Active Polarization Descattering

Vision in scattering media is important but challenging. Images suffer from poor visibility due to backscattering and attenuation. Most prior methods for scene recovery use active illumination scanners (structured and gated), which can be slow and cumbersome, while natural illumination is inapplicab...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 31; no. 3; pp. 385 - 399
Main Authors: Treibitz, T., Schechner, Y.Y.
Format: Journal Article
Language:English
Published: Los Alamitos, CA IEEE 01.03.2009
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0162-8828, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Vision in scattering media is important but challenging. Images suffer from poor visibility due to backscattering and attenuation. Most prior methods for scene recovery use active illumination scanners (structured and gated), which can be slow and cumbersome, while natural illumination is inapplicable to dark environments. The current paper addresses the need for a non-scanning recovery method, that uses active scene irradiance. We study the formation of images under widefield artificial illumination. Based on the formation model, the paper presents an approach for recovering the object signal. It also yields rough information about the 3D scene structure. The approach can work with compact, simple hardware, having active widefield, polychromatic polarized illumination. The camera is fitted with a polarization analyzer. Two frames of the scene are taken, with different states of the analyzer or polarizer. A recovery algorithm follows the acquisition. It allows both the backscatter and the object reflection to be partially polarized. It thus unifies and generalizes prior polarization-based methods, which had assumed exclusive polarization of either of these components. The approach is limited to an effective range, due to image noise and illumination falloff. Thus, the limits and noise sensitivity are analyzed. We demonstrate the approach in underwater field experiments.
AbstractList Vision in scattering media is important but challenging. Images suffer from poor visibility due to backscattering and attenuation. Most prior methods for scene recovery use active illumination scanners (structured and gated), which can [abstract truncated by publisher].
Vision in scattering media is important but challenging. Images suffer from poor visibility due to backscattering and attenuation. Most prior methods for scene recovery use active illumination scanners (structured and gated), which can be slow and cumbersome, while natural illumination is inapplicable to dark environments. The current paper addresses the need for a non-scanning recovery method, that uses active scene irradiance. We study the formation of images under widefield artificial illumination. Based on the formation model, the paper presents an approach for recovering the object signal. It also yields rough information about the 3D scene structure. The approach can work with compact, simple hardware, having active widefield, polychromatic polarized illumination. The camera is fitted with a polarization analyzer. Two frames of the scene are taken, with different states of the analyzer or polarizer. A recovery algorithm follows the acquisition. It allows both the backscatter and the object reflection to be partially polarized. It thus unifies and generalizes prior polarization-based methods, which had assumed exclusive polarization of either of these components. The approach is limited to an effective range, due to image noise and illumination falloff. Thus, the limits and noise sensitivity are analyzed. We demonstrate the approach in underwater field experiments.Vision in scattering media is important but challenging. Images suffer from poor visibility due to backscattering and attenuation. Most prior methods for scene recovery use active illumination scanners (structured and gated), which can be slow and cumbersome, while natural illumination is inapplicable to dark environments. The current paper addresses the need for a non-scanning recovery method, that uses active scene irradiance. We study the formation of images under widefield artificial illumination. Based on the formation model, the paper presents an approach for recovering the object signal. It also yields rough information about the 3D scene structure. The approach can work with compact, simple hardware, having active widefield, polychromatic polarized illumination. The camera is fitted with a polarization analyzer. Two frames of the scene are taken, with different states of the analyzer or polarizer. A recovery algorithm follows the acquisition. It allows both the backscatter and the object reflection to be partially polarized. It thus unifies and generalizes prior polarization-based methods, which had assumed exclusive polarization of either of these components. The approach is limited to an effective range, due to image noise and illumination falloff. Thus, the limits and noise sensitivity are analyzed. We demonstrate the approach in underwater field experiments.
