Additive Manufacturing for Occupational Hygiene: A Comprehensive Review of Processes, Emissions, & Exposures
This comprehensive review introduces occupational (industrial) hygienists and toxicologists to the seven basic additive manufacturing (AM) process categories. Forty-six articles were identified that reported real-world measurements for all AM processes, except sheet lamination. Particles released fr...
Gespeichert in:
| Veröffentlicht in: | Journal of toxicology and environmental health. Part B, Critical reviews Jg. 24; H. 5; S. 173 - 222 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Taylor & Francis
04.07.2021
Taylor & Francis Ltd |
| Schlagworte: | |
| ISSN: | 1093-7404, 1521-6950, 1521-6950 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This comprehensive review introduces occupational (industrial) hygienists and toxicologists to the seven basic additive manufacturing (AM) process categories. Forty-six articles were identified that reported real-world measurements for all AM processes, except sheet lamination. Particles released from powder bed fusion (PBF), material jetting (MJ), material extrusion (ME), and directed energy deposition (DED) processes exhibited nanoscale to submicron scale; real-time particle number (mobility sizers, condensation nuclei counters, miniDiSC, electrical diffusion batteries) and surface area monitors (diffusion chargers) were generally sufficient for these processes. Binder jetting (BJ) machines released particles up to 8.5 µm; optical particle sizers (number) and laser scattering photometers (mass) were sufficient for this process. PBF and DED processes (powdered metallic feedstocks) released particles that contained respiratory irritants (chromium, molybdenum), central nervous system toxicants (manganese), and carcinogens (nickel). All process categories, except those that use metallic feedstocks, released organic gases, including (but not limited to), respiratory irritants (toluene, xylenes), asthmagens (methyl methacrylate, styrene), and carcinogens (benzene, formaldehyde, acetaldehyde). Real-time photoionization detectors for total volatile organics provided useful information for processes that utilize polymer feedstock materials. More research is needed to understand 1) facility-, machine-, and feedstock-related factors that influence emissions and exposures, 2) dermal exposure and biological burden, and 3) task-based exposures. Harmonized emissions monitoring and exposure assessment approaches are needed to facilitate inter-comparison of study results. Improved understanding of AM process emissions and exposures is needed for hygienists to ensure appropriate health and safety conditions for workers and for toxicologists to design experimental protocols that accurately mimic real-world exposure conditions.
ABBREVIATIONS ABS : acrylonitrile butadiene styrene; ACGIH® TLV® : American Conference of Governmental Industrial Hygienists Threshold Limit Value; ACH : air change per hour; AM : additive manufacturing; ASA : acrylonitrile styrene acrylate; AVP : acetone vapor polishing; BJ : binder jetting; CAM-LEM : computer-aided manufacturing of laminated engineering materials; CNF : carbon nanofiber; CNT : carbon nanotube; CP : co-polyester; CNC : condensation nuclei counter; CVP : chloroform vapor polishing; DED : directed energy deposition; DLP : digital light processing; EBM : electron beam melting; EELS : electron energy loss spectrometry; EDB : electrical diffusion batteries; EDX : energy dispersive x-ray analyzer; ER : emission rate; FDM™ : fused deposition modeling; FFF : fused filament fabrication; IAQ : indoor air quality; LSP : laser scattering photometer; LCD : liquid crystal display; LDSA : lung deposited particle surface area; LOD : limit of detection; LOM : laminated object manufacturing; LOQ : limit of quantitation; MCE : mixed cellulose ester filter; ME : material extrusion; MJ : material jetting; OEL : occupational exposure limit; OPS : optical particle sizer; PBF : powder bed fusion; PBZ : personal breathing zone; PC : polycarbonate; PEEK : poly ether ether ketone; PET : polyethylene terephthalate; PETG : Polyethylene terephthalate glycol; PID : photoionization detector; PLA : polylactic acid; PM
1
: particulate matter with aerodynamic diameter less than 1 µm; PM
2.5
: particulate matter with aerodynamic diameter less than 2.5 µm; PM
10
: particulate matter with aerodynamic diameter less than 10 µm; PSL : plastic sheet lamination; PVA : polyvinyl alcohol; REL : recommended exposure limit; SDL : selective deposition lamination; SDS : safety data sheet; SEM : scanning electron microscopy; SL : sheet lamination; SLA : stereolithography; SLM : selective laser melting; SMPS : scanning mobility particle sizer; SVOC : semi-volatile organic compound; TEM : transmission electron microscopy; TGA : thermal gravimetric analysis; TPU : thermo polyurethane; UAM : ultrasonic additive manufacturing; UC : ultrasonic consolidation; TVOC : total volatile organic compounds; TWA : time-weighted average; VOC : volatile organic compound; VP : vat photopolymerization |
|---|---|
| AbstractList | This comprehensive review introduces occupational (industrial) hygienists and toxicologists to the seven basic additive manufacturing (AM) process categories. Forty-six articles were identified that reported real-world measurements for all AM processes, except sheet lamination. Particles released from powder bed fusion (PBF), material jetting (MJ), material extrusion (ME), and directed energy deposition (DED) processes exhibited nanoscale to submicron scale; real-time particle number (mobility sizers, condensation nuclei counters, miniDiSC, electrical diffusion batteries) and surface area monitors (diffusion chargers) were generally sufficient for these processes. Binder jetting (BJ) machines released particles up to 8.5 µm; optical particle sizers (number) and laser scattering photometers (mass) were sufficient for this process. PBF and DED processes (powdered metallic feedstocks) released particles that contained respiratory irritants (chromium, molybdenum), central nervous system toxicants (manganese), and carcinogens (nickel). All process categories, except those that use metallic feedstocks, released organic gases, including (but not limited to), respiratory irritants (toluene, xylenes), asthmagens (methyl methacrylate, styrene), and carcinogens (benzene, formaldehyde, acetaldehyde). Real-time photoionization detectors for total volatile organics provided useful information for processes that utilize polymer feedstock materials. More research is needed to understand 1) facility-, machine-, and feedstock-related factors that influence emissions and exposures, 2) dermal exposure and biological burden, and 3) task-based exposures. Harmonized emissions monitoring and exposure assessment approaches are needed to facilitate inter-comparison of study results. Improved understanding of AM process emissions and exposures is needed for hygienists to ensure appropriate health and safety conditions for workers and for toxicologists to design experimental protocols that accurately mimic real-world exposure conditions.
