabolic metabolism and oxidative stress. We also show that TGF-β-activated fibroblasts promote the mitochondrial activity of adjacent cancer cells, and in a xenograft model, enhancing the growth of breast cancer cells, independently of angiogenesis. Conversely, activation of the TGF-β pathway in cancer cells does not influence tumor growth, but cancer cell-derived-TGF-β ligands affect stromal cells in a paracrine fashion, leading to fibroblast activation and enhanced tumor growth. In conclusion, ligand-dependent or cell-autonomous activation of the TGF-β pathway in stromal cells induces their metabolic reprogramming, with increased oxidative stress, autophagy/mitophagy and glycolysis, and downregulation of Cav-1. These metabolic alterations can spread among neighboring fibroblasts and greatly sustain the growth of breast cancer cells. Our data provide novel insights into the role of the TGF-β pathway in breast tumorigenesis, and establish a clear causative link between the tumor-promoting effects of TGF-β signaling and the metabolic reprogramming of the tumor microenvironment. We have previously shown that a loss of stromal Cav-1 is a biomarker of poor prognosis in breast cancers. Mechanistically, a loss of Cav-1 induces the metabolic reprogramming of stromal cells, with increased autophagy/mitophagy, mitochondrial dysfunction and aerobic glycolysis. As a consequence, Cav-1-low CAFs generate nutrients (such as L-lactate) and chemical building blocks that fuel mitochondrial metabolism and the anabolic growth of adjacent breast cancer cells. It is also known that a loss of Cav-1 is associated with hyperactive TGF-β signaling. However, it remains unknown whether hyperactivation of the TGF-β signaling pathway contributes to the metabolic reprogramming of Cav-1-low CAFs. To address these issues, we overexpressed TGF-β ligands and the TGF-β receptor I (TGFβ-RI) in stromal fibroblasts and breast cancer cells. Here, we show that the role of TGF-β in tumorigenesis is compartment-specific, and that TGF-β promotes tumorigenesis by shifting cancer-associated fibroblasts toward catabolic metabolism. Importantly, the tumor-promoting effects of TGF-β are independent of the cell type generating TGF-β. Thus, stromal-derived TGF-β activates signaling in stromal cells in an autocrine fashion, leading to fibroblast activation, as judged by increased expression of myofibroblast markers, and metabolic reprogramming, with a shift toward catabolic metabolism and oxidative stress. We also show that TGF-β-activated fibroblasts promote the mitochondrial activity of adjacent cancer cells, and in a xenograft model, enhancing the growth of breast cancer cells, independently of angiogenesis. Conversely, activation of the TGF-β pathway in cancer cells does not influence tumor growth, but cancer cell-derived-TGF-β ligands affect stromal cells in a paracrine fashion, leading to fibroblast activation and enhanced tumor growth. In conclusion, ligand-dependent or cell-autonomous activation of the TGF-β pathway in stromal cells induces their metabolic reprogramming, with increased oxidative stress, autophagy/mitophagy and glycolysis, and downregulation of Cav-1. These metabolic alterations can spread among neighboring fibroblasts and greatly sustain the growth of breast cancer cells. Our data provide novel insights into the role of the TGF-β pathway in breast tumorigenesis, and establish a clear causative link between the tumor-promoting effects of TGF-β signaling and the metabolic reprogramming of the tumor microenvironment.We have previously shown that a loss of stromal Cav-1 is a biomarker of poor prognosis in breast cancers. Mechanistically, a loss of Cav-1 induces the metabolic reprogramming of stromal cells, with increased autophagy/mitophagy, mitochondrial dysfunction and aerobic glycolysis. As a consequence, Cav-1-low CAFs generate nutrients (such as L-lactate) and chemical building blocks that fuel mitochondrial metabolism and the anabolic growth of adjacent breast cancer cells. It is also known that a loss of Cav-1 is associated with hyperactive TGF-β signaling. However, it remains unknown whether hyperactivation of the TGF-β signaling pathway contributes to the metabolic reprogramming of Cav-1-low CAFs. To address these issues, we overexpressed TGF-β ligands and the TGF-β receptor I (TGFβ-RI) in stromal fibroblasts and breast cancer cells. Here, we show that the role of TGF-β in tumorigenesis is compartment-specific, and that TGF-β promotes tumorigenesis by shifting cancer-associated fibroblasts toward catabolic metabolism. Importantly, the tumor-promoting effects of TGF-β are independent of the cell type generating TGF-β. Thus, stromal-derived TGF-β activates signaling in stromal cells in an autocrine fashion, leading to fibroblast activation, as judged by increased expression of myofibroblast markers, and metabolic reprogramming, with a shift toward catabolic metabolism and oxidative stress. We also show that TGF-β-activated fibroblasts promote the mitochondrial activity of adjacent cancer cells, and in a xenograft model, enhancing the growth of breast cancer cells, independently of angiogenesis. Conversely, activation of the TGF-β pathway in cancer cells does not influence tumor growth, but cancer cell-derived-TGF-β ligands affect stromal cells in a paracrine fashion, leading to fibroblast activation and enhanced tumor growth. In conclusion, ligand-dependent or cell-autonomous activation of the TGF-β pathway in stromal cells induces their metabolic reprogramming, with increased oxidative stress, autophagy/mitophagy and glycolysis, and downregulation of Cav-1. These metabolic alterations can spread among neighboring fibroblasts and greatly sustain the growth of breast cancer cells. Our data provide novel insights into the role of the TGF-β pathway in breast tumorigenesis, and establish a clear causative link between the tumor-promoting effects of TGF-β signaling and the metabolic reprogramming of the tumor microenvironment. |