Vision in scattering media is important but challenging. Images suffer from poor visibility due to backscattering and attenuation. Most prior methods for scene recovery use active illumination scanners (structured and gated), which can be slow and cumbersome, while natural illumination is inapplicable to dark environments. The current paper addresses the need for a non-scanning recovery method, that uses active scene irradiance. We study the formation of images under widefield artificial illumination. Based on the formation model, the paper presents an approach for recovering the object signal. It also yields rough information about the 3D scene structure. The approach can work with compact, simple hardware, having active widefield, polychromatic polarized illumination. The camera is fitted with a polarization analyzer. Two frames of the scene are taken, with different states of the analyzer or polarizer. A recovery algorithm follows the acquisition. It allows both the backscatter and the object reflection to be partially polarized. It thus unifies and generalizes prior polarization-based methods, which had assumed exclusive polarization of either of these components. The approach is limited to an effective range, due to image noise and illumination falloff. Thus, the limits and noise sensitivity are analyzed. We demonstrate the approach in underwater field experiments.
The approach is limited to an effective range, due to image noise and illumination falloff. [...] the limits and noise sensitivity are analyzed.
Author Treibitz, T.
Schechner, Y.Y.
Author_xml – sequence: 1
  givenname: T.
  surname: Treibitz
  fullname: Treibitz, T.
  organization: Electr. Eng. Dept., Technion - Israel Inst. of Technol., Haifa
– sequence: 2
  givenname: Y.Y.
  surname: Schechner
  fullname: Schechner, Y.Y.
  organization: Electr. Eng. Dept., Technion - Israel Inst. of Technol., Haifa
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21270092$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19147870$$D View this record in MEDLINE/PubMed
BookMark eNqF0k1rFEEQBuBGEswmevQkyCJocpm1-rv6uMSPBCLmsPeht6dGOszOxO5ZQX-9Pdk1QsDk1Jen3qKr6pgd9ENPjL3isOAc3IfV9fLr5UIA4AL1MzbjTrpKaukO2Ay4ERWiwCN2nPMNAFca5HN2xB1XFi3M2HwZxviT5tdD51P87cc49POPlIMfR0qx__6CHba-y_Ry_56w1edPq_OL6urbl8vz5VUVlDNjRYE8l6VDUCKsW9tKjdC0jQ1WC8N9g8KvUZrGeBDEA3dotUPlg1lT6-UJO93F3qbhx5byWG9iDtR1vqdhm2sH0gjUTj4p0ZRYp2CS7x-VxmCZlhVPQqkUoBNT4tmjkNsyAhRWq0LfPqA3wzb1ZYQ1aqss144X9GaPtusNNfVtihufftV_91PAuz3wZSVdm3wfYr53ggsL4KYfVDsX0pBzovZfFNTTndR3d1JPd1L6Fy8f-BDHu-WPycfuv1Wvd1WRiO47KIXSOpR_AAr7xRY
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_LSP_2018_2792050
crossref_primary_10_1109_TIP_2017_2759252
crossref_primary_10_1007_s41064_022_00206_y
crossref_primary_10_1016_j_optlastec_2024_110864
crossref_primary_10_1007_s11042_025_20818_x
crossref_primary_10_1038_s41598_024_80830_3
crossref_primary_10_1016_j_ifacol_2018_09_465
crossref_primary_10_1109_TIP_2022_3177129
crossref_primary_10_3389_fmars_2024_1457190
crossref_primary_10_1016_j_ijleo_2017_09_115
crossref_primary_10_1631_FITEE_1700744
crossref_primary_10_1631_FITEE_2000190
crossref_primary_10_1088_2040_8986_ac51b3
crossref_primary_10_1364_AO_424917
crossref_primary_10_1016_j_optlaseng_2020_106152