ABS : acrylonitrile butadiene styrene; ACGIH® TLV® : American Conference of Governmental Industrial Hygienists Threshold Limit Value; ACH : air change per hour; AM : additive manufacturing; ASA : acrylonitrile styrene acrylate; AVP : acetone vapor polishing; BJ : binder jetting; CAM-LEM : computer-aided manufacturing of laminated engineering materials; CNF : carbon nanofiber; CNT : carbon nanotube; CP : co-polyester; CNC : condensation nuclei counter; CVP : chloroform vapor polishing; DED : directed energy deposition; DLP : digital light processing; EBM : electron beam melting; EELS : electron energy loss spectrometry; EDB : electrical diffusion batteries; EDX : energy dispersive x-ray analyzer; ER : emission rate; FDM™ : fused deposition modeling; FFF : fused filament fabrication; IAQ : indoor air quality; LSP : laser scattering photometer; LCD : liquid crystal display; LDSA : lung deposited particle surface area; LOD : limit of detection; LOM : laminated object manufacturing; LOQ : limit of quantitation; MCE : mixed cellulose ester filter; ME : material extrusion; MJ : material jetting; OEL : occupational exposure limit; OPS : optical particle sizer; PBF : powder bed fusion; PBZ : personal breathing zone; PC : polycarbonate; PEEK : poly ether ether ketone; PET : polyethylene terephthalate; PETG : Polyethylene terephthalate glycol; PID : photoionization detector; PLA : polylactic acid; PM
: particulate matter with aerodynamic diameter less than 1 µm; PM
: particulate matter with aerodynamic diameter less than 2.5 µm; PM
: particulate matter with aerodynamic diameter less than 10 µm; PSL : plastic sheet lamination; PVA : polyvinyl alcohol; REL : recommended exposure limit; SDL : selective deposition lamination; SDS : safety data sheet; SEM : scanning electron microscopy; SL : sheet lamination; SLA : stereolithography; SLM : selective laser melting; SMPS : scanning mobility particle sizer; SVOC : semi-volatile organic compound; TEM : transmission electron microscopy; TGA : thermal gravimetric analysis; TPU : thermo polyurethane; UAM : ultrasonic additive manufacturing; UC : ultrasonic consolidation; TVOC : total volatile organic compounds; TWA : time-weighted average; VOC : volatile organic compound; VP : vat photopolymerization. This comprehensive review introduces occupational (industrial) hygienists and toxicologists to the seven basic additive manufacturing (AM) process categories. Forty-six articles were identified that reported real-world measurements for all AM processes, except sheet lamination. Particles released from powder bed fusion (PBF), material jetting (MJ), material extrusion (ME), and directed energy deposition (DED) processes exhibited nanoscale to submicron scale; real-time particle number (mobility sizers, condensation nuclei counters, miniDiSC, electrical diffusion batteries) and surface area monitors (diffusion chargers) were generally sufficient for these processes. Binder jetting (BJ) machines released particles up to 8.5 µm; optical particle sizers (number) and laser scattering photometers (mass) were sufficient for this process. PBF and DED processes (powdered metallic feedstocks) released particles that contained respiratory irritants (chromium, molybdenum), central nervous system toxicants (manganese), and carcinogens (nickel). All process categories, except those that use metallic feedstocks, released organic gases, including (but not limited to), respiratory irritants (toluene, xylenes), asthmagens (methyl methacrylate, styrene), and carcinogens (benzene, formaldehyde, acetaldehyde). Real-time photoionization detectors for total volatile organics provided useful information for processes that utilize polymer feedstock materials. More research is needed to understand 1) facility-, machine-, and feedstock-related factors that influence emissions and exposures, 2) dermal exposure and biological burden, and 3) task-based exposures. Harmonized emissions monitoring and exposure assessment approaches are needed to facilitate inter-comparison of study results. Improved understanding of AM process emissions and exposures is needed for hygienists to ensure appropriate health and safety conditions for workers and for toxicologists to design experimental protocols that accurately mimic real-world exposure conditions.ABBREVIATIONS ABS : acrylonitrile butadiene styrene; ACGIH® TLV® : American Conference of Governmental Industrial Hygienists Threshold Limit Value; ACH : air change per hour; AM : additive manufacturing; ASA : acrylonitrile styrene acrylate; AVP : acetone vapor polishing; BJ : binder jetting; CAM-LEM : computer-aided manufacturing of laminated engineering materials; CNF : carbon nanofiber; CNT : carbon nanotube; CP : co-polyester; CNC : condensation nuclei counter; CVP : chloroform vapor polishing; DED : directed energy deposition; DLP : digital light processing; EBM : electron beam melting; EELS : electron energy loss spectrometry; EDB : electrical diffusion batteries; EDX : energy dispersive x-ray analyzer; ER : emission rate; FDM™ : fused deposition modeling; FFF : fused filament fabrication; IAQ : indoor air quality; LSP : laser scattering photometer; LCD : liquid crystal display; LDSA : lung deposited particle surface area; LOD : limit of detection; LOM : laminated object manufacturing; LOQ : limit of quantitation; MCE : mixed cellulose ester filter; ME : material extrusion; MJ : material jetting; OEL : occupational exposure limit; OPS : optical particle sizer; PBF : powder bed fusion; PBZ : personal breathing zone; PC : polycarbonate; PEEK : poly ether ether ketone; PET : polyethylene terephthalate; PETG : Polyethylene terephthalate glycol; PID : photoionization detector; PLA : polylactic acid; PM1 : particulate matter with aerodynamic diameter less