| Author | Capparelli, Claudia Whitaker-Menezes, Diana Andò, Sebastiano Balliet, Renee Sotgia, Federica Pestell, Richard G. Martinez-Outschoorn, Ubaldo Howell, Anthony Aquila, Saveria Lin, Zhao Guido, Carmela Lisanti, Michael P. |
| AuthorAffiliation | Manchester Breast Centre & Breakthrough Breast Cancer Research Unit; Paterson Institute for Cancer Research; School of Cancer, Enabling Sciences and Technology; Manchester Academic Health Science Centre; University of Manchester; UK Department of Pharmaco-Biology, and Faculty of Pharmacy; University of Calabria; Arcavacata di Rende, Cosenza, Italy Department of Medical Oncology; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA The Jefferson Stem Cell Biology and Regenerative Medicine Center; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA Departments of Stem Cell Biology & Regenerative Medicine, and Cancer Biology; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA |
| AuthorAffiliation_xml | – name: Departments of Stem Cell Biology & Regenerative Medicine, and Cancer Biology; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA – name: Manchester Breast Centre & Breakthrough Breast Cancer Research Unit; Paterson Institute for Cancer Research; School of Cancer, Enabling Sciences and Technology; Manchester Academic Health Science Centre; University of Manchester; UK – name: The Jefferson Stem Cell Biology and Regenerative Medicine Center; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA – name: Department of Pharmaco-Biology, and Faculty of Pharmacy; University of Calabria; Arcavacata di Rende, Cosenza, Italy – name: Department of Medical Oncology; Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA |
| Author_xml | – sequence: 1 givenname: Carmela surname: Guido fullname: Guido, Carmela – sequence: 2 givenname: Diana surname: Whitaker-Menezes fullname: Whitaker-Menezes, Diana – sequence: 3 givenname: Claudia surname: Capparelli fullname: Capparelli, Claudia – sequence: 4 givenname: Renee surname: Balliet fullname: Balliet, Renee – sequence: 5 givenname: Zhao surname: Lin fullname: Lin, Zhao – sequence: 6 givenname: Richard G. surname: Pestell fullname: Pestell, Richard G. – sequence: 7 givenname: Anthony surname: Howell fullname: Howell, Anthony – sequence: 8 givenname: Saveria surname: Aquila fullname: Aquila, Saveria – sequence: 9 givenname: Sebastiano surname: Andò fullname: Andò, Sebastiano – sequence: 10 givenname: Ubaldo surname: Martinez-Outschoorn fullname: Martinez-Outschoorn, Ubaldo – sequence: 11 givenname: Federica surname: Sotgia fullname: Sotgia, Federica email: federica.sotgia@jefferson.edu – sequence: 12 givenname: Michael P. surname: Lisanti fullname: Lisanti, Michael P. email: mlisanti@KimmelCancerCenter.org |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22874531$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFks1u1DAUhSNURH9A4gmQ1RWbDHbspAkLpGpEW6RBbIpYWv65yRgce7Cdjua1-iA8E57OdACBxMqWfc53jnx9Whw576AoXhI8Y6Qhb5SaVYS27ElxQuqalAzj-mi7p23JCCbHxWmMXzGu2ouOPCuOq7xhNSUnxf1HSEJ6axQKsAp-CGIcjRuQ75ESTkEoRYxeGZFAo97I4KUVMUUkN-j2-qr8cY90MHcQUZpGH9AQ_Dot36K5dw5U2qL2smgGJ-z2YG3SEp1_EUFOYSit-Qbn-zA07uvEEQmn0aK0QqWcjXI3PWWed8-Lp72wEV7s17Pi89X72_lNufh0_WF-uSgV65pUAmilKO1x3ULT9JjoCkspNO5I19dN03W6EYxpraGnLaWESJCqoW3NoNJE0LPi3Y67muSYYeBSEJavghlF2HAvDP_zxpklH_wdp4xVHaEZ8HoPCP77BDHx0UQF1goHfoqcYNq0be5zkaWvfs86hDwOKgtmO4EKPsYAPVcmv0t-jhxtbGbx7U_gSvGHn_Ar_GB4ZP5DinfSXExDlMZHZSCP42DJUhGSURYOltl_LBUm1XzOqqbjK91nA90ZjOt9GMXaB6t5EhvrQx_y7E3k9K9mPwH0euy7 |
| CitedBy_id | crossref_primary_10_1002_ctm2_1614 crossref_primary_10_1080_15548627_2022_2085496 crossref_primary_10_1098_rsob_160258 crossref_primary_10_1002_jcp_24380 crossref_primary_10_1016_j_cmet_2018_08_007 crossref_primary_10_1007_s00428_014_1614_6 crossref_primary_10_1146_annurev_physiol_021119_034627 crossref_primary_10_1186_s12943_021_01428_1 crossref_primary_10_1016_j_hpb_2019_02_008 crossref_primary_10_1210_jc_2014_1026 crossref_primary_10_3389_fcell_2023_1056964 crossref_primary_10_3892_ol_2019_9973 crossref_primary_10_1186_s13058_016_0712_6 crossref_primary_10_1088_2057_1739_aa7e86 crossref_primary_10_3892_ol_2024_14549 crossref_primary_10_1007_s12307_018_0210_8 crossref_primary_10_3390_ijms20092256 crossref_primary_10_1016_j_phymed_2024_155921 crossref_primary_10_1158_0008_5472_CAN_13_0023 crossref_primary_10_1016_j_jconrel_2015_08_017 crossref_primary_10_1186_s13046_020_01611_0 crossref_primary_10_1007_s10555_014_9506_4 crossref_primary_10_3109_09553002_2014_907932 crossref_primary_10_4161_auto_26550 crossref_primary_10_1007_s00011_023_01735_x crossref_primary_10_1016_j_yexcr_2021_112778 crossref_primary_10_3390_cancers12113400 crossref_primary_10_3390_jcm8020205 crossref_primary_10_1038_s41559_019_1046_4 crossref_primary_10_1186_bcr3368 crossref_primary_10_1038_s41588_024_01998_y crossref_primary_10_3389_fonc_2021_719922 crossref_primary_10_3390_cancers15164145 crossref_primary_10_3389_fcell_2023_1089068 crossref_primary_10_4161_cc_22777 crossref_primary_10_4161_cc_22776 crossref_primary_10_1089_omi_2020_0023 crossref_primary_10_3390_cancers13050988 crossref_primary_10_1002_cbin_12097 crossref_primary_10_1155_2018_6075403 crossref_primary_10_3390_jcm6010007 crossref_primary_10_3389_fimmu_2022_955063 crossref_primary_10_1186_s10020_024_01051_y crossref_primary_10_1186_s11658_022_00356_2 crossref_primary_10_3390_ijms22147255 crossref_primary_10_1016_j_phrs_2019_01_014 crossref_primary_10_1186_s12935_025_03860_5 crossref_primary_10_1016_j_celrep_2025_115432 crossref_primary_10_1016_j_semcdb_2016_11_003 crossref_primary_10_1097_HEP_0000000000000005 