crossref_primary_10_1016_j_optlastec_2024_112375
crossref_primary_10_1109_TGRS_2023_3339216
crossref_primary_10_1016_j_optcom_2025_131848
crossref_primary_10_1109_ACCESS_2022_3221407
crossref_primary_10_1109_JPHOT_2018_2890771
crossref_primary_10_1016_j_optlaseng_2021_106777
crossref_primary_10_1364_AO_58_007367
crossref_primary_10_1364_PRJ_2_000038
crossref_primary_10_1016_j_heliyon_2023_e14442
crossref_primary_10_1109_TCSVT_2024_3512600
crossref_primary_10_1016_j_optcom_2017_01_012
crossref_primary_10_1016_j_optlaseng_2024_108333
crossref_primary_10_1016_j_optlaseng_2024_108575
crossref_primary_10_1016_j_neucom_2020_03_091
crossref_primary_10_1109_TCI_2022_3162259
crossref_primary_10_1364_AO_52_000997
crossref_primary_10_1117_1_JEI_33_4_043031
crossref_primary_10_1007_s11042_017_5518_8
crossref_primary_10_1073_pnas_1321368111
crossref_primary_10_1109_JDT_2011_2176917
crossref_primary_10_1016_j_optlaseng_2025_108826
crossref_primary_10_3390_photonics10020145
crossref_primary_10_1002_advs_202309998
crossref_primary_10_1109_JOE_2024_3463838
crossref_primary_10_1109_ACCESS_2020_3009161
crossref_primary_10_1016_j_optlaseng_2025_109233
crossref_primary_10_1016_j_optlaseng_2025_109113
crossref_primary_10_1109_JPHOT_2023_3326158
crossref_primary_10_1109_JSEN_2020_3027030
crossref_primary_10_3390_s22093159
crossref_primary_10_3390_app11072996
crossref_primary_10_3390_photonics11111069
crossref_primary_10_1016_j_image_2022_116684
crossref_primary_10_1155_2016_5985673
crossref_primary_10_1587_transinf_2019EDP7219
crossref_primary_10_1109_TIP_2019_2919947
crossref_primary_10_1016_j_imavis_2024_104995
crossref_primary_10_1007_s10043_024_00941_0
crossref_primary_10_1007_s44295_023_00009_w
crossref_primary_10_1016_j_optlastec_2024_110549
crossref_primary_10_1038_s41377_019_0143_0
crossref_primary_10_1364_AO_563125
crossref_primary_10_1016_j_optlastec_2022_108584
crossref_primary_10_1109_ACCESS_2023_3322153
crossref_primary_10_1109_JPHOT_2025_3594762
crossref_primary_10_1117_1_JEI_33_2_023001
crossref_primary_10_1145_3656473
crossref_primary_10_1016_j_ijleo_2018_01_017
crossref_primary_10_1016_j_measurement_2022_111556
crossref_primary_10_1016_j_optlastec_2025_113810
crossref_primary_10_1016_j_displa_2022_102296
crossref_primary_10_1016_j_optlaseng_2024_108804
crossref_primary_10_1109_TCI_2025_3544065
crossref_primary_10_1109_TGRS_2021_3110575
crossref_primary_10_1016_j_optlaseng_2019_105871
crossref_primary_10_1016_j_optlaseng_2023_107550
crossref_primary_10_1016_j_optlaseng_2023_107796
crossref_primary_10_1016_j_optcom_2015_09_109
crossref_primary_10_1088_1361_6501_abaa1d
crossref_primary_10_3788_PI_2025_R03
crossref_primary_10_1088_2040_8986_adda5e
crossref_primary_10_1364_AO_505198
crossref_primary_10_1051_jnwpu_20193730471
crossref_primary_10_1109_ACCESS_2018_2875344
crossref_primary_10_1109_TIP_2012_2208978
crossref_primary_10_3788_AI_2025_20002
crossref_primary_10_1364_AO_57_004992
crossref_primary_10_1364_AO_56_006631
crossref_primary_10_1177_1729881419864468
crossref_primary_10_1364_AO_423184
crossref_primary_10_3390_rs16173286
crossref_primary_10_1016_j_knosys_2024_112651
crossref_primary_10_3390_s19071713
crossref_primary_10_1007_s11042_019_07922_5
crossref_primary_10_3390_rs15061540