than 1 µm; PM2.5 : particulate matter with aerodynamic diameter less than 2.5 µm; PM10 : particulate matter with aerodynamic diameter less than 10 µm; PSL : plastic sheet lamination; PVA : polyvinyl alcohol; REL : recommended exposure limit; SDL : selective deposition lamination; SDS : safety data sheet; SEM : scanning electron microscopy; SL : sheet lamination; SLA : stereolithography; SLM : selective laser melting; SMPS : scanning mobility particle sizer; SVOC : semi-volatile organic compound; TEM : transmission electron microscopy; TGA : thermal gravimetric analysis; TPU : thermo polyurethane; UAM : ultrasonic additive manufacturing; UC : ultrasonic consolidation; TVOC : total volatile organic compounds; TWA : time-weighted average; VOC : volatile organic compound; VP : vat photopolymerization.This comprehensive review introduces occupational (industrial) hygienists and toxicologists to the seven basic additive manufacturing (AM) process categories. Forty-six articles were identified that reported real-world measurements for all AM processes, except sheet lamination. Particles released from powder bed fusion (PBF), material jetting (MJ), material extrusion (ME), and directed energy deposition (DED) processes exhibited nanoscale to submicron scale; real-time particle number (mobility sizers, condensation nuclei counters, miniDiSC, electrical diffusion batteries) and surface area monitors (diffusion chargers) were generally sufficient for these processes. Binder jetting (BJ) machines released particles up to 8.5 µm; optical particle sizers (number) and laser scattering photometers (mass) were sufficient for this process. PBF and DED processes (powdered metallic feedstocks) released particles that contained respiratory irritants (chromium, molybdenum), central nervous system toxicants (manganese), and carcinogens (nickel). All process categories, except those that use metallic feedstocks, released organic gases, including (but not limited to), respiratory irritants (toluene, xylenes), asthmagens (methyl methacrylate, styrene), and carcinogens (benzene, formaldehyde, acetaldehyde). Real-time photoionization detectors for total volatile organics provided useful information for processes that utilize polymer feedstock materials. More research is needed to understand 1) facility-, machine-, and feedstock-related factors that influence emissions and exposures, 2) dermal exposure and biological burden, and 3) task-based exposures. Harmonized emissions monitoring and exposure assessment approaches are needed to facilitate inter-comparison of study results. Improved understanding of AM process emissions and exposures is needed for hygienists to ensure appropriate health and safety conditions for workers and for toxicologists to design experimental protocols that accurately mimic real-world exposure conditions.ABBREVIATIONS ABS : acrylonitrile butadiene styrene; ACGIH® TLV® : American Conference of Governmental Industrial Hygienists Threshold Limit Value; ACH : air change per hour; AM : additive manufacturing; ASA : acrylonitrile styrene acrylate; AVP : acetone vapor polishing; BJ : binder jetting; CAM-LEM : computer-aided manufacturing of laminated engineering materials; CNF : carbon nanofiber; CNT : carbon nanotube; CP : co-polyester; CNC : condensation nuclei counter; CVP : chloroform vapor polishing; DED : directed energy deposition; DLP : digital light processing; EBM : electron beam melting; EELS : electron energy loss spectrometry; EDB : electrical diffusion batteries; EDX : energy dispersive x-ray analyzer; ER : emission rate; FDM™ : fused deposition modeling; FFF : fused filament fabrication; IAQ : indoor air quality; LSP : laser scattering photometer; LCD : liquid crystal display; LDSA : lung deposited particle surface area; LOD : limit of detection; LOM : laminated object manufacturing; LOQ : limit of quantitation; MCE : mixed cellulose ester filter; ME : material extrusion; MJ : material jetting; OEL : occupational exposure limit; OPS : optical particle sizer; PBF : powder bed fusion; PBZ : personal breathing zone; PC : polycarbonate; PEEK : poly ether ether ketone; PET : polyethylene terephthalate; PETG : Polyethylene terephthalate glycol; PID : photoionization detector; PLA : polylactic acid; PM1 : particulate matter with aerodynamic diameter less than 1 µm; PM2.5 : particulate matter with aerodynamic diameter less than 2.5 µm; PM10 : particulate matter with aerodynamic diameter less than 10 µm; PSL : plastic sheet lamination; PVA : polyvinyl alcohol; REL : recommended exposure limit; SDL : selective deposition lamination; SDS : safety data sheet; SEM : scanning electron microscopy; SL : sheet lamination; SLA : stereolithography; SLM : selective laser melting; SMPS : scanning mobility particle sizer; SVOC : semi-volatile organic compound; TEM : transmission electron microscopy; TGA : thermal gravimetric analysis; TPU : thermo polyurethane; UAM : ultrasonic additive manufacturing; UC : ultrasonic consolidation; TVOC : total volatile organic compounds; TWA : time-weighted average; VOC : volatile organic compound; VP : vat photopolymerization. This comprehensive review introduces occupational (industrial) hygienists and toxicologists to the seven basic additive manufacturing (AM) process categories. Forty-six articles were identified that reported real-world measurements for all AM processes, except sheet lamination. Particles released from powder bed fusion (PBF), material jetting (MJ), material extrusion (ME), and directed energy deposition (DED) processes exhibited nanoscale to submicron scale; real-time particle number (mobility sizers, condensation nuclei counters, miniDiSC, electrical diffusion batteries) and surface area monitors (diffusion chargers) were generally sufficient