crossref_primary_10_3389_fimmu_2023_1208870 crossref_primary_10_4161_cc_23756 crossref_primary_10_3390_vaccines11111701 crossref_primary_10_1186_s12958_019_0512_9 crossref_primary_10_1007_s00535_022_01928_x crossref_primary_10_1158_2159_8290_CD_20_1211 crossref_primary_10_1186_bcr3586 crossref_primary_10_3390_cancers14112637 crossref_primary_10_1038_s41598_024_62123_x crossref_primary_10_3390_cancers14040940 crossref_primary_10_1016_j_pharmthera_2014_11_004 crossref_primary_10_1007_s10555_018_9768_3 crossref_primary_10_1002_1878_0261_70120 crossref_primary_10_4251_wjgo_v16_i7_3097 crossref_primary_10_1186_s13045_022_01349_6 crossref_primary_10_1007_s12265_025_10678_z crossref_primary_10_1097_GOX_0000000000002430 crossref_primary_10_1038_bjc_2016_255 crossref_primary_10_1007_s10522_024_10152_4 crossref_primary_10_1016_j_actbio_2024_10_031 crossref_primary_10_1007_s00109_023_02360_1 crossref_primary_10_1158_1078_0432_CCR_24_0468 crossref_primary_10_1016_j_semcancer_2022_12_001 crossref_primary_10_1039_C9BM02017A crossref_primary_10_1159_000479320 crossref_primary_10_3390_cancers14020322 crossref_primary_10_1038_nrc3915 crossref_primary_10_3390_cancers14184394 crossref_primary_10_3389_fimmu_2023_1323115 crossref_primary_10_3389_fphar_2022_1031890 crossref_primary_10_3389_fcell_2022_846723 crossref_primary_10_1016_j_jsbmb_2018_11_006 crossref_primary_10_3390_cancers8020019 crossref_primary_10_1042_BCJ20170164 crossref_primary_10_2147_DDDT_S391503 crossref_primary_10_1007_s12672_024_00945_x crossref_primary_10_1158_2159_8290_CD_19_0597 crossref_primary_10_1016_j_taap_2019_114696 crossref_primary_10_1016_j_bbcan_2024_189166 crossref_primary_10_1038_s12276_023_01013_0 crossref_primary_10_1038_s41598_017_02172_7 crossref_primary_10_3389_fimmu_2022_1037504 crossref_primary_10_3390_life11080851 crossref_primary_10_3389_fimmu_2019_00977 crossref_primary_10_1038_onc_2013_191 crossref_primary_10_3390_biom10121666 crossref_primary_10_3389_fonc_2023_1155621 crossref_primary_10_1038_s41420_021_00804_6 crossref_primary_10_1016_j_bbcan_2017_04_002 crossref_primary_10_1016_j_coisb_2021_100377 crossref_primary_10_1002_cbf_3856 crossref_primary_10_1016_j_lfs_2019_117049 crossref_primary_10_3892_or_2017_5508 crossref_primary_10_1038_s41388_019_0765_y crossref_primary_10_1016_j_heliyon_2024_e40118 crossref_primary_10_1038_s41556_018_0042_2 crossref_primary_10_4161_cc_25695 crossref_primary_10_1080_08923973_2023_2239489 crossref_primary_10_1073_pnas_1319116111 crossref_primary_10_1186_s40164_022_00303_z crossref_primary_10_1111_cpr_13592 crossref_primary_10_1016_j_semcdb_2014_05_007 crossref_primary_10_32604_or_2023_043926 crossref_primary_10_1186_s40169_017_0176_z crossref_primary_10_3390_cancers17010155 crossref_primary_10_1093_neuonc_not086 crossref_primary_10_3390_ijms21207484 crossref_primary_10_1093_humupd_dmx016 crossref_primary_10_1016_j_canlet_2015_02_018 crossref_primary_10_1016_j_drup_2021_100752 crossref_primary_10_3389_fendo_2022_988295 crossref_primary_10_1016_j_prp_2020_152915 crossref_primary_10_1016_j_cmet_2019_01_015 crossref_primary_10_3389_fcell_2023_1274682 crossref_primary_10_1186_s12885_021_09049_z crossref_primary_10_1080_15384101_2016_1252882 crossref_primary_10_1016_j_semcancer_2013_12_008 crossref_primary_10_15252_embr_201744000 crossref_primary_10_1155_2016_4502846 crossref_primary_10_1038_s41573_018_0004_1 crossref_primary_10_3892_or_2024_8743 crossref_primary_10_4161_cc_25510 crossref_primary_10_1002_jcp_30419 crossref_primary_10_1038_s41392_025_02148_4 crossref_primary_10_1042_BSR20203481 crossref_primary_10_1186_s41181_019_0069_0 crossref_primary_10_1002_bit_28031 crossref_primary_10_1016_j_jddst_2024_106589 crossref_primary_10_1186_s13045_025_01688_0 crossref_primary_10_4161_cc_22811 crossref_primary_10_3389_fonc_2024_1335533 crossref_primary_10_1016_j_canlet_2019_03_039 crossref_primary_10_1016_j_yexcr_2021_112926 crossref_primary_10_1158_0008_5472_CAN_21_4425 crossref_primary_10_1080_15548627_2018_1450020 crossref_primary_10_1186_s13045_024_01634_6 crossref_primary_10_3390_cells10112840 crossref_primary_10_1038_s41598_019_45850_4 crossref_primary_10_1186_s12964_023_01129_w crossref_primary_10_1016_j_toxlet_2015_10_021 crossref_primary_10_1038_s41392_021_00641_0 crossref_primary_10_1016_j_compbiomed_2025_110037 crossref_primary_10_1186_s12943_018_0758_4 crossref_primary_10_3390_cancers12123650 crossref_primary_10_3390_cells10010056 crossref_primary_10_1016_j_semcancer_2022_03_004 crossref_primary_10_1016_j_semcancer_2018_10_002 crossref_primary_10_2174_0929867327666200207114658 crossref_primary_10_1007_s00441_016_2471_1 crossref_primary_10_3390_cells8040320 crossref_primary_10_1016_j_yexcr_2013_03_015 crossref_primary_10_1111_febs_14201 crossref_primary_10_1016_j_canlet_2024_217156 crossref_primary_10_1016_j_bbcan_2025_189439 crossref_primary_10_1038_nrc_2016_73 crossref_primary_10_1097_CM9_0000000000003031 crossref_primary_10_1126_scitranslmed_aan5488 crossref_primary_10_1016_j_heliyon_2023_e14148 crossref_primary_10_1016_j_bbcan_2018_09_002 crossref_primary_10_1084_jem_20140692 crossref_primary_10_1515_nanoph_2021_0171 crossref_primary_10_3389_fphys_2016_00191 crossref_primary_10_1016_j_canlet_2014_07_028 crossref_primary_10_1016_j_semcancer_2014_01_005 crossref_primary_10_3390_cancers11040461 crossref_primary_10_1093_cvr_cvy004 crossref_primary_10_1016_j_tem_2021_05_003 crossref_primary_10_3390_cancers14051231 crossref_primary_10_1002_med_21473 crossref_primary_10_3390_cells10123604 crossref_primary_10_1016_j_freeradbiomed_2018_10_450 crossref_primary_10_3390_cancers13215461 crossref_primary_10_1053_j_seminoncol_2014_03_002 crossref_primary_10_1016_j_canlet_2021_08_002 crossref_primary_10_3390_cancers10080260 crossref_primary_10_3389_fonc_2020_565306 crossref_primary_10_3390_ijms26157567 crossref_primary_10_3390_app15084300 crossref_primary_10_3390_cells12232742 crossref_primary_10_1016_j_cca_2021_07_011 crossref_primary_10_3390_ijms19051294 crossref_primary_10_3390_antiox10040603 crossref_primary_10_1186_s12967_024_05846_9 crossref_primary_10_3390_biom10060868 crossref_primary_10_1016_j_insi_2025_100017 crossref_primary_10_1038_nrclinonc_2016_183 crossref_primary_10_3390_cancers13215343 crossref_primary_10_1016_j_bbrc_2017_01_178 crossref_primary_10_3892_or_2016_5238 crossref_primary_10_1080_15384101_2025_2549097 crossref_primary_10_1007_s00005_017_0459_5 crossref_primary_10_3390_cancers15082195 crossref_primary_10_1038_s41419_019_2114_z crossref_primary_10_3390_ijms222111636 crossref_primary_10_3390_cancers12010042 crossref_primary_10_1038_s42255_022_00582_0 crossref_primary_10_1007_s10544_016_0083_x crossref_primary_10_3390_ijms241310683 crossref_primary_10_1002_jcp_30169 crossref_primary_10_1136_jclinpath_2016_204154 crossref_primary_10_3389_fonc_2017_00068 crossref_primary_10_1016_j_addr_2017_03_001 crossref_primary_10_1111_jcmm_15410 crossref_primary_10_3390_cancers15092653 crossref_primary_10_1016_j_mam_2013_08_001 crossref_primary_10_1038_s41419_020_2434_z crossref_primary_10_1080_07357907_2024_2407424 crossref_primary_10_1002_cac2_12291 crossref_primary_10_1038_s41419_022_04825_6 crossref_primary_10_1111_andr_13288 crossref_primary_10_1093_carcin_bgv028 crossref_primary_10_3390_cancers13061399 crossref_primary_10_1080_2162402X_2016_1191731 crossref_primary_10_1007_s10616_023_00578_y crossref_primary_10_1016_j_biopha_2024_117203 crossref_primary_10_1016_j_canlet_2024_216894 crossref_primary_10_1080_15592294_2016_1140295 crossref_primary_10_1186_s13046_025_03527_z crossref_primary_10_3389_fcell_2021_764727 crossref_primary_10_1016_j_bone_2019_03_020 crossref_primary_10_1016_j_bcp_2021_114474 crossref_primary_10_1016_j_cytogfr_2023_04_001 crossref_primary_10_1038_s41467_019_11738_0 crossref_primary_10_1016_j_ymthe_2024_01_032 crossref_primary_10_3390_cancers11050619 crossref_primary_10_3389_fmicb_2017_01318 crossref_primary_10_3390_ijms23084071 |
| Cites_doi | 10.1038/371257a0 10.1016/j.cell.2008.07.001 10.1073/pnas.92.12.5545 10.4161/cc.9.12.12048 10.1083/jcb.127.6.2021 10.4161/cc.8.23.10238 10.4161/cc.9.16.12553 10.1016/j.febslet.2012.05.030 10.1038/nature02006 10.1007/s10549-007-9684-7 10.1016/j.biocel.2011.01.023 10.1016/S0092-8674(03)00432-X 10.1073/pnas.1013805107 10.4161/cc.9.17.12721 10.1074/jbc.M104536200 10.4161/cbt.12.12.18703 10.1146/annurev-pathol-011811-120856 10.4161/cc.9.17.12928 10.1016/j.cytogfr.2005.09.009 10.1016/j.cytogfr.2009.11.008 10.1002/jcb.21149 10.1089/ars.2011.4243 10.1038/ncb885 10.4161/cc.9.17.12908 10.1038/cr.2008.316 10.2353/ajpath.2009.080924 10.1097/BOR.0b013e3283103d27 10.1101/cshperspect.a003277 10.1172/JCI116871 10.1016/j.cmet.2011.12.011 10.4161/cc.8.20.9727 10.1083/jcb.122.1.103 10.1074/jbc.M008340200 10.1126/science.1205407 10.1186/bcr580 10.2353/ajpath.2009.080873 10.1038/ncb731 10.1186/bcr2892 10.4161/cbt.7.8.6220 10.2353/ajpath.2009.080658 10.1152/physrev.1996.76.1.69 10.1074/jbc.M109.093724 10.1242/dev.121.6.1845 10.1152/ajpcell.00109.2009 10.1074/jbc.M800102200 10.1126/science.1207552 |
| ContentType | Journal Article |
| Copyright | Copyright © 2012 Landes Bioscience 2012 |
| Copyright_xml | – notice: Copyright © 2012 Landes Bioscience 2012 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.4161/cc.21384 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1551-4005 |
| EndPage | 3035 |
| ExternalDocumentID | PMC3442913 22874531 10_4161_cc_21384 10921384 |
| Genre | Research Article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIAMS NIH HHS grantid: R01 AR055660 – fundername: NCI NIH HHS grantid: R01 CA120876 – fundername: NCI NIH HHS grantid: R01 CA080250 – fundername: NCI NIH HHS grantid: R01 CA075503 – fundername: NCI NIH HHS grantid: P30 CA056036 – fundername: NCI NIH HHS grantid: R01-CA-75503 – fundername: NCI NIH HHS grantid: R01-CA-86072 – fundername: NCI NIH HHS grantid: P30-CA-56036 – fundername: NCI NIH HHS grantid: R01-CA-120876 – fundername: NCI NIH HHS grantid: R01-CA-080250 |
| GroupedDBID | --- 0BK 0R~ 29B 30N 4.4 53G 5GY AAGDL AAHBH AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACTIO ADBBV ADCVX ADGTB AEISY AENEX AEXWM AEYOC AFRVT AGDLA AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AOIJS AQRUH AQTUD AVBZW AWYRJ BAWUL BLEHA CCCUG DGEBU DIK DKSSO E3Z EBS EJD EMOBN F5P GTTXZ H13 HYE KRBQP KWAYT KYCEM M4Z O9- OK1 P2P RNANH ROSJB RPM RTWRZ SJN SNACF TASJS TBQAZ TDBHL TEI TFL TFT TFW TQWBC TR2 TTHFI TUROJ ZGOLN - 0R AAAVI ABJVF ABQHQ ADACO AEGYZ AFOLD AHDLD AIRXU FUNRP FVPDL UNR V1K ZA5 AAYXX CITATION ADYSH CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c496t-eedcc33f058e66f01d20bbad0919f56699d6a44dddef383311bebc63854e2d1a3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 271 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000308004000020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1538-4101 1551-4005 |
| IngestDate | Tue Nov 04 02:00:31 EST 2025 Fri Sep 05 10:21:38 EDT 2025 Mon Jul 21 06:06:38 EDT 2025 Sat Nov 29 03:22:04 EST 2025 Tue Nov 18 22:20:58 EST 2025 Tue May 21 11:32:55 EDT 2019 Fri Jan 15 03:37:22 EST 2021 Mon Oct 20 23:36:45 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c496t-eedcc33f058e66f01d20bbad0919f56699d6a44dddef383311bebc63854e2d1a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.tandfonline.com/doi/pdf/10.4161/cc.21384?needAccess=true |
| PMID | 22874531 |
| PQID | 1036880917 |
| PQPubID | 23479 |
| PageCount | 17 |
| ParticipantIDs | landesbioscience_primary_cc_article_21384 informaworld_taylorfrancis_310_4161_cc_21384 crossref_citationtrail_10_4161_cc_21384 pubmed_primary_22874531 proquest_miscellaneous_1036880917 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3442913 crossref_primary_10_4161_cc_21384 |
| PublicationCentury | 2000 |
| PublicationDate | 8/15/2012 2012/08/15 2012-08-15 2012-Aug-15 20120815 |
| PublicationDateYYYYMMDD | 2012-08-15 |
| PublicationDate_xml | – month: 08 year: 2012 text: 8/15/2012 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cell cycle (Georgetown, Tex.) |
| PublicationTitleAlternate | Cell Cycle |
| PublicationYear | 2012 |
| Publisher | Taylor & Francis Landes Bioscience |
| Publisher_xml | – name: Taylor & Francis – name: Landes Bioscience |
| References | Bierie (R9) 2009; 8 Miettinen (R18) 1994; 127 Casey (R39) 2008; 110 Zhang (R41) 2008; 283 Chiavarina (R45) 2011; 12 Pavlides (R40) 2012; 16 Rønnov-Jessen (R3) 1993; 68 Jang (R13) 2002; 4 Sotgia (R28) 2012; 7 Sotgia (R38) 2011; 13 Derynck (R7) 2003; 425 Löhr (R5) 2001; 61 Shi (R6) 2003; 113 Mercier (R21) 2008; 7 Sloan (R20) 2009; 174 Martinez-Outschoorn (R23) 2010; 9 Desmoulière (R4) 1993; 122 Sotgia (R24) 2009; 174 Shekhar (R2) 2003; 5 Kojima (R47) 2010; 107 Martinez-Outschoorn (R29) 2012; 15 Witkiewicz (R19) 2009; 174 Moses (R32) 2011; 3 Chiavarina (R44) 2010; 9 Martinez-Outschoorn (R46) 2011; 43 Levy (R14) 2006; 17 Massagué (R35) 2012; 586 Nowak (R49) 1996; 271 Bierie (R34) 2010; 21 Stover (R33) 2007; 101 Arteaga (R15) 1993; 92 Rønnov-Jessen (R1) 1996; 76 Martinez-Outschoorn (R31) 2010; 9 Zoncu (R42) 2011; 332 Del Galdo (R26) 2008; 20 Hannon (R11) 1994; 371 Pavlides (R30) 2010; 9 Padua (R8) 2009; 19 Martinez-Outschoorn (R37) 2010; 9 Razani (R25) 2001; 276 Dickson (R16) 1995; 121 Pavlides (R22) 2009; 8 Sánchez-Elsner (R17) 2001; 276 Igarashi (R27) 2009; 297 Massagué (R36) 2008; 134 Datto (R10) 1995; 92 Narita (R43) 2011; 332 Ding (R48) 2010; 285 Valderrama-Carvajal (R12) 2002; 4 16310402 - Cytokine Growth Factor Rev. 2006 Feb-Apr;17(1-2):41-58 17486574 - J Cell Biochem. 2007 Jul 1;101(4):851-61 14534577 - Nature. 2003 Oct 9;425(6958):577-84 18281291 - J Biol Chem. 2008 Apr 18;283(16):10892-903 11102446 - J Biol Chem. 2001 Mar 2;276(9):6727-38 20562526 - Cell Cycle. 2010 Jun 15;9(12):2423-33 21883043 - Antioxid Redox Signal. 2012 Jun 1;16(11):1264-84 19411448 - Am J Pathol. 2009 Jun;174(6):2023-34 12809600 - Cell. 2003 Jun 13;113(6):685-700 7600998 - Development. 1995 Jun;121(6):1845-54 20861672 - Cell Cycle. 2010 Sep 1;9(17):3485-505 19710365 - Am J Physiol Cell Physiol. 2009 Nov;297(5):C1263-74 20876581 - J Biol Chem. 2010 Nov 26;285(48):37909-19 7806579 - J Cell Biol. 1994 Dec;127(6 Pt 2):2021-36 21300172 - Int J Biochem Cell Biol. 2011 Jul;43(7):1045-51 22077552 - Annu Rev Pathol. 2012;7:423-67 19923890 - Cell Cycle. 2009 Dec;8(23):3984-4001 18458534 - Cancer Biol Ther. 2008 Aug;7(8):1212-25 20810549 - Cold Spring Harb Perspect Biol. 2011 Jan;3(1):a003277 8515656 - Lab Invest. 1993 Jun;68(6):696-707 20018551 - Cytokine Growth Factor Rev. 2010 Feb;21(1):49-59 22225869 - Cell Metab. 2012 Jan 4;15(1):4-5 7777546 - Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5545-9 12447389 - Nat Cell Biol. 2002 Dec;4(12):963-9 19234134 - Am J Pathol. 2009 Mar;174(3):746-61 7504687 - J Clin Invest. 1993 Dec;92(6):2569-76 21867571 - Breast Cancer Res. 2011;13(4):213 11486006 - J Biol Chem. 2001 Oct 19;276(42):38527-35 8314838 - J Cell Biol. 1993 Jul;122(1):103-11 21596981 - Science. 2011 May 20;332(6032):923-5 20864819 - Cell Cycle. 2010 Sep 1;9(17):3534-51 12793893 - Breast Cancer Res. 2003;5(3):130-5 22236875 - Cancer Biol Ther. 2011 Dec 15;12(12):1101-13 18949888 - Curr Opin Rheumatol. 2008 Nov;20(6):713-9 11212248 - Cancer Res. 2001 Jan 15;61(2):550-5 11740493 - Nat Cell Biol. 2002 Jan;4(1):51-8 8592733 - Physiol Rev. 1996 Jan;76(1):69-125 17674196 - Breast Cancer Res Treat. 2008 Jul;110(1):39-49 20814239 - Cell Cycle. 2010 Aug 15;9(16):3256-76 22651913 - FEBS Lett. 2012 Jul 4;586(14):1833 19411449 - Am J Pathol. 2009 Jun;174(6):2035-43 8078588 - Nature. 1994 Sep 15;371(6494):257-61 20855962 - Cell Cycle. 2010 Sep 1;9(17):3515-33 23159856 - Cell Cycle. 2012 Dec 1;11(23):4302-3 21512002 - Science. 2011 May 20;332(6032):966-70 8853432 - Am J Physiol. 1996 Sep;271(3 Pt 2):F689-97 18662538 - Cell. 2008 Jul 25;134(2):215-30 19050696 - Cell Res. 2009 Jan;19(1):89-102 21041659 - Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):20009-14 19806012 - Cell Cycle. 2009 Oct 15;8(20):3319-27 |
| References_xml | – volume: 371 start-page: 257 year: 1994 ident: R11 article-title: p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest publication-title: Nature doi: 10.1038/371257a0 – volume: 134 start-page: 215 year: 2008 ident: R36 article-title: TGFbeta in Cancer publication-title: Cell doi: 10.1016/j.cell.2008.07.001 – volume: 92 start-page: 5545 year: 1995 ident: R10 article-title: Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.92.12.5545 – volume: 9 start-page: 2423 year: 2010 ident: R23 article-title: Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors publication-title: Cell Cycle doi: 10.4161/cc.9.12.12048 – volume: 127 start-page: 2021 year: 1994 ident: R18 article-title: TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors publication-title: J Cell Biol doi: 10.1083/jcb.127.6.2021 – volume: 8 start-page: 3984 year: 2009 ident: R22 article-title: The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma publication-title: Cell Cycle doi: 10.4161/cc.8.23.10238 – volume: 9 start-page: 3256 year: 2010 ident: R37 article-title: Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells publication-title: Cell Cycle doi: 10.4161/cc.9.16.12553 – volume: 586 start-page: 1833 year: 2012 ident: R35 article-title: TGF-β signaling in development and disease publication-title: FEBS Lett doi: 10.1016/j.febslet.2012.05.030 – volume: 425 start-page: 577 year: 2003 ident: R7 article-title: Smad-dependent and Smad-independent pathways in TGF-beta family signalling publication-title: Nature doi: 10.1038/nature02006 – volume: 110 start-page: 39 year: 2008 ident: R39 article-title: Cancer associated fibroblasts stimulated by transforming growth factor beta1 (TGF-beta 1) increase invasion rate of tumor cells: a population study publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-007-9684-7 – volume: 43 start-page: 1045 year: 2011 ident: R46 article-title: Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment publication-title: Int J Biochem Cell Biol doi: 10.1016/j.biocel.2011.01.023 – volume: 113 start-page: 685 year: 2003 ident: R6 article-title: Mechanisms of TGF-beta signaling from cell membrane to the nucleus publication-title: Cell doi: 10.1016/S0092-8674(03)00432-X – volume: 107 start-page: 20009 year: 2010 ident: R47 article-title: Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1013805107 – volume: 9 start-page: 3485 year: 2010 ident: R30 article-title: The autophagic tumor stroma model of cancer: Role of oxidative stress and ketone production in fueling tumor cell metabolism publication-title: Cell Cycle doi: 10.4161/cc.9.17.12721 – volume: 276 start-page: 38527 year: 2001 ident: R17 article-title: Synergistic cooperation between hypoxia and transforming growth factor-beta pathways on human vascular endothelial growth factor gene expression publication-title: J Biol Chem doi: 10.1074/jbc.M104536200 – volume: 12 start-page: 12 year: 2011 ident: R45 article-title: Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth publication-title: Cancer Biol Ther doi: 10.4161/cbt.12.12.18703 – volume: 7 start-page: 423 year: 2012 ident: R28 article-title: Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms publication-title: Annu Rev Pathol doi: 10.1146/annurev-pathol-011811-120856 – volume: 9 start-page: 3515 year: 2010 ident: R31 article-title: Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment publication-title: Cell Cycle doi: 10.4161/cc.9.17.12928 – volume: 17 start-page: 41 year: 2006 ident: R14 article-title: Alterations in components of the TGF-beta superfamily signaling pathways in human cancer publication-title: Cytokine Growth Factor Rev doi: 10.1016/j.cytogfr.2005.09.009 – volume: 21 start-page: 49 year: 2010 ident: R34 article-title: Transforming growth factor beta (TGF-beta) and inflammation in cancer publication-title: Cytokine Growth Factor Rev doi: 10.1016/j.cytogfr.2009.11.008 – volume: 61 start-page: 550 year: 2001 ident: R5 article-title: Transforming growth factor-beta1 induces desmoplasia in an experimental model of human pancreatic carcinoma publication-title: Cancer Res – volume: 101 start-page: 851 year: 2007 ident: R33 article-title: A delicate balance: TGF-beta and the tumor microenvironment publication-title: J Cell Biochem doi: 10.1002/jcb.21149 – volume: 16 start-page: 1264 year: 2012 ident: R40 article-title: Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis publication-title: Antioxid Redox Signal doi: 10.1089/ars.2011.4243 – volume: 4 start-page: 963 year: 2002 ident: R12 article-title: Activin/TGF-beta induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP publication-title: Nat Cell Biol doi: 10.1038/ncb885 – volume: 9 start-page: 3534 year: 2010 ident: R44 article-title: HIF1-alpha functions as a tumor promoter in cancer associated fibroblasts, and as a tumor suppressor in breast cancer cells: Autophagy drives compartment-specific oncogenesis publication-title: Cell Cycle doi: 10.4161/cc.9.17.12908 – volume: 19 start-page: 89 year: 2009 ident: R8 article-title: Roles of TGFbeta in metastasis publication-title: Cell Res doi: 10.1038/cr.2008.316 – volume: 174 start-page: 2035 year: 2009 ident: R20 article-title: Stromal cell expression of caveolin-1 predicts outcome in breast cancer publication-title: Am J Pathol doi: 10.2353/ajpath.2009.080924 – volume: 20 start-page: 713 year: 2008 ident: R26 article-title: Caveolin-1, transforming growth factor-beta receptor internalization, and the pathogenesis of systemic sclerosis publication-title: Curr Opin Rheumatol doi: 10.1097/BOR.0b013e3283103d27 – volume: 3 start-page: a003277 year: 2011 ident: R32 article-title: TGF-beta biology in mammary development and breast cancer publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a003277 – volume: 92 start-page: 2569 year: 1993 ident: R15 article-title: Anti-transforming growth factor (TGF)-beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-beta interactions in human breast cancer progression publication-title: J Clin Invest doi: 10.1172/JCI116871 – volume: 15 start-page: 4 year: 2012 ident: R29 article-title: Power surge: supporting cells “fuel” cancer cell mitochondria publication-title: Cell Metab doi: 10.1016/j.cmet.2011.12.011 – volume: 8 start-page: 3319 year: 2009 ident: R9 article-title: Gain or loss of TGFbeta signaling in mammary carcinoma cells can promote metastasis publication-title: Cell Cycle doi: 10.4161/cc.8.20.9727 – volume: 122 start-page: 103 year: 1993 ident: R4 article-title: Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts publication-title: J Cell Biol doi: 10.1083/jcb.122.1.103 – volume: 276 start-page: 6727 year: 2001 ident: R25 article-title: Caveolin-1 regulates transforming growth factor (TGF)-beta/SMAD signaling through an interaction with the TGF-beta type I receptor publication-title: J Biol Chem doi: 10.1074/jbc.M008340200 – volume: 332 start-page: 966 year: 2011 ident: R43 article-title: Spatial coupling of mTOR and autophagy augments secretory phenotypes publication-title: Science doi: 10.1126/science.1205407 – volume: 5 start-page: 130 year: 2003 ident: R2 article-title: Host microenvironment in breast cancer development: extracellular matrix-stromal cell contribution to neoplastic phenotype of epithelial cells in the breast publication-title: Breast Cancer Res doi: 10.1186/bcr580 – volume: 174 start-page: 2023 year: 2009 ident: R19 article-title: An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers publication-title: Am J Pathol doi: 10.2353/ajpath.2009.080873 – volume: 68 start-page: 696 year: 1993 ident: R3 article-title: Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia publication-title: Lab Invest – volume: 4 start-page: 51 year: 2002 ident: R13 article-title: TGF-beta induces apoptosis through Smad-mediated expression of DAP-kinase publication-title: Nat Cell Biol doi: 10.1038/ncb731 – volume: 13 start-page: 213 year: 2011 ident: R38 article-title: Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment publication-title: Breast Cancer Res doi: 10.1186/bcr2892 – volume: 7 start-page: 1212 year: 2008 ident: R21 article-title: Human breast cancer-associated fibroblasts (CAFs) show caveolin-1 downregulation and RB tumor suppressor functional inactivation: Implications for the response to hormonal therapy publication-title: Cancer Biol Ther doi: 10.4161/cbt.7.8.6220 – volume: 174 start-page: 746 year: 2009 ident: R24 article-title: Caveolin-1-/- null mammary stromal fibroblasts share characteristics with human breast cancer-associated fibroblasts publication-title: Am J Pathol doi: 10.2353/ajpath.2009.080658 – volume: 76 start-page: 69 year: 1996 ident: R1 article-title: Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction publication-title: Physiol Rev doi: 10.1152/physrev.1996.76.1.69 – volume: 285 start-page: 37909 year: 2010 ident: R48 article-title: TGF-beta1 protects against mesangial cell apoptosis via induction of autophagy publication-title: J Biol Chem doi: 10.1074/jbc.M109.093724 – volume: 121 start-page: 1845 year: 1995 ident: R16 article-title: Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice publication-title: Development doi: 10.1242/dev.121.6.1845 – volume: 297 start-page: C1263 year: 2009 ident: R27 article-title: Transforming growth factor-beta1 downregulates caveolin-1 expression and enhances sphingosine 1-phosphate signaling in cultured vascular endothelial cells publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00109.2009 – volume: 271 start-page: F689 year: 1996 ident: R49 article-title: Autocrine production and TGF-beta 1-mediated effects on metabolism and viability in renal cells publication-title: Am J Physiol – volume: 283 start-page: 10892 year: 2008 ident: R41 article-title: Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia publication-title: J Biol Chem doi: 10.1074/jbc.M800102200 – volume: 332 start-page: 923 year: 2011 ident: R42 article-title: Cell biology. The TASCC of secretion publication-title: Science doi: 10.1126/science.1207552 – reference: 19411449 - Am J Pathol. 2009 Jun;174(6):2035-43 – reference: 11102446 - J Biol Chem. 2001 Mar 2;276(9):6727-38 – reference: 8592733 - Physiol Rev. 1996 Jan;76(1):69-125 – reference: 22236875 - Cancer Biol Ther. 2011 Dec 15;12(12):1101-13 – reference: 21867571 - Breast Cancer Res. 2011;13(4):213 – reference: 20864819 - Cell Cycle. 2010 Sep 1;9(17):3534-51 – reference: 8515656 - Lab Invest. 1993 Jun;68(6):696-707 – reference: 8078588 - Nature. 1994 Sep 15;371(6494):257-61 – reference: 23159856 - Cell Cycle. 2012 Dec 1;11(23):4302-3 – reference: 20855962 - Cell Cycle. 2010 Sep 1;9(17):3515-33 – reference: 21596981 - Science. 2011 May 20;332(6032):923-5 – reference: 19411448 - Am J Pathol. 2009 Jun;174(6):2023-34 – reference: 22651913 - FEBS Lett. 2012 Jul 4;586(14):1833 – reference: 22225869 - Cell Metab. 2012 Jan 4;15(1):4-5 – reference: 19923890 - Cell Cycle. 2009 Dec;8(23):3984-4001 – reference: 8314838 - J Cell Biol. 1993 Jul;122(1):103-11 – reference: 19050696 - Cell Res. 2009 Jan;19(1):89-102 – reference: 18458534 - Cancer Biol Ther. 2008 Aug;7(8):1212-25 – reference: 18281291 - J Biol Chem. 2008 Apr 18;283(16):10892-903 – reference: 21300172 - Int J Biochem Cell Biol. 2011 Jul;43(7):1045-51 – reference: 20810549 - Cold Spring Harb Perspect Biol. 2011 Jan;3(1):a003277 – reference: 21512002 - Science. 2011 May 20;332(6032):966-70 – reference: 20562526 - Cell Cycle. 2010 Jun 15;9(12):2423-33 – reference: 18949888 - Curr Opin Rheumatol. 2008 Nov;20(6):713-9 – reference: 21041659 - Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):20009-14 – reference: 19710365 - Am J Physiol Cell Physiol. 2009 Nov;297(5):C1263-74 – reference: 11486006 - J Biol Chem. 2001 Oct 19;276(42):38527-35 – reference: 16310402 - Cytokine Growth Factor Rev. 2006 Feb-Apr;17(1-2):41-58 – reference: 12809600 - Cell. 2003 Jun 13;113(6):685-700 – reference: 17674196 - Breast Cancer Res Treat. 2008 Jul;110(1):39-49 – reference: 14534577 - Nature. 2003 Oct 9;425(6958):577-84 – reference: 12447389 - Nat Cell Biol. 2002 Dec;4(12):963-9 – reference: 12793893 - Breast Cancer Res. 2003;5(3):130-5 – reference: 22077552 - Annu Rev Pathol. 2012;7:423-67 – reference: 21883043 - Antioxid Redox Signal. 2012 Jun 1;16(11):1264-84 – reference: 20876581 - J Biol Chem. 2010 Nov 26;285(48):37909-19 – reference: 7777546 - Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5545-9 – reference: 20018551 - Cytokine Growth Factor Rev. 2010 Feb;21(1):49-59 – reference: 18662538 - Cell. 2008 Jul 25;134(2):215-30 – reference: 17486574 - J Cell Biochem. 2007 Jul 1;101(4):851-61 – reference: 11740493 - Nat Cell Biol. 2002 Jan;4(1):51-8 – reference: 20861672 - Cell Cycle. 2010 Sep 1;9(17):3485-505 – reference: 11212248 - Cancer Res. 2001 Jan 15;61(2):550-5 – reference: 19806012 - Cell Cycle. 2009 Oct 15;8(20):3319-27 – reference: 20814239 - Cell Cycle. 2010 Aug 15;9(16):3256-76 – reference: 7806579 - J Cell Biol. 1994 Dec;127(6 Pt 2):2021-36 – reference: 7504687 - J Clin Invest. 1993 Dec;92(6):2569-76 – reference: 7600998 - Development. 1995 Jun;121(6):1845-54 – reference: 8853432 - Am J Physiol. 1996 Sep;271(3 Pt 2):F689-97 – reference: 19234134 - Am J Pathol. 2009 Mar;174(3):746-61 |