crossref_primary_10_1007_s41064_022_00191_2
crossref_primary_10_1007_s11802_020_4003_6
crossref_primary_10_1109_JPHOT_2017_2698000
crossref_primary_10_1016_j_optlaseng_2024_108265
crossref_primary_10_1109_TCI_2024_3420881
crossref_primary_10_1016_j_optlastec_2023_110039
crossref_primary_10_1109_JSEN_2025_3540412
crossref_primary_10_1109_JPHOT_2018_2791517
crossref_primary_10_1364_AO_476003
crossref_primary_10_1016_j_optlastec_2024_111669
crossref_primary_10_1016_j_ijleo_2021_168381
crossref_primary_10_1016_j_optcom_2018_12_022
crossref_primary_10_1109_JOE_2018_2875574
crossref_primary_10_1109_ACCESS_2019_2959560
crossref_primary_10_1038_s41598_022_05852_1
crossref_primary_10_1186_s41074_018_0049_4
crossref_primary_10_1364_AO_54_008116
crossref_primary_10_1016_j_optlaseng_2020_106256
crossref_primary_10_1364_PRJ_7_000847
crossref_primary_10_1111_mice_13440
crossref_primary_10_3390_jmse12111955
crossref_primary_10_1109_TCI_2024_3404612
crossref_primary_10_1364_AO_55_008221
crossref_primary_10_3389_fphy_2022_815296
crossref_primary_10_3390_photonics10020204
crossref_primary_10_1088_2515_7647_ada997
crossref_primary_10_1016_j_optmat_2024_115274
crossref_primary_10_3390_s23218896
crossref_primary_10_1088_1742_6596_3023_1_012006
crossref_primary_10_1364_AO_437391
crossref_primary_10_1364_AO_54_003294
crossref_primary_10_1016_j_eswa_2025_126561
crossref_primary_10_1109_TPAMI_2018_2889088
crossref_primary_10_1364_AO_51_005633
crossref_primary_10_3390_s25030704
crossref_primary_10_1016_j_optlaseng_2021_106925
crossref_primary_10_1016_j_engappai_2023_107069
crossref_primary_10_1364_OE_551935
crossref_primary_10_1007_s11263_017_1025_7
crossref_primary_10_1364_AO_50_000F89
crossref_primary_10_3390_s23125594
crossref_primary_10_1038_srep09616
crossref_primary_10_3390_s23042169
crossref_primary_10_1109_JPHOT_2024_3523328
crossref_primary_10_1016_j_cviu_2016_03_002
crossref_primary_10_1016_j_optlastec_2025_112900
crossref_primary_10_1088_0256_307X_32_7_074201
crossref_primary_10_1587_transinf_2016EDP7486
crossref_primary_10_1016_j_optcom_2021_126892
crossref_primary_10_1016_j_optlaseng_2023_107934
crossref_primary_10_1109_JPHOT_2018_2890286
crossref_primary_10_1109_TED_2014_2299757
crossref_primary_10_1186_s43074_025_00185_4
crossref_primary_10_3390_s23177446
crossref_primary_10_1109_JPHOT_2021_3094359
crossref_primary_10_1109_TPAMI_2024_3403234
crossref_primary_10_1016_j_optlaseng_2024_108194
crossref_primary_10_1109_LSP_2020_3005045
crossref_primary_10_3389_fphy_2021_815360
crossref_primary_10_1109_ACCESS_2020_3040505
crossref_primary_10_1109_TPAMI_2016_2613862
crossref_primary_10_1109_ACCESS_2020_3045993
crossref_primary_10_1109_ACCESS_2020_2982910
crossref_primary_10_1049_iet_ipr_2017_0259
crossref_primary_10_3389_fphy_2022_813634
crossref_primary_10_1007_s12145_025_01913_x
crossref_primary_10_1088_1361_6463_aab28f
crossref_primary_10_1109_JPHOT_2020_3048007
crossref_primary_10_1002_lpor_202100097
crossref_primary_10_1109_TPAMI_2023_3299526
crossref_primary_10_3390_s17061425
crossref_primary_10_1016_j_neucom_2018_10_089
crossref_primary_10_1109_TPAMI_2019_2959304
crossref_primary_10_1016_j_heliyon_2023_e15849
crossref_primary_10_1016_j_imavis_2016_10_005
crossref_primary_10_1364_AO_564737
crossref_primary_10_1016_j_neunet_2023_11_008