for these processes. Binder jetting (BJ) machines released particles up to 8.5 µm; optical particle sizers (number) and laser scattering photometers (mass) were sufficient for this process. PBF and DED processes (powdered metallic feedstocks) released particles that contained respiratory irritants (chromium, molybdenum), central nervous system toxicants (manganese), and carcinogens (nickel). All process categories, except those that use metallic feedstocks, released organic gases, including (but not limited to), respiratory irritants (toluene, xylenes), asthmagens (methyl methacrylate, styrene), and carcinogens (benzene, formaldehyde, acetaldehyde). Real-time photoionization detectors for total volatile organics provided useful information for processes that utilize polymer feedstock materials. More research is needed to understand 1) facility-, machine-, and feedstock-related factors that influence emissions and exposures, 2) dermal exposure and biological burden, and 3) task-based exposures. Harmonized emissions monitoring and exposure assessment approaches are needed to facilitate inter-comparison of study results. Improved understanding of AM process emissions and exposures is needed for hygienists to ensure appropriate health and safety conditions for workers and for toxicologists to design experimental protocols that accurately mimic real-world exposure conditions. ABBREVIATIONS ABS : acrylonitrile butadiene styrene; ACGIH® TLV® : American Conference of Governmental Industrial Hygienists Threshold Limit Value; ACH : air change per hour; AM : additive manufacturing; ASA : acrylonitrile styrene acrylate; AVP : acetone vapor polishing; BJ : binder jetting; CAM-LEM : computer-aided manufacturing of laminated engineering materials; CNF : carbon nanofiber; CNT : carbon nanotube; CP : co-polyester; CNC : condensation nuclei counter; CVP : chloroform vapor polishing; DED : directed energy deposition; DLP : digital light processing; EBM : electron beam melting; EELS : electron energy loss spectrometry; EDB : electrical diffusion batteries; EDX : energy dispersive x-ray analyzer; ER : emission rate; FDM™ : fused deposition modeling; FFF : fused filament fabrication; IAQ : indoor air quality; LSP : laser scattering photometer; LCD : liquid crystal display; LDSA : lung deposited particle surface area; LOD : limit of detection; LOM : laminated object manufacturing; LOQ : limit of quantitation; MCE : mixed cellulose ester filter; ME : material extrusion; MJ : material jetting; OEL : occupational exposure limit; OPS : optical particle sizer; PBF : powder bed fusion; PBZ : personal breathing zone; PC : polycarbonate; PEEK : poly ether ether ketone; PET : polyethylene terephthalate; PETG : Polyethylene terephthalate glycol; PID : photoionization detector; PLA : polylactic acid; PM 1 : particulate matter with aerodynamic diameter less than 1 µm; PM 2.5 : particulate matter with aerodynamic diameter less than 2.5 µm; PM 10 : particulate matter with aerodynamic diameter less than 10 µm; PSL : plastic sheet lamination; PVA : polyvinyl alcohol; REL : recommended exposure limit; SDL : selective deposition lamination; SDS : safety data sheet; SEM : scanning electron microscopy; SL : sheet lamination; SLA : stereolithography; SLM : selective laser melting; SMPS : scanning mobility particle sizer; SVOC : semi-volatile organic compound; TEM : transmission electron microscopy; TGA : thermal gravimetric analysis; TPU : thermo polyurethane; UAM : ultrasonic additive manufacturing; UC : ultrasonic consolidation; TVOC : total volatile organic compounds; TWA : time-weighted average; VOC : volatile organic compound; VP : vat photopolymerization This comprehensive review introduces occupational (industrial) hygienists and toxicologists to the seven basic additive manufacturing (AM) process categories. Forty-six articles were identified that reported real-world measurements for all AM processes, except sheet lamination. Particles released from powder bed fusion (PBF), material jetting (MJ), material extrusion (ME), and directed energy deposition (DED) processes exhibited nanoscale to submicron scale; real-time particle number (mobility sizers, condensation nuclei counters, miniDiSC, electrical diffusion batteries) and surface area monitors (diffusion chargers) were generally sufficient for these processes. Binder jetting (BJ) machines released particles up to 8.5 µm; optical particle sizers (number) and laser scattering photometers (mass) were sufficient for this process. PBF and DED processes (powdered metallic feedstocks) released particles that contained respiratory irritants (chromium, molybdenum), central nervous system toxicants (manganese), and carcinogens (nickel). All process categories, except those that use metallic feedstocks, released organic gases, including (but not limited to), respiratory irritants (toluene, xylenes), asthmagens (methyl methacrylate, styrene), and carcinogens (benzene, formaldehyde, acetaldehyde). Real-time photoionization detectors for total volatile organics provided useful information for processes that utilize polymer feedstock materials. More research is needed to understand 1) facility-, machine-, and feedstock-related factors that influence emissions and exposures, 2) dermal exposure and biological burden, and 3) task-based exposures. Harmonized emissions monitoring and exposure assessment approaches are needed to facilitate inter-comparison of study results. Improved understanding of AM process emissions and exposures is needed for hygienists to ensure appropriate health and safety conditions for workers and for toxicologists to design experimental protocols that accurately mimic real-world exposure conditions.ABBREVIATIONS ABS : acrylonitrile butadiene styrene; ACGIH® TLV® : American