| SSID | ssj0028791 |
| Score | 2.5126483 |
| Snippet | We have previously shown that a loss of stromal Cav-1 is a biomarker of poor prognosis in breast cancers. Mechanistically, a loss of Cav-1 induces the... |
| SourceID | pubmedcentral proquest pubmed crossref landesbioscience informaworld |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3019 |
| SubjectTerms | "Pied-Piper of Hamelin" aerobic glycolysis Animals Autocrine Communication autocrine signaling Autophagy Binding Biology Bioscience Breast Neoplasms - genetics Breast Neoplasms - metabolism Breast Neoplasms - pathology Calcium Cancer cancer associated fibroblast cancer metabolism Caveolin 1 - genetics Caveolin 1 - metabolism Cell Cell Line, Tumor Cell Transformation, Neoplastic - genetics Cell Transformation, Neoplastic - metabolism Cellular Reprogramming Coculture Techniques Cycle Female Fibroblasts - metabolism Fibroblasts - pathology Gene Expression Regulation, Enzymologic Gene Expression Regulation, Neoplastic Glycolysis Humans Immunohistochemistry Lactic Acid - metabolism Landes Ligands Mice Mice, Nude Mitochondria - genetics Mitochondria - metabolism Mitochondria - pathology mitophagy myofibroblast Neovascularization, Pathologic - metabolism Organogenesis Oxidative Phosphorylation Oxidative Stress Paracrine Communication paracrine signaling Protein-Serine-Threonine Kinases - genetics Protein-Serine-Threonine Kinases - metabolism Proteins Receptors, Transforming Growth Factor beta - genetics Receptors, Transforming Growth Factor beta - metabolism Stromal Cells - metabolism Stromal Cells - pathology TGF beta the field effect Transforming Growth Factor beta - genetics Transforming Growth Factor beta - metabolism Tumor Microenvironment tumor stroma Xenograft Model Antitumor Assays |
| Title | Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth: Connecting TGF-β signaling with "Warburg-like" cancer metabolism and L-lactate production |
| URI | https://www.tandfonline.com/doi/abs/10.4161/cc.21384 http://www.landesbioscience.com/journals/cc/article/21384/ https://www.ncbi.nlm.nih.gov/pubmed/22874531 https://www.proquest.com/docview/1036880917 https://pubmed.ncbi.nlm.nih.gov/PMC3442913 |
| Volume | 11 |
| WOSCitedRecordID | wos000308004000020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1551-4005 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028791 issn: 1538-4101 databaseCode: TFW dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagAgkOlDfhUZkKqULCJYnzsLmhFQsHqDgs6t4ix3baFbvJKski9W_1h_CbmEm8oSnlAOdMElvzZfyNM_6GkFdWQsTzU8VCriBBSbRhQgnLZAyZm_EVOL1vNpEeHYn5XH51h8IaV1aJOXTRC0V0sRo_bpV3HUiQjr_V-jAMuEARUCDzCOvZ9HjIskQqnUiqYBEArlecHd04WoNGCqW3yS4WFOK_Gaclaa-inpcrKC8sSdPd_5vMXXLHUVD6vsfMPXLNlvfJzb4p5dkDcv7FtoCM5UJTVLzsyrdWsMDRqqAaMVIz5XxqDS0g3a5yoOBtQ_MzOvs4ZT_PqalRzZa2m1VV0xPI9NvTd7SrqdFYZr01w-IRhefhKW4H0_1jhT4-YcvFd7vvXkZXbjjNisIk6We2VBoZMl33YrUArIfk2_TDbPKJuc4OTEcyaRkszFpzXvixsElS-IEJ_TxXBsiLLIBgSmkSFUUGYm8BKTQPgtzmGkJFHNnQBIo_IjtlVdonhALfkyLHI76BjFRkpUFWaGOBYV6J3CMHW19n2smeY_eNZQbpD3og0zrrPOCRl4Plupf6uMLmzUW4ZG23rVL0PVAy_qf5wWU4DY8G5hVOJniSOFubwiOv_2oJT3NhZBjoFpEZBAP8w6NKW20aGC5PICBDCu6Rxz1Cf7-v62zAA4-kI-wOBig0Pr5SLk47wXEeAWsJ-NN_m_wzcgvniBvwQfyc7LT1xr4gN_SPdtHUe-R6Ohd73af7C5bhTYk |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB2VAiocKB8FzOdSIVWVWLCztuPlhiJCEWnEIai9WevddRuR2JHjIPVv9Yfwm5ixHVOXcoBzJvau5u3sm_XsG4DXVmLEc_uK94TCBCXUhkcqslwGmLkZV6HT62YT_fE4Oj6WXzcgWN-FobJKyqHTWiiiitW0uOkwmlY48fF3Wr_teSLyr8H1ALdXquSbDI_aPCvqy0YmNeI-Qq7WnO38s7MLdTRKb8M2lRTS15lGTdJeRT4v11Be2JSG2_85nbtwp2Gh7EMNm3uwYbP7cLPuS3n2AM4PbYngmE01I9HLqoJrjnscy1OmCSYFV41brWEpZtx5giy8XLLkjE0-DfnPc2YKErRl5WqeF-wEk_3y9D2rymo0VVqvzah-RNGVeEYnwmz3SJGbT_hs-t3uNi9j82Y4yznDWbIRnylNJJktar1axNYOfBt-nAwOeNPcgWtfhiXHvVlrIVI3iGwYpq5nem6SKIP8RabIMaU0ofJ9g-E3xSxaeF5iE43RIvBtz3hKPITNLM_sY2BI-WSU0C1fT_rKt9IQMbRBRJFeRYkDe2tnx7pRPqcGHLMYMyDyQKx1XHnAgVet5aJW-7jC5s1FvMRldbKS1m1QYvGn-d5lPLWPRvLVGwzoMnG8MKkD-3-1xKc1kaQd6BqSMcYD-sijMpuvljhcEWJMxizcgUc1RH-_r2puIDwH-h3wtgakNd79JZueVprjwkfi4okn_zb5l7B1MDkcxaPP4y9P4RbNl87jveAZbJbFyj6HG_pHOV0WL6oV_AtPlFDC |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgQAUHyjfh01RIFRIuSZxkY25oIYAoqx4WtbfIsZ12xW6ySrJI_Vv9IfwmZhJvaEo5wHlnE1vzPH7jjN8Q8tIIiHjuSDKfS0hQIqVZLGPDRAiZm3YlOL1rNjGaTOLDQ7FvL4XVtqwSc-i8E4poYzUu7qXOcYEjHX-j1K7v8Ti4TK60eliA4mly0KdZ8UhYldSYBYC4TnJ28M_BJjSQKL1BtrCiED_OWDFJcxH3PF9CeWZPSrb-bza3yE3LQem7DjS3ySVT3CHXuq6UJ3fJ6VfTADTmM0VR8rKt31rADkfLnCoEScWkdarRNId8u8yAgzc1zU7o9GPCfp5SXaGcLW1Wi7KiR5DqN8dvaVtUo7DOem2G1SMSL8RTPA-m2wcSnXzE5rPvZtu-jC7scOoFhUnSPTaXCikyXXZqtYCse-Rb8mE6_sRsawemAhE1DHZmpTjP3TA2UZS7nvbdLJMa2IvIgWEKoSMZBBqCbw45NPe8zGQKYkUYGF97kt8nG0VZmIeEAuETcYZ3fD0RyMAIjbTQhDHGeRlnDtlZ-zpVVvcc22_MU8h_0AOpUmnrAYe86C2XndbHBTavz8IlbdpzlbxrgpLyP813zsOpfzRQL388xqvEKeDBIa_-aglPs3GkH-gakSlEA_zEIwtTrmoYLo8gIkMO7pAHHUJ_v69tbcA9h4wG2O0NUGl8-EsxO24Vx3kAtMXjj_5t8s_J5v77JN37PPnymFzH6eJhvBc-IRtNtTJPyVX1o5nV1bN2_f4CETRPZg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolic+reprogramming+of+cancer-associated+fibroblasts+by+TGF-%CE%B2+drives+tumor+growth%3A+connecting+TGF-%CE%B2+signaling+with+%22Warburg-like%22+cancer+metabolism+and+L-lactate+production&rft.jtitle=Cell+cycle+%28Georgetown%2C+Tex.%29&rft.au=Guido%2C+Carmela&rft.au=Whitaker-Menezes%2C+Diana&rft.au=Capparelli%2C+Claudia&rft.au=Balliet%2C+Renee&rft.date=2012-08-15&rft.eissn=1551-4005&rft.volume=11&rft.issue=16&rft.spage=3019&rft_id=info:doi/10.4161%2Fcc.21384&rft_id=info%3Apmid%2F22874531&rft.externalDocID=22874531 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-4101&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-4101&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-4101&client=summon |