crossref_primary_10_1364_OE_562111
crossref_primary_10_1016_j_ijleo_2023_171179
crossref_primary_10_1155_2010_746052
crossref_primary_10_1109_TCSVT_2019_2963772
crossref_primary_10_3390_s24206681
crossref_primary_10_3390_s17081726
crossref_primary_10_1109_ACCESS_2021_3086820
crossref_primary_10_1007_s00138_022_01337_3
crossref_primary_10_1109_TIM_2021_3120130
crossref_primary_10_1109_JOE_2025_3562630
crossref_primary_10_1109_TCSVT_2023_3297524
crossref_primary_10_1364_AO_510602
crossref_primary_10_1016_j_optcom_2017_12_025
crossref_primary_10_1016_j_optlaseng_2024_108414
crossref_primary_10_1007_s11431_023_2614_8
crossref_primary_10_3390_app14051769
crossref_primary_10_1016_j_optlastec_2025_113522
crossref_primary_10_1109_TIP_2014_2358882
crossref_primary_10_1007_s11042_017_5474_3
crossref_primary_10_1039_D1NH00465D
crossref_primary_10_1109_JPHOT_2020_3047609
crossref_primary_10_1002_jsid_838
crossref_primary_10_1063_5_0282969
crossref_primary_10_3390_technologies13050210
crossref_primary_10_1080_01431161_2025_2555280
crossref_primary_10_1145_3478513_3480517
crossref_primary_10_1109_TGRS_2022_3227548
crossref_primary_10_1088_2040_8986_ac83d6
crossref_primary_10_1007_s11801_020_9135_9
crossref_primary_10_1063_1_4901244
crossref_primary_10_1016_j_optcom_2025_131695
crossref_primary_10_1109_TIP_2019_2955241
crossref_primary_10_1109_TPAMI_2011_105
crossref_primary_10_1364_AO_54_007316
crossref_primary_10_1016_j_optlaseng_2020_106088
crossref_primary_10_1016_j_optlaseng_2023_107737
crossref_primary_10_1007_s10489_022_03767_y
crossref_primary_10_1016_j_optlaseng_2025_108865
crossref_primary_10_1364_AO_555392
crossref_primary_10_1080_09500340_2018_1429682
crossref_primary_10_3390_math12223553
crossref_primary_10_1364_AO_567237
crossref_primary_10_1049_ipr2_12041
crossref_primary_10_1109_JOE_2015_2469915
crossref_primary_10_1049_iet_ipr_2019_0117
crossref_primary_10_1038_ncomms6386
crossref_primary_10_3390_jmse11071476
crossref_primary_10_3390_app14188465
crossref_primary_10_1109_JPHOT_2022_3221726
crossref_primary_10_1016_j_optlaseng_2023_107721
crossref_primary_10_1016_j_optlaseng_2023_107963
crossref_primary_10_3390_app13042054
crossref_primary_10_1109_JOE_2022_3140563
crossref_primary_10_3390_s20154343
Cites_doi 10.1016/S0262-8856(96)01123-7
10.1242/jeb.01187
10.1145/1073204.1073309
10.1117/1.1484498
10.1364/JOSAA.16.002136
10.1145/1015706.1015806
10.1109/ICCV.2005.232
10.1109/CVPR.2005.275
10.1364/AO.37.007357
10.1109/TPAMI.2007.1141
10.1016/0042-6989(93)90166-T
10.1109/CVPR.2008.4587768
10.1109/CVPR.2006.71
10.1117/12.143954
10.1117/12.364201
10.1103/PhysRevB.40.9342
10.1109/IMTC.2004.1351080
10.1016/j.sigpro.2004.11.022
10.1109/CVPR.2005.195
10.1364/AO.35.001855
10.1145/1179352.1141977
10.1109/JOE.2005.850871
10.4031/002533205787442576
10.1109/CVPR.2007.383162
10.1364/AO.42.000511
10.1109/CVPR.1997.609419
10.1364/OE.7.000395
10.1117/12.49256
10.1364/JOSAA.17.000276
10.1109/TPAMI.2007.1151
10.1117/12.48880
10.1109/CVPR.2008.4587763
10.1364/OL.24.001044
10.1109/CVPR.2007.383262
10.1364/AO.6.000741
10.1109/CVPR.2000.855795
10.1364/AO.38.003399
10.1364/OL.21.000161
10.1109/CVPR.2006.155
10.1364/AO.38.003937
10.1109/CVPR.2004.1315078
10.1109/48.50695
10.1109/CVPR.2007.383209