Conference of Governmental Industrial Hygienists Threshold Limit Value; ACH : air change per hour; AM : additive manufacturing; ASA : acrylonitrile styrene acrylate; AVP : acetone vapor polishing; BJ : binder jetting; CAM-LEM : computer-aided manufacturing of laminated engineering materials; CNF : carbon nanofiber; CNT : carbon nanotube; CP : co-polyester; CNC : condensation nuclei counter; CVP : chloroform vapor polishing; DED : directed energy deposition; DLP : digital light processing; EBM : electron beam melting; EELS : electron energy loss spectrometry; EDB : electrical diffusion batteries; EDX : energy dispersive x-ray analyzer; ER : emission rate; FDM™ : fused deposition modeling; FFF : fused filament fabrication; IAQ : indoor air quality; LSP : laser scattering photometer; LCD : liquid crystal display; LDSA : lung deposited particle surface area; LOD : limit of detection; LOM : laminated object manufacturing; LOQ : limit of quantitation; MCE : mixed cellulose ester filter; ME : material extrusion; MJ : material jetting; OEL : occupational exposure limit; OPS : optical particle sizer; PBF : powder bed fusion; PBZ : personal breathing zone; PC : polycarbonate; PEEK : poly ether ether ketone; PET : polyethylene terephthalate; PETG : Polyethylene terephthalate glycol; PID : photoionization detector; PLA : polylactic acid; PM1 : particulate matter with aerodynamic diameter less than 1 µm; PM2.5 : particulate matter with aerodynamic diameter less than 2.5 µm; PM10 : particulate matter with aerodynamic diameter less than 10 µm; PSL : plastic sheet lamination; PVA : polyvinyl alcohol; REL : recommended exposure limit; SDL : selective deposition lamination; SDS : safety data sheet; SEM : scanning electron microscopy; SL : sheet lamination; SLA : stereolithography; SLM : selective laser melting; SMPS : scanning mobility particle sizer; SVOC : semi-volatile organic compound; TEM : transmission electron microscopy; TGA : thermal gravimetric analysis; TPU : thermo polyurethane; UAM : ultrasonic additive manufacturing; UC : ultrasonic consolidation; TVOC : total volatile organic compounds; TWA : time-weighted average; VOC : volatile organic compound; VP : vat photopolymerization This comprehensive review introduces occupational (industrial) hygienists and toxicologists to the seven basic additive manufacturing (AM) process categories. Forty-six articles were identified that reported real-world measurements for all AM processes, except sheet lamination. Particles released from powder bed fusion (PBF), material jetting (MJ), material extrusion (ME), and directed energy deposition (DED) processes exhibited nanoscale to submicron scale; real-time particle number (mobility sizers, condensation nuclei counters, miniDiSC, electrical diffusion batteries) and surface area monitors (diffusion chargers) were generally sufficient for these processes. Binder jetting (BJ) machines released particles up to 8.5 μm; optical particle sizers (number) and laser scattering photometers (mass) were sufficient for this process. PBF and DED processes (powdered metallic feedstocks) released particles that contained respiratory irritants (chromium, molybdenum), central nervous system toxicants (manganese), and carcinogens (nickel). All process categories, except those that use metallic feedstocks, released organic gases, including (but not limited to), respiratory irritants (toluene, xylenes), asthmagens (methyl methacrylate, styrene), and carcinogens (benzene, formaldehyde, acetaldehyde). Real-time photoionization detectors for total volatile organics provided useful information for processes that utilize polymer feedstock materials. More research is needed to understand 1) facility-, machine-, and feedstock-related factors that influence emissions and exposures, 2) dermal exposure and biological burden, and 3) task-based exposures. Harmonized emissions monitoring and exposure assessment approaches are needed to facilitate inter-comparison of study results. Improved understanding of AM process emissions and exposures is needed for hygienists to ensure appropriate health and safety conditions for workers and for toxicologists to design experimental protocols that accurately mimic real-world exposure conditions. |
| Author | Du Preez, S Stefaniak, A.B. Du Plessis, JL |
| AuthorAffiliation | b North-West University, Occupational Hygiene and Health Research Initiative, Potchefstroom, South Africa a Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA |
| AuthorAffiliation_xml | – name: b North-West University, Occupational Hygiene and Health Research Initiative, Potchefstroom, South Africa – name: a Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA |
| Author_xml | – sequence: 1 givenname: A.B. surname: Stefaniak fullname: Stefaniak, A.B. email: AStefaniak@cdc.gov organization: National Institute for Occupational Safety and Health – sequence: 2 givenname: S surname: Du Preez fullname: Du Preez, S organization: North-West University, Occupational Hygiene and Health Research Initiative – sequence: 3 givenname: JL surname: Du Plessis fullname: Du Plessis, JL organization: North-West University, Occupational Hygiene and Health Research Initiative |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34139957$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkV-L1DAUxYOsuH_0IygBQfbBjkmatM0KssMwusLKiuhzSNPb2SxtUpN21vn2ZpwZ0X3QvORCfufcm3tO0ZHzDhB6TsmMkoq8oUTmJSd8xgijMyrzIqfyETqhgtGskIIcpTox2RY6Rqcx3pF0hKyeoOOc01xKUZ6gbt40drRrwJ-0m1ptxilYt8KtD_jGmGnQo_VOd_hqs7Lg4ALP8cL3Q4BbcHGr-wJrC_fYt_hz8AZihPgaL3sbYxKm8hVe_hh8nALEp-hxq7sIz_b3Gfr2fvl1cZVd33z4uJhfZ4bLYsyA1cbQgrGyZVQT0YKuDdGCGd1CQYQgtICSN4bWotZlaWhb8krXjFSGV5DnZ-jdzneY6h4aA24MulNDsL0OG-W1VX-_OHurVn6tqqKscsmSwfneIPjvE8RRpf8Y6DrtwE9RMcFzLphkMqEvH6B3fgppYzuqIJTTMlEv_pzo9yiHIBLwdgeY4GMM0Cpjx1-7TwPaTlGitrGrQ-xqG7vax57U4oH60OB_usudzroUeK_vfegaNepN50MbtDM2qvzfFj8BYtDExg |
| CitedBy_id | crossref_primary_10_1051_mfreview_2022033 crossref_primary_10_1002_elan_70020 crossref_primary_10_1088_2631_8695_adb3f0 crossref_primary_10_1080_15459624_2024_2447320 crossref_primary_10_1007_s11356_022_20347_2 crossref_primary_10_1016_j_ijpharm_2025_125980 crossref_primary_10_3390_ijerph20136206 crossref_primary_10_1016_j_apples_2025_100224 crossref_primary_10_1016_j_envint_2023_108316 crossref_primary_10_1080_15287394_2025_2555883 crossref_primary_10_1016_j_apr_2022_101488 crossref_primary_10_1038_s41598_023_47884_1 crossref_primary_10_3389_fpubh_2023_1292420 crossref_primary_10_1016_j_atmosenv_2022_119501 crossref_primary_10_3390_ma15207367 crossref_primary_10_1016_j_resconrec_2021_105911 crossref_primary_10_3390_buildings12081222 crossref_primary_10_1016_j_heha_2022_100033 crossref_primary_10_1080_15459624_2022_2063879 crossref_primary_10_1016_j_nxsust_2024_100085 crossref_primary_10_1080_15287394_2025_2473559 crossref_primary_10_1080_15287394_2024_2311170 crossref_primary_10_1016_j_impact_2024_100510 crossref_primary_10_3389_fpubh_2023_1148974 crossref_primary_10_1016_j_clet_2024_100873 crossref_primary_10_1080_10937404_2022_2092569 crossref_primary_10_3389_fmtec_2024_1410653 crossref_primary_10_1016_j_ssci_2025_106842 crossref_primary_10_1080_15459624_2024_2313655 crossref_primary_10_1080_10426914_2024_2362621 crossref_primary_10_1080_15287394_2021_1998814 crossref_primary_10_1080_15287394_2024_2346938 crossref_primary_10_1093_annweh_wxae101 crossref_primary_10_1007_s13530_021_00117_2 crossref_primary_10_1080_10937404_2024_2380449 |
| Cites_doi | 10.1080/15459624.2015.1091957 10.1021/acs.est.0c05309 10.1007/s11051-019-4651-x 10.1111/jiec.12569 10.1016/j.atmosenv.2020.117956 10.1016/j.jaerosci.2008.09.007 10.1111/ina.12499 10.3389/fbioe.2020.00109 10.1016/j.proeng.2015.08.1099 10.1146/annurev-matsci-070115-031606 10.1016/j.addma.2019.100981 10.1016/j.addr.2018.06.011 10.1080/15287394.2019.1663458 10.1088/1742-6596/1323/1/012013 10.1016/j.procir.2020.01.116 10.1016/j.atmosenv.2013.06.050 10.1108/RPJ-12-2011-0127 10.1080/15459624.2020.1798012 10.1007/s13762-019-02444-x 10.1539/joh.46.148 10.7166/29-4-1975 10.1088/1758-5090/ab0798 10.1021/acs.est.9b04012 10.1016/j.aca.2020.11.012 10.1093/annweh/wxy093 10.1016/j.jclepro.2019.117790 10.1111/jiec.12498 10.1111/ina.12310 10.1016/j.buildenv.2015.07.013 10.1016/j.scitotenv.2019.07.257 10.1080/15459624.2018.1557784 10.1016/j.procir.2018.08.114 10.1080/15459624.2019.1591627 10.3389/fpubh.2020.608718 10.1002/prs.12030 10.3390/ijerph18030929 10.1016/j.promfg.2019.10.020 10.1088/1755-1315/373/1/012014 10.1039/C9RA03248G 10.1016/j.chemosphere.2020.127452 10.1021/es063049z 10.1115/MSEC2017-3007 10.1108/RPJ-11-2012-0111 10.1093/annweh/wxaa146 10.1021/acs.est.7b01546 10.1007/s11051-020-04844-4 10.1016/j.buildenv.2016.05.021 10.1021/acs.est.9b02818 10.1016/j.envint.2018.12.014 10.1080/15287394.2020.1751758 10.1016/j.jchas.2016.05.008 10.1080/08958378.2019.1621965 10.1021/acscentsci.8b00090 10.1016/j.coem.2006.07.003 10.1007/s11051-020-4750-8 10.1016/j.jchas.2018.11.001 10.1016/j.buildenv.2019.106209 10.1080/15459624.2019.1612068 10.1111/jiec.12587 10.1016/j.shaw.2019.07.006 10.1016/j.jclepro.2016.08.141 10.1016/j.scitotenv.2017.06.041 10.1016/B978-0-12-812155-9.00002-5 10.1108/13552549910295479 10.1080/15287394.2016.1166467 10.1021/acs.est.9b00765 10.1108/RPJ-03-2017-0050 10.1021/acs.jchemed.6b00745 10.1080/08958370902942632 10.1080/15459624.2019.1696969 10.1016/j.pmatsci.2020.100638 10.1016/j.jclepro.2017.09.193 10.1016/j.shaw.2018.10.003 10.1016/j.jhazmat.2019.02.097 |
| ContentType | Journal Article |
| Copyright | 2021 Taylor & Francis 2021 2021 Taylor & Francis |
| Copyright_xml | – notice: 2021 Taylor & Francis 2021 – notice: 2021 Taylor & Francis |
| DBID | AAYXX CITATION NPM 7QF 7QP 7QQ 7SC 7SE 7SP 7SR 7ST 7TA 7TB 7U5 7U7 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D SOI 7X8 5PM |
| DOI | 10.1080/10937404.2021.1936319 |
| DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts Environment Abstracts MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1521-6950 |
| EndPage | 222 |
| ExternalDocumentID | PMC8678392 34139957 10_1080_10937404_2021_1936319 1936319 |
| Genre | Review Journal Article |
| GrantInformation_xml | – fundername: Intramural CDC HHS grantid: CC999999 |
| GroupedDBID | .7F .QJ 0BK 0R~ 29L 30N 36B 4.4 53G 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACPRK ACTIO ADCVX ADGTB ADXPE AEISY AEOZL AFKVX AFRAH AFRVT AGDLA AGMYJ AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 COF DGEBU DKSSO EBS EMOBN E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TEI TFL TFT TFW TQWBC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION NPM 7QF 7QP 7QQ 7SC 7SE 7SP 7SR 7ST 7TA 7TB 7U5 7U7 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D SOI 7X8 5PM |
| ID | FETCH-LOGICAL-c496t-e2bcc16227f21a05feabc0a52cafe6055016e74dc1b5ba77c1f748ab208c48e33 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 41 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663186900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1093-7404 1521-6950 |
| IngestDate | Thu Aug 21 18:39:14 EDT 2025 Thu Sep 04 17:48:53 EDT 2025 Mon Sep 22 16:12:40 EDT 2025 Sat Aug 16 01:30:47 EDT 2025 Tue Nov 18 21:19:29 EST 2025 Sat Nov 29 06:39:33 EST 2025 Mon Oct 20 23:49:07 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | monitoring particles 3D printing gases Process descriptions research needs |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c496t-e2bcc16227f21a05feabc0a52cafe6055016e74dc1b5ba77c1f748ab208c48e33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author to whom correspondence should be sent |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8678392 |
| PMID | 34139957 |
| PQID | 2543601417 |
| PQPubID | 53068 |
| PageCount | 50 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8678392 crossref_citationtrail_10_1080_10937404_2021_1936319 crossref_primary_10_1080_10937404_2021_1936319 pubmed_primary_34139957 proquest_journals_2543601417 informaworld_taylorfrancis_310_1080_10937404_2021_1936319 proquest_miscellaneous_2543452929 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-04 |
| PublicationDateYYYYMMDD | 2021-07-04 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Philadelphia |
| PublicationTitle | Journal of toxicology and environmental health. Part B, Critical reviews |
| PublicationTitleAlternate | J Toxicol Environ Health B Crit Rev |
| PublicationYear | 2021 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | cit0077 cit0034 cit0078 cit0031 Philippot C. (cit0057) 2020 cit0075 cit0032 Freiser M. E. (cit0033) 2018; 144 cit0076 cit0073 cit0030 cit0074 Ryan T. (cit0062) 2016; 61 cit0071 cit0072 cit0070 cit0039 cit0037 cit0035 cit0079 cit0036 cit0022 cit0066 cit0023 cit0067 cit0020 cit0064 cit0021 cit0065 cit0063 cit0060 cit0061 McDonnell B. (cit0048) 2016 Beisser R. (cit0006) 2017; 77 cit0028 cit0029 cit0026 cit0027 cit0024 cit0068 cit0025 cit0069 cit0011 cit0055 cit0012 cit0056 cit0053 cit0010 cit0054 cit0051 cit0050 Damanhuri A. A. M. (cit0016) 2019; 11 NIOSH (cit0052) 2007 ISO/ASTM (cit0038) 2015 cit0019 cit0017 cit0018 cit0015 cit0059 cit0013 cit0014 cit0058 cit0044 cit0088 cit0001 cit0045 cit0089 cit0086 cit0043 cit0087 cit0040 cit0084 cit0041 cit0085 cit0082 cit0083 cit0080 cit0081 Kolb T. (cit0042) 2017 cit0008 cit0009 Aluri M. (cit0003) 2021 cit0007 cit0004 cit0005 cit0049 cit0002 cit0046 cit0047 |
| References_xml | – volume-title: Paper read at Solid Freeform Fabrication 2016 – An Additive Manufacturing Conference year: 2016 ident: cit0048 – ident: cit0072 doi: 10.1080/15459624.2015.1091957 – ident: cit0022 doi: 10.1021/acs.est.0c05309 – ident: cit0054 doi: 10.1007/s11051-019-4651-x – ident: cit0050 doi: 10.1111/jiec.12569 – ident: cit0002 doi: 10.1016/j.atmosenv.2020.117956 – ident: cit0031 doi: 10.1016/j.jaerosci.2008.09.007 – ident: cit0070 doi: 10.1111/ina.12499 – ident: cit0079 doi: 10.3389/fbioe.2020.00109 – year: 2017 ident: cit0042 publication-title: RTeJournal: Fachforum Fur Rapid Technologie2017 – ident: cit0086 doi: 10.1016/j.proeng.2015.08.1099 – ident: cit0009 doi: 10.1146/annurev-matsci-070115-031606 – ident: cit0074 doi: 10.1016/j.addma.2019.100981 – volume: 61 start-page: 56 year: 2016 ident: cit0062 publication-title: Prof Saf – ident: cit0029 – ident: cit0047 doi: 10.1016/j.addr.2018.06.011 – ident: cit0056 doi: 10.1080/15287394.2019.1663458 – ident: cit0066 doi: 10.1088/1742-6596/1323/1/012013 – ident: cit0051 doi: 10.1016/j.procir.2020.01.116 – ident: cit0073 doi: 10.1016/j.atmosenv.2013.06.050 – ident: cit0039 doi: 10.1108/RPJ-12-2011-0127 – ident: cit0087 doi: 10.1080/15459624.2020.1798012 – ident: cit0080 doi: 10.1007/s13762-019-02444-x – ident: cit0013 doi: 10.1539/joh.46.148 – ident: cit0025 doi: 10.7166/29-4-1975 – ident: cit0063 doi: 10.1088/1758-5090/ab0798 – ident: cit0041 doi: 10.1021/acs.est.9b04012 – ident: cit0058 doi: 10.1016/j.aca.2020.11.012 – ident: cit0043 doi: 10.1093/annweh/wxy093 – volume-title: Materials Today: Proceedings (E-print) year: 2021 ident: cit0003 – volume-title: 52900: Additive manufacturing — General principles — Terminology Geneva year: 2015 ident: cit0038 – ident: cit0015 doi: 10.1016/j.jclepro.2019.117790 – volume: 11 start-page: 140 issue: 5 year: 2019 ident: cit0016 publication-title: International Journal of Integrated Engineering – ident: cit0035 doi: 10.1111/jiec.12498 – ident: cit0067 doi: 10.1111/ina.12310 – ident: cit0001 doi: 10.1016/j.buildenv.2015.07.013 – ident: cit0021 doi: 10.1016/j.scitotenv.2019.07.257 – ident: cit0076 doi: 10.1080/15459624.2018.1557784 – ident: cit0078 doi: 10.1016/j.procir.2018.08.114 – ident: cit0061 doi: 10.1080/15459624.2019.1591627 – ident: cit0040 doi: 10.3389/fpubh.2020.608718 – ident: cit0045 doi: 10.1002/prs.12030 – ident: cit0007 doi: 10.3390/ijerph18030929 – ident: cit0011 doi: 10.1016/j.promfg.2019.10.020 – ident: cit0017 doi: 10.1088/1755-1315/373/1/012014 – ident: cit0084 doi: 10.1039/C9RA03248G – ident: cit0014 doi: 10.1016/j.chemosphere.2020.127452 – ident: cit0037 doi: 10.1021/es063049z – ident: cit0065 doi: 10.1115/MSEC2017-3007 – ident: cit0064 doi: 10.1108/RPJ-11-2012-0111 – ident: cit0044 doi: 10.1093/annweh/wxaa146 – ident: cit0077 doi: 10.1021/acs.est.7b01546 – ident: cit0026 doi: 10.1007/s11051-020-04844-4 – ident: cit0020 doi: 10.1016/j.buildenv.2016.05.021 – volume: 144 start-page: 797 year: 2018 ident: cit0033 publication-title: Otolaryngology-Head & Neck Surgery – ident: cit0089 doi: 10.1021/acs.est.9b02818 – ident: cit0036 doi: 10.1016/j.envint.2018.12.014 – ident: cit0012 doi: 10.1080/15287394.2020.1751758 – ident: cit0088 doi: 10.1016/j.jchas.2016.05.008 – ident: cit0034 doi: 10.1080/08958378.2019.1621965 – ident: cit0023 – ident: cit0055 doi: 10.1021/acscentsci.8b00090 – ident: cit0004 – ident: cit0028 doi: 10.1016/j.coem.2006.07.003 – ident: cit0027 doi: 10.1007/s11051-020-4750-8 – ident: cit0068 doi: 10.1016/j.jchas.2018.11.001 – ident: cit0018 doi: 10.1016/j.buildenv.2019.106209 – ident: cit0071 doi: 10.1080/15459624.2019.1612068 – ident: cit0010 doi: 10.1111/jiec.12587 – ident: cit0046 doi: 10.1016/j.shaw.2019.07.006 – ident: cit0049 doi: 10.1016/j.jclepro.2016.08.141 – ident: cit0075 doi: 10.1016/j.scitotenv.2017.06.041 – ident: cit0085 doi: 10.1016/B978-0-12-812155-9.00002-5 – ident: cit0019 doi: 10.1108/13552549910295479 – ident: cit0083 doi: 10.1080/15287394.2016.1166467 – volume-title: DHHS (NIOSH) Publication 2005-149 ed year: 2007 ident: cit0052 – ident: cit0059 doi: 10.1021/acs.est.9b00765 – ident: cit0024 doi: 10.1108/RPJ-03-2017-0050 – ident: cit0008 doi: 10.1021/acs.jchemed.6b00745 – ident: cit0030 doi: 10.1080/08958370902942632 – volume-title: Proceedings of Euro Powder Metallurgy, Bilbao, Spain year: 2020 ident: cit0057 – ident: cit0005 doi: 10.1080/15459624.2019.1696969 – ident: cit0053 – ident: cit0081 doi: 10.1016/j.pmatsci.2020.100638 – ident: cit0082 doi: 10.1016/j.jclepro.2017.09.193 – ident: cit0032 – ident: cit0069 doi: 10.1016/j.shaw.2018.10.003 – volume: 77 start-page: 487 year: 2017 ident: cit0006 publication-title: Gefahrstoffe Reinhaltung der Luft – ident: cit0060 doi: 10.1016/j.jhazmat.2019.02.097 |
| SSID | ssj0000598 |
| Score | 2.4714808 |
| SecondaryResourceType | review_article |
| Snippet | This comprehensive review introduces occupational (industrial) hygienists and toxicologists to the seven basic additive manufacturing (AM) process categories.... |
| SourceID | pubmedcentral proquest pubmed crossref informaworld |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 173 |
| SubjectTerms | 3D printing Abbreviations ABS resins Acetaldehyde Acetylcholine Acrylonitrile Acrylonitrile butadiene styrene Additive manufacturing Aerodynamics Air quality Batteries Battery chargers Benzene Carcinogens Cellulose Central nervous system Charging Chloroform Chromium Condensates Condensation nuclei Diffusion Electronic equipment Emissions Energy Energy loss Exposure Fused deposition modeling gases Gravimetric analysis Hygiene Indoor air pollution Indoor air quality Industrial safety Information processing Lamination Lasers Manganese Manufacturing Melting Microscopy Mobility monitoring Nickel Occupational exposure Occupational health Organic compounds Outdoor air quality particles Particulate matter Photoionization Photometers Polishing Pollution monitoring Polyethylene terephthalate Polylactic acid Polymers Polyvinyl alcohol Process descriptions Quantitation Raw materials research needs Scanning electron microscopy Scattering Spectrometry Surface area Thermal analysis Toxicants Toxicology Transmission electron microscopy VOCs Volatile organic compounds |
| Title | Additive Manufacturing for Occupational Hygiene: A Comprehensive Review of Processes, Emissions, & Exposures |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10937404.2021.1936319 https://www.ncbi.nlm.nih.gov/pubmed/34139957 https://www.proquest.com/docview/2543601417 https://www.proquest.com/docview/2543452929 https://pubmed.ncbi.nlm.nih.gov/PMC8678392 |
| Volume | 24 |
| WOSCitedRecordID | wos000663186900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1521-6950 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000598 issn: 1093-7404 databaseCode: TFW dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4oCEeJTXQqmMhHpqSuLYccxthXbVA1R7WGBv0dhxaKUqW212Efvv8djOPhCoBzhG9jixMx5_Hs98JuSdKG3uYLZJQIo64aJWiS4am3CdF4axWhl_x9LXT_LiopzN1CRGE3YxrBL30E0givC2Gic36K6PiHuPDEiSp-gRYdmZQyBF7ok_HbJHHZ-Ov21tsVAhGU7lCYr0OTx_a2VvddrjLv0TAv09kHJnZRo_-g99ekweRlhKh0GPnpA7tj0kJ5PAa70-pdNtmlZ3Sk_oZMt4vT4kD4Lzj4acpqfkeljXPiaJfoZ2hbkTPhmSun7SXVpjer7-7kyL_UCHFA3Twl6GeHoajizovKExk8G6146cTqJzz3_B6OfNHL2b3TPyZTyafjxP4rUOieGqWCaWaWOygjHZsAxS0VjQJgXBDDTW7a6EQ6FW8tpkWmiQ0mSN5CVolpaGO9XKn5ODdt7al4QKUFLYNK8Bag4KAGwGRnCuiwwEwIDw_ndWJnKe49Ub11UWqVH7ca9w3Ks47gNythG7CaQftwmoXV2plt7b0oSrUar8FtmjXrGqaD-6CikKCozBlQPydlPsRhmPc6C181Wog8fmzDXxIujh5msRmyglnLTc09BNBWQV3y9pry49u3jp4IsDza_-oUuvyX189FHN_IgcLBcr-4bcMz-WV93imNyVs_LYz9NfWrc5tg |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQQAIJMRhfhQFGQntatsSx43hv1dSqiK7aQ4G9WRfHYZOmdOoHov89PjvpB2LaA7zGPie-nM_n893vCPkkcps6M9tEIEUZcVGqqMgqG_EizQxjpTK-xtK3oRyN8osLtZkLg2GVeIauAlCE19W4uNEZ3YbEHSMEkuQxukRYcuRMkCxF5M_7wj3GsL5x__taGwsV0uFUGiFNm8Vz2zBb-9MWeunfbNA_Qyk39qb-7v-Y1VPypLFMaTeI0jNyz9Z75OA8QFsvD-l4nak1O6QH9HwNer3cI4-D_4-GtKbn5Lpblj4siZ5BvcD0CZ8PSd1E6SayMR0sfzjtYk9ol6JumtrLEFJPw60FnVS0SWaw7rU9J5bo3_Nf0Pt1M0EH5-wF-drvjU8HUVPZITJcZfPIssKYJGNMViyBWFQWChODYAYq6w5YwhmiVvLSJIUoQEqTVJLnULA4N9xJV_qS7NST2r4mVICSwsZpCVByUABgEzCC8yJLQAB0CG__pzYN7DlW37jWSYOO2vJdI991w_cOOVqR3QTcj7sI1Kaw6Ll3uFShOopO76DdbyVLNypkphGlIMMwXNkhH1fNjst4owO1nSxCH7w5Z26IV0EQV1-L5olSwlHLLRFddUBg8e2W-urSA4znzoJxdvObf5jSB_JwMD4b6uHn0Ze35BE2-SBnvk925tOFfUcemJ_zq9n0vV-uvwGPtzzv |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQQAgJ8TG-CgOMhPa0bIljxzFvFbQaYlR9KLC36GI7bNKUVk2L6H-Pz076gUB7gGf7HPt8Pl_Od78j5K3IberMbB2BFCbiwqiozCob8TLNNGNGaV9j6euZHI3y83M1bqMJmzasEv-hqwAU4XU1Hu6ZqbqIuBNEQJI8Ro8IS46dBZKlCPx504NjOZGeDL9tlLFQIRtOpRHSdEk8fxtm53raAS_9kwn6eyTl1tU0vP8fFvWA3GvtUtoPgvSQ3LD1PjkcB2Dr1RGdbPK0miN6SMcbyOvVPrkbvH80JDU9Ild9Y3xQEv0M9RKTJ3w2JHXrpNu4xvR09d3pFvuO9ilqprm9CAH1NLxZ0GlF21QG6z47cEKJ3j0_g8HP2RTdm81j8mU4mLw_jdq6DpHmKltElpVaJxljsmIJxKKyUOoYBNNQWfd7Jdw-WsmNTkpRgpQ6qSTPoWRxrrmTrfQJ2auntX1GqAAlhY1TA2A4KACwCWjBeZklIAB6hHfbWegW9Bxrb1wVSYuN2vG9QL4XLd975HhNNguoH9cRqG1ZKRbe3VKF2ihFeg3tQSdYRatAmgIxCjIMwpU98mbd7LiM7zlQ2-ky9MF3c-aGeBrkcD1bNE6UEo5a7kjougPCiu-21JcXHl48d_aLs5qf_8OSXpPb4w_D4uzj6NMLcgdbfIQzPyB7i_nSviS39I_FZTN_5Q_rL3CvO5M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Additive+Manufacturing+for+Occupational+Hygiene%3A+A+Comprehensive+Review+of+Processes%2C+Emissions%2C+%26+Exposures&rft.jtitle=Journal+of+toxicology+and+environmental+health.+Part+B%2C+Critical+reviews&rft.au=Stefaniak%2C+A.B.&rft.au=Du+Preez%2C+S&rft.au=Du+Plessis%2C+JL&rft.date=2021-07-04&rft.pub=Taylor+%26+Francis&rft.issn=1093-7404&rft.eissn=1521-6950&rft.volume=24&rft.issue=5&rft.spage=173&rft.epage=222&rft_id=info:doi/10.1080%2F10937404.2021.1936319&rft.externalDocID=1936319 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-7404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-7404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-7404&client=summon |