10.1109/CVPR.2008.4587844
10.1109/IVS.2000.898404
10.1023/A:1016328200723
10.1117/1.1483318
10.1109/CVPR.2001.990493
ContentType Journal Article
Copyright 2009 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
Copyright_xml – notice: 2009 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
7TN
F1W
H96
L.G
DOI 10.1109/TPAMI.2008.85
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Technology Research Database
MEDLINE - Academic
Technology Research Database
Technology Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Technology Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1939-3539
EndPage 399
ExternalDocumentID 2295247711
19147870
21270092
10_1109_TPAMI_2008_85
4483798
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
7TN
F1W
H96
L.G
ID FETCH-LOGICAL-c496t-ecea13001c42cbf7f3580dfd7c75261ad82ab836d6a02e1c19875984ac6befa3
IEDL.DBID RIE
ISICitedReferencesCount 383
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000262480200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
IngestDate Tue Sep 30 23:35:14 EDT 2025
Sun Sep 28 09:07:18 EDT 2025
Wed Oct 01 08:16:46 EDT 2025
Sat Sep 27 19:14:15 EDT 2025
Thu Oct 02 10:26:59 EDT 2025
Sun Nov 30 04:56:31 EST 2025
Mon Jul 21 06:09:15 EDT 2025
Mon Jul 21 09:13:58 EDT 2025
Tue Nov 18 21:24:08 EST 2025
Sat Nov 29 08:10:12 EST 2025
Tue Aug 26 16:47:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Computer vision
Modeling and recovery of physical attributes
Color
Scattering medium
Polarization
Scanner
Light source
image recovery
Irradiance
Modeling
Light sources
Imaging
inverse problems
Pattern analysis
Fog
modeling and recovery of physical attributes
physics-based vision
Image restoration
scene analysis-color
Color image
Depth of field
Inverse problem
vision in scattering media
Luminance
Scene analysis
Visibility
Artificial intelligence
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-ecea13001c42cbf7f3580dfd7c75261ad82ab836d6a02e1c19875984ac6befa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 19147870
PQID 857471591
PQPubID 23500
PageCount 15
ParticipantIDs pubmed_primary_19147870
proquest_miscellaneous_34408923
pascalfrancis_primary_21270092
proquest_miscellaneous_903628593
crossref_citationtrail_10_1109_TPAMI_2008_85
proquest_miscellaneous_66819372
ieee_primary_4483798
proquest_miscellaneous_869849403
proquest_journals_857471591
crossref_primary_10_1109_TPAMI_2008_85
proquest_miscellaneous_1730082754
PublicationCentury 2000
PublicationDate 2009-03-01
PublicationDateYYYYMMDD 2009-03-01
PublicationDate_xml – month: 03
  year: 2009
  text: 2009-03-01
  day: 01
PublicationDecade 2000
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2009
Publisher IEEE
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: IEEE Computer Society
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref14
ref52
ref11
ref10
ref54
McGlamery (ref26); 208
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Mobley (ref28) 1994
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
Wells (ref53) 2005; 41
ref2
ref1
ref39
ref38
ref24
ref23
ref25
ref20
ref21
ref27
Harvey (ref15) 1998; 32
ref29
(ref13) 1998
Kokhanovsky (ref22) 2004
References_xml – ident: ref54
  doi: 10.1016/S0262-8856(96)01123-7
– ident: ref44
  doi: 10.1242/jeb.01187
– ident: ref48
  doi: 10.1145/1073204.1073309
– ident: ref16
  doi: 10.1117/1.1484498
– ident: ref8
  doi: 10.1364/JOSAA.16.002136
– ident: ref23
  doi: 10.1145/1015706.1015806
– ident: ref31
  doi: 10.1109/ICCV.2005.232
– volume-title: Light and Water: Radiative Transfer in Natural Waters
  year: 1994
  ident: ref28
– ident: ref5
  doi: 10.1109/CVPR.2005.275
– ident: ref19
  doi: 10.1364/AO.37.007357
– ident: ref37
  doi: 10.1109/TPAMI.2007.1141
– ident: ref18
  doi: 10.1016/0042-6989(93)90166-T
– ident: ref7
  doi: 10.1109/CVPR.2008.4587768
– ident: ref45
  doi: 10.1109/CVPR.2006.71
– ident: ref9
  doi: 10.1117/12.143954
– ident: ref14
  doi: 10.1117/12.364201
– volume: 208
  start-page: 221
  volume-title: Proc. SPIE
  ident: ref26
  article-title: A Computer Model for Underwater Camera System
– ident: ref25
  doi: 10.1103/PhysRevB.40.9342
– ident: ref10
  doi: 10.1109/IMTC.2004.1351080
– ident: ref46
  doi: 10.1016/j.sigpro.2004.11.022
– ident: ref27
  doi: 10.1109/CVPR.2005.195
– ident: ref52
  doi: 10.1364/AO.35.001855
– ident: ref32
  doi: 10.1145/1179352.1141977
– ident: ref39
  doi: 10.1109/JOE.2005.850871
– ident: ref21
  doi: 10.4031/002533205787442576
– ident: ref34
  doi: 10.1109/CVPR.2007.383162
– ident: ref41
  doi: 10.1364/AO.42.000511
– ident: ref4
  doi: 10.1109/CVPR.1997.609419
– ident: ref29
  doi: 10.1364/OE.7.000395
– ident: ref49
  doi: 10.1117/12.49256
– start-page: 200.
  volume-title: Light Scattering Media Optics
  year: 2004
  ident: ref22
– ident: ref43
  doi: 10.1364/JOSAA.17.000276
– ident: ref42
  doi: 10.1109/TPAMI.2007.1151
– ident: ref47
  doi: 10.1117/12.48880
– ident: ref12
  doi: 10.1109/CVPR.2008.4587763
– ident: ref35
  doi: 10.1364/OL.24.001044
– ident: ref20
  doi: 10.1109/CVPR.2007.383262
– ident: ref11
  doi: 10.1364/AO.6.000741
– volume: 32
  start-page: 3
  issue: 2
  year: 1998
  ident: ref15
  article-title: Calibration Stability of an Underwater Stereo-Video System: Implications for Measurement Accuracy and Precision
  publication-title: Marine Technology Soc. J.
– ident: ref2
  doi: 10.1109/CVPR.2000.855795
– ident: ref33
  doi: 10.1364/AO.38.003399
– volume: 41
  issue: 10
  year: 2005
  ident: ref53
  article-title: MTF Provides an Image-Quality Metric
  publication-title: Laser Focus World
– ident: ref6
  doi: 10.1364/OL.21.000161
– ident: ref50
  doi: 10.1109/CVPR.2006.155
– ident: ref24
  doi: 10.1364/AO.38.003937
– ident: ref38
  doi: 10.1109/CVPR.2004.1315078
– ident: ref17
  doi: 10.1109/48.50695
– ident: ref3
  doi: 10.1109/CVPR.2007.383209
– volume-title: Xenon Flash Lamps, Hamamatsu, Catalog TLSX1008E04 (Hamamatsu Photonics K.K., Electron Tube Center)
  year: 1998
  ident: ref13
– ident: ref51
  doi: 10.1109/CVPR.2008.4587844
– ident: ref1
  doi: 10.1109/IVS.2000.898404
– ident: ref30
  doi: 10.1023/A:1016328200723
– ident: ref36
  doi: 10.1117/1.1483318
– ident: ref40
  doi: 10.1109/CVPR.2001.990493
SSID ssj0014503
Score 2.4963841
Snippet Vision in scattering media is important but challenging. Images suffer from poor visibility due to backscattering and attenuation. Most prior methods for scene...
The approach is limited to an effective range, due to image noise and illumination falloff. [...] the limits and noise sensitivity are analyzed.
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 385
SubjectTerms Algorithms
Applied sciences
Artificial Intelligence
Attenuation
Backscatter
Backscattering
Cameras
Color
Computer science; control theory; systems
Computer vision
Exact sciences and technology
Illumination
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Layout
Light
Light scattering
Lighting
Mathematical models
Modeling and recovery of physical attributes
Optical modulation
Optical polarization
Optical reflection
Optical scattering
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Polarization
Recovery
Refractometry - methods
Reproducibility of Results
Scattering, Radiation
Sensitivity and Specificity
Three dimensional
Title Active Polarization Descattering
URI https://ieeexplore.ieee.org/document/4483798
https://www.ncbi.nlm.nih.gov/pubmed/19147870
https://www.proquest.com/docview/857471591
https://www.proquest.com/docview/1730082754
https://www.proquest.com/docview/34408923
https://www.proquest.com/docview/66819372
https://www.proquest.com/docview/869849403
https://www.proquest.com/docview/903628593
Volume 31
WOSCitedRecordID wos000262480200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-3539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4B4gAHnguERzcrrTiRJXEcP44VAoHEoh566C1yHFtaadUi2vL7mXHSABI5cIuSUWSNPfE3Gc_3AfzG2zVTzicI9qklR2SJxl0yyTyzVqg6rVxoFH6UT09qMtGjNbjqemGcc-HwmftDl6GWX8_skn6VXXOiP9dqHdalFE2vVlcx4EVQQUYEgxGOacQ7n-b1eDT8-9Acm1RBqUZnREmTftqKgrYKnYw0c3SOb1Qt-mFn2H7udr838D3YaWFmPGzWxT6suekB7K4kHOI2og9g-wMf4SHEw_D1i0eU77YNmjFmpjaQcKLJDxjf3Y5v7pNWQiGxXItF4qwzVLDKLGe28tJT1bP2tbSywNzJ1IqZSuWiFiZlLrP0C6LQihsrKudNfgQb09nUnUDMrUIk6SXhGZ6zWucV6RY7ro33uc4iuFo5s7QtvTipXPwvQ5qR6jJMQyN7qYoILjvz54ZXo8_wkPzZGbWujGDwaaa65yyU0jWL4Gw1dWUblnN8HeXgBY32V_cU44mKJGbqZst5mRGBv2Ky4BH87LHJSaYbkXG_hRCItHKJo4h7LJRAN2ue5v0mmtAF8dFFcNysvXdXtUv49GvvnMFWU_Wis3LnsLF4WboL2LSvi3_zlwGGz0QNQvi8Aaf8FIA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwEB3xJbEcYBdYCJ9BWu2J0MRxHPtYIRCIUvXQA7fIcWwJCbWItvv7d8ZJA0jkwC1KRpE19sRvMp73AP7g7YpJ6yIE-9SSI5JI4S4ZJY4ZI2QVl9Y3Cg_y4VA-PanRCly2vTDWWn_4zF7Rpa_lV1OzoF9lPU7050quwnrGOYvrbq22ZsAzr4OMGAZjHBOJd0bN3njUf7yvD05Kr1WjEiKliT9tRl5dhc5G6hm6x9W6Ft3A029AtzvfG_pP2G6AZtivV8YvWLGTXdhZijiETUzvwtYHRsI9CPv--xeOKONtWjRDzE2Np-FEk30Y396Mr--iRkQhMlyJeWSN1VSySgxnpnS5o7pn5arc5BlmT7qSTJcyFZXQMbOJoZ8QmZJcG1Fap9PfsDaZTuwhhNxIxJIuJ0TDU1aptCTlYsuVdi5VSQCXS2cWpiEYJ52Ll8InGrEq_DTUwpcyC-Bva_5aM2t0Ge6RP1ujxpUBnH2aqfY588V0xQI4Xk5d0QTmDF9HWXhGo71on2JEUZlET-x0MSsSovCXLM94AOcdNikJdSM27rYQArFWmuMowg4LKdDNisdpt4kifEGMdAEc1Gvv3VXNEj762jvnsHk3fhwUg_vhwzH8qGtgdHLuBNbmbwt7Chvm3_x59nbmg-g_ojwW3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+Polarization+Descattering&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=TREIBITZ%2C+Tali&rft.au=SCHECHNER%2C+Yoav+Y&rft.date=2009-03-01&rft.pub=IEEE+Computer+Society&rft.issn=0162-8828&rft.volume=31&rft.issue=3&rft.spage=385&rft.epage=399&rft_id=info:doi/10.1109%2FTPAMI.2008.85&rft.externalDBID=n%2Fa&rft.externalDocID=21270092
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon