Additive Manufacturing for Occupational Hygiene: A Comprehensive Review of Processes, Emissions, & Exposures

This comprehensive review introduces occupational (industrial) hygienists and toxicologists to the seven basic additive manufacturing (AM) process categories. Forty-six articles were identified that reported real-world measurements for all AM processes, except sheet lamination. Particles released fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of toxicology and environmental health. Part B, Critical reviews Jg. 24; H. 5; S. 173 - 222
Hauptverfasser: Stefaniak, A.B., Du Preez, S, Du Plessis, JL
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Taylor & Francis 04.07.2021
Taylor & Francis Ltd
Schlagworte:
ISSN:1093-7404, 1521-6950, 1521-6950
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This comprehensive review introduces occupational (industrial) hygienists and toxicologists to the seven basic additive manufacturing (AM) process categories. Forty-six articles were identified that reported real-world measurements for all AM processes, except sheet lamination. Particles released from powder bed fusion (PBF), material jetting (MJ), material extrusion (ME), and directed energy deposition (DED) processes exhibited nanoscale to submicron scale; real-time particle number (mobility sizers, condensation nuclei counters, miniDiSC, electrical diffusion batteries) and surface area monitors (diffusion chargers) were generally sufficient for these processes. Binder jetting (BJ) machines released particles up to 8.5 µm; optical particle sizers (number) and laser scattering photometers (mass) were sufficient for this process. PBF and DED processes (powdered metallic feedstocks) released particles that contained respiratory irritants (chromium, molybdenum), central nervous system toxicants (manganese), and carcinogens (nickel). All process categories, except those that use metallic feedstocks, released organic gases, including (but not limited to), respiratory irritants (toluene, xylenes), asthmagens (methyl methacrylate, styrene), and carcinogens (benzene, formaldehyde, acetaldehyde). Real-time photoionization detectors for total volatile organics provided useful information for processes that utilize polymer feedstock materials. More research is needed to understand 1) facility-, machine-, and feedstock-related factors that influence emissions and exposures, 2) dermal exposure and biological burden, and 3) task-based exposures. Harmonized emissions monitoring and exposure assessment approaches are needed to facilitate inter-comparison of study results. Improved understanding of AM process emissions and exposures is needed for hygienists to ensure appropriate health and safety conditions for workers and for toxicologists to design experimental protocols that accurately mimic real-world exposure conditions. ABBREVIATIONS ABS : acrylonitrile butadiene styrene; ACGIH® TLV® : American Conference of Governmental Industrial Hygienists Threshold Limit Value; ACH : air change per hour; AM : additive manufacturing; ASA : acrylonitrile styrene acrylate; AVP : acetone vapor polishing; BJ : binder jetting; CAM-LEM : computer-aided manufacturing of laminated engineering materials; CNF : carbon nanofiber; CNT : carbon nanotube; CP : co-polyester; CNC : condensation nuclei counter; CVP : chloroform vapor polishing; DED : directed energy deposition; DLP : digital light processing; EBM : electron beam melting; EELS : electron energy loss spectrometry; EDB : electrical diffusion batteries; EDX : energy dispersive x-ray analyzer; ER : emission rate; FDM™ : fused deposition modeling; FFF : fused filament fabrication; IAQ : indoor air quality; LSP : laser scattering photometer; LCD : liquid crystal display; LDSA : lung deposited particle surface area; LOD : limit of detection; LOM : laminated object manufacturing; LOQ : limit of quantitation; MCE : mixed cellulose ester filter; ME : material extrusion; MJ : material jetting; OEL : occupational exposure limit; OPS : optical particle sizer; PBF : powder bed fusion; PBZ : personal breathing zone; PC : polycarbonate; PEEK : poly ether ether ketone; PET : polyethylene terephthalate; PETG : Polyethylene terephthalate glycol; PID : photoionization detector; PLA : polylactic acid; PM 1 : particulate matter with aerodynamic diameter less than 1 µm; PM 2.5 : particulate matter with aerodynamic diameter less than 2.5 µm; PM 10 : particulate matter with aerodynamic diameter less than 10 µm; PSL : plastic sheet lamination; PVA : polyvinyl alcohol; REL : recommended exposure limit; SDL : selective deposition lamination; SDS : safety data sheet; SEM : scanning electron microscopy; SL : sheet lamination; SLA : stereolithography; SLM : selective laser melting; SMPS : scanning mobility particle sizer; SVOC : semi-volatile organic compound; TEM : transmission electron microscopy; TGA : thermal gravimetric analysis; TPU : thermo polyurethane; UAM : ultrasonic additive manufacturing; UC : ultrasonic consolidation; TVOC : total volatile organic compounds; TWA : time-weighted average; VOC : volatile organic compound; VP : vat photopolymerization
AbstractList This comprehensive review introduces occupational (industrial) hygienists and toxicologists to the seven basic additive manufacturing (AM) process categories. Forty-six articles were identified that reported real-world measurements for all AM processes, except sheet lamination. Particles released from powder bed fusion (PBF), material jetting (MJ), material extrusion (ME), and directed energy deposition (DED) processes exhibited nanoscale to submicron scale; real-time particle number (mobility sizers, condensation nuclei counters, miniDiSC, electrical diffusion batteries) and surface area monitors (diffusion chargers) were generally sufficient for these processes. Binder jetting (BJ) machines released particles up to 8.5 µm; optical particle sizers (number) and laser scattering photometers (mass) were sufficient for this process. PBF and DED processes (powdered metallic feedstocks) released particles that contained respiratory irritants (chromium, molybdenum), central nervous system toxicants (manganese), and carcinogens (nickel). All process categories, except those that use metallic feedstocks, released organic gases, including (but not limited to), respiratory irritants (toluene, xylenes), asthmagens (methyl methacrylate, styrene), and carcinogens (benzene, formaldehyde, acetaldehyde). Real-time photoionization detectors for total volatile organics provided useful information for processes that utilize polymer feedstock materials. More research is needed to understand 1) facility-, machine-, and feedstock-related factors that influence emissions and exposures, 2) dermal exposure and biological burden, and 3) task-based exposures. Harmonized emissions monitoring and exposure assessment approaches are needed to facilitate inter-comparison of study results. Improved understanding of AM process emissions and exposures is needed for hygienists to ensure appropriate health and safety conditions for workers and for toxicologists to design experimental protocols that accurately mimic real-world exposure conditions. ABS : acrylonitrile butadiene styrene; ACGIH® TLV® : American Conference of Governmental Industrial Hygienists Threshold Limit Value; ACH : air change per hour; AM : additive manufacturing; ASA : acrylonitrile styrene acrylate; AVP : acetone vapor polishing; BJ : binder jetting; CAM-LEM : computer-aided manufacturing of laminated engineering materials; CNF : carbon nanofiber; CNT : carbon nanotube; CP : co-polyester; CNC : condensation nuclei counter; CVP : chloroform vapor polishing; DED : directed energy deposition; DLP : digital light processing; EBM : electron beam melting; EELS : electron energy loss spectrometry; EDB : electrical diffusion batteries; EDX : energy dispersive x-ray analyzer; ER : emission rate; FDM™ : fused deposition modeling; FFF : fused filament fabrication; IAQ : indoor air quality; LSP : laser scattering photometer; LCD : liquid crystal display; LDSA : lung deposited particle surface area; LOD : limit of detection; LOM : laminated object manufacturing; LOQ : limit of quantitation; MCE : mixed cellulose ester filter; ME : material extrusion; MJ : material jetting; OEL : occupational exposure limit; OPS : optical particle sizer; PBF : powder bed fusion; PBZ : personal breathing zone; PC : polycarbonate; PEEK : poly ether ether ketone; PET : polyethylene terephthalate; PETG : Polyethylene terephthalate glycol; PID : photoionization detector; PLA : polylactic acid; PM : particulate matter with aerodynamic diameter less than 1 µm; PM : particulate matter with aerodynamic diameter less than 2.5 µm; PM : particulate matter with aerodynamic diameter less than 10 µm; PSL : plastic sheet lamination; PVA : polyvinyl alcohol; REL : recommended exposure limit; SDL : selective deposition lamination; SDS : safety data sheet; SEM : scanning electron microscopy; SL : sheet lamination; SLA : stereolithography; SLM : selective laser melting; SMPS : scanning mobility particle sizer; SVOC : semi-volatile organic compound; TEM : transmission electron microscopy; TGA : thermal gravimetric analysis; TPU : thermo polyurethane; UAM : ultrasonic additive manufacturing; UC : ultrasonic consolidation; TVOC : total volatile organic compounds; TWA : time-weighted average; VOC : volatile organic compound; VP : vat photopolymerization.
This comprehensive review introduces occupational (industrial) hygienists and toxicologists to the seven basic additive manufacturing (AM) process categories. Forty-six articles were identified that reported real-world measurements for all AM processes, except sheet lamination. Particles released from powder bed fusion (PBF), material jetting (MJ), material extrusion (ME), and directed energy deposition (DED) processes exhibited nanoscale to submicron scale; real-time particle number (mobility sizers, condensation nuclei counters, miniDiSC, electrical diffusion batteries) and surface area monitors (diffusion chargers) were generally sufficient for these processes. Binder jetting (BJ) machines released particles up to 8.5 µm; optical particle sizers (number) and laser scattering photometers (mass) were sufficient for this process. PBF and DED processes (powdered metallic feedstocks) released particles that contained respiratory irritants (chromium, molybdenum), central nervous system toxicants (manganese), and carcinogens (nickel). All process categories, except those that use metallic feedstocks, released organic gases, including (but not limited to), respiratory irritants (toluene, xylenes), asthmagens (methyl methacrylate, styrene), and carcinogens (benzene, formaldehyde, acetaldehyde). Real-time photoionization detectors for total volatile organics provided useful information for processes that utilize polymer feedstock materials. More research is needed to understand 1) facility-, machine-, and feedstock-related factors that influence emissions and exposures, 2) dermal exposure and biological burden, and 3) task-based exposures. Harmonized emissions monitoring and exposure assessment approaches are needed to facilitate inter-comparison of study results. Improved understanding of AM process emissions and exposures is needed for hygienists to ensure appropriate health and safety conditions for workers and for toxicologists to design experimental protocols that accurately mimic real-world exposure conditions.ABBREVIATIONS ABS : acrylonitrile butadiene styrene; ACGIH® TLV® : American Conference of Governmental Industrial Hygienists Threshold Limit Value; ACH : air change per hour; AM : additive manufacturing; ASA : acrylonitrile styrene acrylate; AVP : acetone vapor polishing; BJ : binder jetting; CAM-LEM : computer-aided manufacturing of laminated engineering materials; CNF : carbon nanofiber; CNT : carbon nanotube; CP : co-polyester; CNC : condensation nuclei counter; CVP : chloroform vapor polishing; DED : directed energy deposition; DLP : digital light processing; EBM : electron beam melting; EELS : electron energy loss spectrometry; EDB : electrical diffusion batteries; EDX : energy dispersive x-ray analyzer; ER : emission rate; FDM™ : fused deposition modeling; FFF : fused filament fabrication; IAQ : indoor air quality; LSP : laser scattering photometer; LCD : liquid crystal display; LDSA : lung deposited particle surface area; LOD : limit of detection; LOM : laminated object manufacturing; LOQ : limit of quantitation; MCE : mixed cellulose ester filter; ME : material extrusion; MJ : material jetting; OEL : occupational exposure limit; OPS : optical particle sizer; PBF : powder bed fusion; PBZ : personal breathing zone; PC : polycarbonate; PEEK : poly ether ether ketone; PET : polyethylene terephthalate; PETG : Polyethylene terephthalate glycol; PID : photoionization detector; PLA : polylactic acid; PM1 : particulate matter with aerodynamic diameter less than 1 µm; PM2.5 : particulate matter with aerodynamic diameter less than 2.5 µm; PM10 : particulate matter with aerodynamic diameter less than 10 µm; PSL : plastic sheet lamination; PVA : polyvinyl alcohol; REL : recommended exposure limit; SDL : selective deposition lamination; SDS : safety data sheet; SEM : scanning electron microscopy; SL : sheet lamination; SLA : stereolithography; SLM : selective laser melting; SMPS : scanning mobility particle sizer; SVOC : semi-volatile organic compound; TEM : transmission electron microscopy; TGA : thermal gravimetric analysis; TPU : thermo polyurethane; UAM : ultrasonic additive manufacturing; UC : ultrasonic consolidation; TVOC : total volatile organic compounds; TWA : time-weighted average; VOC : volatile organic compound; VP : vat photopolymerization.This comprehensive review introduces occupational (industrial) hygienists and toxicologists to the seven basic additive manufacturing (AM) process categories. Forty-six articles were identified that reported real-world measurements for all AM processes, except sheet lamination. Particles released from powder bed fusion (PBF), material jetting (MJ), material extrusion (ME), and directed energy deposition (DED) processes exhibited nanoscale to submicron scale; real-time particle number (mobility sizers, condensation nuclei counters, miniDiSC, electrical diffusion batteries) and surface area monitors (diffusion chargers) were generally sufficient for these processes. Binder jetting (BJ) machines released particles up to 8.5 µm; optical particle sizers (number) and laser scattering photometers (mass) were sufficient for this process. PBF and DED processes (powdered metallic feedstocks) released particles that contained respiratory irritants (chromium, molybdenum), central nervous system toxicants (manganese), and carcinogens (nickel). All process categories, except those that use metallic feedstocks, released organic gases, including (but not limited to), respiratory irritants (toluene, xylenes), asthmagens (methyl methacrylate, styrene), and carcinogens (benzene, formaldehyde, acetaldehyde). Real-time photoionization detectors for total volatile organics provided useful information for processes that utilize polymer feedstock materials. More research is needed to understand 1) facility-, machine-, and feedstock-related factors that influence emissions and exposures, 2) dermal exposure and biological burden, and 3) task-based exposures. Harmonized emissions monitoring and exposure assessment approaches are needed to facilitate inter-comparison of study results. Improved understanding of AM process emissions and exposures is needed for hygienists to ensure appropriate health and safety conditions for workers and for toxicologists to design experimental protocols that accurately mimic real-world exposure conditions.ABBREVIATIONS ABS : acrylonitrile butadiene styrene; ACGIH® TLV® : American Conference of Governmental Industrial Hygienists Threshold Limit Value; ACH : air change per hour; AM : additive manufacturing; ASA : acrylonitrile styrene acrylate; AVP : acetone vapor polishing; BJ : binder jetting; CAM-LEM : computer-aided manufacturing of laminated engineering materials; CNF : carbon nanofiber; CNT : carbon nanotube; CP : co-polyester; CNC : condensation nuclei counter; CVP : chloroform vapor polishing; DED : directed energy deposition; DLP : digital light processing; EBM : electron beam melting; EELS : electron energy loss spectrometry; EDB : electrical diffusion batteries; EDX : energy dispersive x-ray analyzer; ER : emission rate; FDM™ : fused deposition modeling; FFF : fused filament fabrication; IAQ : indoor air quality; LSP : laser scattering photometer; LCD : liquid crystal display; LDSA : lung deposited particle surface area; LOD : limit of detection; LOM : laminated object manufacturing; LOQ : limit of quantitation; MCE : mixed cellulose ester filter; ME : material extrusion; MJ : material jetting; OEL : occupational exposure limit; OPS : optical particle sizer; PBF : powder bed fusion; PBZ : personal breathing zone; PC : polycarbonate; PEEK : poly ether ether ketone; PET : polyethylene terephthalate; PETG : Polyethylene terephthalate glycol; PID : photoionization detector; PLA : polylactic acid; PM1 : particulate matter with aerodynamic diameter less than 1 µm; PM2.5 : particulate matter with aerodynamic diameter less than 2.5 µm; PM10 : particulate matter with aerodynamic diameter less than 10 µm; PSL : plastic sheet lamination; PVA : polyvinyl alcohol; REL : recommended exposure limit; SDL : selective deposition lamination; SDS : safety data sheet; SEM : scanning electron microscopy; SL : sheet lamination; SLA : stereolithography; SLM : selective laser melting; SMPS : scanning mobility particle sizer; SVOC : semi-volatile organic compound; TEM : transmission electron microscopy; TGA : thermal gravimetric analysis; TPU : thermo polyurethane; UAM : ultrasonic additive manufacturing; UC : ultrasonic consolidation; TVOC : total volatile organic compounds; TWA : time-weighted average; VOC : volatile organic compound; VP : vat photopolymerization.
This comprehensive review introduces occupational (industrial) hygienists and toxicologists to the seven basic additive manufacturing (AM) process categories. Forty-six articles were identified that reported real-world measurements for all AM processes, except sheet lamination. Particles released from powder bed fusion (PBF), material jetting (MJ), material extrusion (ME), and directed energy deposition (DED) processes exhibited nanoscale to submicron scale; real-time particle number (mobility sizers, condensation nuclei counters, miniDiSC, electrical diffusion batteries) and surface area monitors (diffusion chargers) were generally sufficient for these processes. Binder jetting (BJ) machines released particles up to 8.5 µm; optical particle sizers (number) and laser scattering photometers (mass) were sufficient for this process. PBF and DED processes (powdered metallic feedstocks) released particles that contained respiratory irritants (chromium, molybdenum), central nervous system toxicants (manganese), and carcinogens (nickel). All process categories, except those that use metallic feedstocks, released organic gases, including (but not limited to), respiratory irritants (toluene, xylenes), asthmagens (methyl methacrylate, styrene), and carcinogens (benzene, formaldehyde, acetaldehyde). Real-time photoionization detectors for total volatile organics provided useful information for processes that utilize polymer feedstock materials. More research is needed to understand 1) facility-, machine-, and feedstock-related factors that influence emissions and exposures, 2) dermal exposure and biological burden, and 3) task-based exposures. Harmonized emissions monitoring and exposure assessment approaches are needed to facilitate inter-comparison of study results. Improved understanding of AM process emissions and exposures is needed for hygienists to ensure appropriate health and safety conditions for workers and for toxicologists to design experimental protocols that accurately mimic real-world exposure conditions. ABBREVIATIONS ABS : acrylonitrile butadiene styrene; ACGIH® TLV® : American Conference of Governmental Industrial Hygienists Threshold Limit Value; ACH : air change per hour; AM : additive manufacturing; ASA : acrylonitrile styrene acrylate; AVP : acetone vapor polishing; BJ : binder jetting; CAM-LEM : computer-aided manufacturing of laminated engineering materials; CNF : carbon nanofiber; CNT : carbon nanotube; CP : co-polyester; CNC : condensation nuclei counter; CVP : chloroform vapor polishing; DED : directed energy deposition; DLP : digital light processing; EBM : electron beam melting; EELS : electron energy loss spectrometry; EDB : electrical diffusion batteries; EDX : energy dispersive x-ray analyzer; ER : emission rate; FDM™ : fused deposition modeling; FFF : fused filament fabrication; IAQ : indoor air quality; LSP : laser scattering photometer; LCD : liquid crystal display; LDSA : lung deposited particle surface area; LOD : limit of detection; LOM : laminated object manufacturing; LOQ : limit of quantitation; MCE : mixed cellulose ester filter; ME : material extrusion; MJ : material jetting; OEL : occupational exposure limit; OPS : optical particle sizer; PBF : powder bed fusion; PBZ : personal breathing zone; PC : polycarbonate; PEEK : poly ether ether ketone; PET : polyethylene terephthalate; PETG : Polyethylene terephthalate glycol; PID : photoionization detector; PLA : polylactic acid; PM 1 : particulate matter with aerodynamic diameter less than 1 µm; PM 2.5 : particulate matter with aerodynamic diameter less than 2.5 µm; PM 10 : particulate matter with aerodynamic diameter less than 10 µm; PSL : plastic sheet lamination; PVA : polyvinyl alcohol; REL : recommended exposure limit; SDL : selective deposition lamination; SDS : safety data sheet; SEM : scanning electron microscopy; SL : sheet lamination; SLA : stereolithography; SLM : selective laser melting; SMPS : scanning mobility particle sizer; SVOC : semi-volatile organic compound; TEM : transmission electron microscopy; TGA : thermal gravimetric analysis; TPU : thermo polyurethane; UAM : ultrasonic additive manufacturing; UC : ultrasonic consolidation; TVOC : total volatile organic compounds; TWA : time-weighted average; VOC : volatile organic compound; VP : vat photopolymerization
This comprehensive review introduces occupational (industrial) hygienists and toxicologists to the seven basic additive manufacturing (AM) process categories. Forty-six articles were identified that reported real-world measurements for all AM processes, except sheet lamination. Particles released from powder bed fusion (PBF), material jetting (MJ), material extrusion (ME), and directed energy deposition (DED) processes exhibited nanoscale to submicron scale; real-time particle number (mobility sizers, condensation nuclei counters, miniDiSC, electrical diffusion batteries) and surface area monitors (diffusion chargers) were generally sufficient for these processes. Binder jetting (BJ) machines released particles up to 8.5 µm; optical particle sizers (number) and laser scattering photometers (mass) were sufficient for this process. PBF and DED processes (powdered metallic feedstocks) released particles that contained respiratory irritants (chromium, molybdenum), central nervous system toxicants (manganese), and carcinogens (nickel). All process categories, except those that use metallic feedstocks, released organic gases, including (but not limited to), respiratory irritants (toluene, xylenes), asthmagens (methyl methacrylate, styrene), and carcinogens (benzene, formaldehyde, acetaldehyde). Real-time photoionization detectors for total volatile organics provided useful information for processes that utilize polymer feedstock materials. More research is needed to understand 1) facility-, machine-, and feedstock-related factors that influence emissions and exposures, 2) dermal exposure and biological burden, and 3) task-based exposures. Harmonized emissions monitoring and exposure assessment approaches are needed to facilitate inter-comparison of study results. Improved understanding of AM process emissions and exposures is needed for hygienists to ensure appropriate health and safety conditions for workers and for toxicologists to design experimental protocols that accurately mimic real-world exposure conditions.ABBREVIATIONS ABS : acrylonitrile butadiene styrene; ACGIH® TLV® : American Conference of Governmental Industrial Hygienists Threshold Limit Value; ACH : air change per hour; AM : additive manufacturing; ASA : acrylonitrile styrene acrylate; AVP : acetone vapor polishing; BJ : binder jetting; CAM-LEM : computer-aided manufacturing of laminated engineering materials; CNF : carbon nanofiber; CNT : carbon nanotube; CP : co-polyester; CNC : condensation nuclei counter; CVP : chloroform vapor polishing; DED : directed energy deposition; DLP : digital light processing; EBM : electron beam melting; EELS : electron energy loss spectrometry; EDB : electrical diffusion batteries; EDX : energy dispersive x-ray analyzer; ER : emission rate; FDM™ : fused deposition modeling; FFF : fused filament fabrication; IAQ : indoor air quality; LSP : laser scattering photometer; LCD : liquid crystal display; LDSA : lung deposited particle surface area; LOD : limit of detection; LOM : laminated object manufacturing; LOQ : limit of quantitation; MCE : mixed cellulose ester filter; ME : material extrusion; MJ : material jetting; OEL : occupational exposure limit; OPS : optical particle sizer; PBF : powder bed fusion; PBZ : personal breathing zone; PC : polycarbonate; PEEK : poly ether ether ketone; PET : polyethylene terephthalate; PETG : Polyethylene terephthalate glycol; PID : photoionization detector; PLA : polylactic acid; PM1 : particulate matter with aerodynamic diameter less than 1 µm; PM2.5 : particulate matter with aerodynamic diameter less than 2.5 µm; PM10 : particulate matter with aerodynamic diameter less than 10 µm; PSL : plastic sheet lamination; PVA : polyvinyl alcohol; REL : recommended exposure limit; SDL : selective deposition lamination; SDS : safety data sheet; SEM : scanning electron microscopy; SL : sheet lamination; SLA : stereolithography; SLM : selective laser melting; SMPS : scanning mobility particle sizer; SVOC : semi-volatile organic compound; TEM : transmission electron microscopy; TGA : thermal gravimetric analysis; TPU : thermo polyurethane; UAM : ultrasonic additive manufacturing; UC : ultrasonic consolidation; TVOC : total volatile organic compounds; TWA : time-weighted average; VOC : volatile organic compound; VP : vat photopolymerization
This comprehensive review introduces occupational (industrial) hygienists and toxicologists to the seven basic additive manufacturing (AM) process categories. Forty-six articles were identified that reported real-world measurements for all AM processes, except sheet lamination. Particles released from powder bed fusion (PBF), material jetting (MJ), material extrusion (ME), and directed energy deposition (DED) processes exhibited nanoscale to submicron scale; real-time particle number (mobility sizers, condensation nuclei counters, miniDiSC, electrical diffusion batteries) and surface area monitors (diffusion chargers) were generally sufficient for these processes. Binder jetting (BJ) machines released particles up to 8.5 μm; optical particle sizers (number) and laser scattering photometers (mass) were sufficient for this process. PBF and DED processes (powdered metallic feedstocks) released particles that contained respiratory irritants (chromium, molybdenum), central nervous system toxicants (manganese), and carcinogens (nickel). All process categories, except those that use metallic feedstocks, released organic gases, including (but not limited to), respiratory irritants (toluene, xylenes), asthmagens (methyl methacrylate, styrene), and carcinogens (benzene, formaldehyde, acetaldehyde). Real-time photoionization detectors for total volatile organics provided useful information for processes that utilize polymer feedstock materials. More research is needed to understand 1) facility-, machine-, and feedstock-related factors that influence emissions and exposures, 2) dermal exposure and biological burden, and 3) task-based exposures. Harmonized emissions monitoring and exposure assessment approaches are needed to facilitate inter-comparison of study results. Improved understanding of AM process emissions and exposures is needed for hygienists to ensure appropriate health and safety conditions for workers and for toxicologists to design experimental protocols that accurately mimic real-world exposure conditions.
Author Du Preez, S
Stefaniak, A.B.
Du Plessis, JL
AuthorAffiliation b North-West University, Occupational Hygiene and Health Research Initiative, Potchefstroom, South Africa
a Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
AuthorAffiliation_xml – name: b North-West University, Occupational Hygiene and Health Research Initiative, Potchefstroom, South Africa
– name: a Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
Author_xml – sequence: 1
  givenname: A.B.
  surname: Stefaniak
  fullname: Stefaniak, A.B.
  email: AStefaniak@cdc.gov
  organization: National Institute for Occupational Safety and Health
– sequence: 2
  givenname: S
  surname: Du Preez
  fullname: Du Preez, S
  organization: North-West University, Occupational Hygiene and Health Research Initiative
– sequence: 3
  givenname: JL
  surname: Du Plessis
  fullname: Du Plessis, JL
  organization: North-West University, Occupational Hygiene and Health Research Initiative
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34139957$$D View this record in MEDLINE/PubMed
BookMark eNqFkV-L1DAUxYOsuH_0IygBQfbBjkmatM0KssMwusLKiuhzSNPb2SxtUpN21vn2ZpwZ0X3QvORCfufcm3tO0ZHzDhB6TsmMkoq8oUTmJSd8xgijMyrzIqfyETqhgtGskIIcpTox2RY6Rqcx3pF0hKyeoOOc01xKUZ6gbt40drRrwJ-0m1ptxilYt8KtD_jGmGnQo_VOd_hqs7Lg4ALP8cL3Q4BbcHGr-wJrC_fYt_hz8AZihPgaL3sbYxKm8hVe_hh8nALEp-hxq7sIz_b3Gfr2fvl1cZVd33z4uJhfZ4bLYsyA1cbQgrGyZVQT0YKuDdGCGd1CQYQgtICSN4bWotZlaWhb8krXjFSGV5DnZ-jdzneY6h4aA24MulNDsL0OG-W1VX-_OHurVn6tqqKscsmSwfneIPjvE8RRpf8Y6DrtwE9RMcFzLphkMqEvH6B3fgppYzuqIJTTMlEv_pzo9yiHIBLwdgeY4GMM0Cpjx1-7TwPaTlGitrGrQ-xqG7vax57U4oH60OB_usudzroUeK_vfegaNepN50MbtDM2qvzfFj8BYtDExg
CitedBy_id crossref_primary_10_1051_mfreview_2022033
crossref_primary_10_1002_elan_70020
crossref_primary_10_1088_2631_8695_adb3f0
crossref_primary_10_1080_15459624_2024_2447320
crossref_primary_10_1007_s11356_022_20347_2
crossref_primary_10_1016_j_ijpharm_2025_125980
crossref_primary_10_3390_ijerph20136206
crossref_primary_10_1016_j_apples_2025_100224
crossref_primary_10_1016_j_envint_2023_108316
crossref_primary_10_1080_15287394_2025_2555883
crossref_primary_10_1016_j_apr_2022_101488
crossref_primary_10_1038_s41598_023_47884_1
crossref_primary_10_3389_fpubh_2023_1292420
crossref_primary_10_1016_j_atmosenv_2022_119501
crossref_primary_10_3390_ma15207367
crossref_primary_10_1016_j_resconrec_2021_105911
crossref_primary_10_3390_buildings12081222
crossref_primary_10_1016_j_heha_2022_100033
crossref_primary_10_1080_15459624_2022_2063879
crossref_primary_10_1016_j_nxsust_2024_100085
crossref_primary_10_1080_15287394_2025_2473559
crossref_primary_10_1080_15287394_2024_2311170
crossref_primary_10_1016_j_impact_2024_100510
crossref_primary_10_3389_fpubh_2023_1148974
crossref_primary_10_1016_j_clet_2024_100873
crossref_primary_10_1080_10937404_2022_2092569
crossref_primary_10_3389_fmtec_2024_1410653
crossref_primary_10_1016_j_ssci_2025_106842
crossref_primary_10_1080_15459624_2024_2313655
crossref_primary_10_1080_10426914_2024_2362621
crossref_primary_10_1080_15287394_2021_1998814
crossref_primary_10_1080_15287394_2024_2346938
crossref_primary_10_1093_annweh_wxae101
crossref_primary_10_1007_s13530_021_00117_2
crossref_primary_10_1080_10937404_2024_2380449
Cites_doi 10.1080/15459624.2015.1091957
10.1021/acs.est.0c05309
10.1007/s11051-019-4651-x
10.1111/jiec.12569
10.1016/j.atmosenv.2020.117956
10.1016/j.jaerosci.2008.09.007
10.1111/ina.12499
10.3389/fbioe.2020.00109
10.1016/j.proeng.2015.08.1099
10.1146/annurev-matsci-070115-031606
10.1016/j.addma.2019.100981
10.1016/j.addr.2018.06.011
10.1080/15287394.2019.1663458
10.1088/1742-6596/1323/1/012013
10.1016/j.procir.2020.01.116
10.1016/j.atmosenv.2013.06.050
10.1108/RPJ-12-2011-0127
10.1080/15459624.2020.1798012
10.1007/s13762-019-02444-x
10.1539/joh.46.148
10.7166/29-4-1975
10.1088/1758-5090/ab0798
10.1021/acs.est.9b04012
10.1016/j.aca.2020.11.012
10.1093/annweh/wxy093
10.1016/j.jclepro.2019.117790
10.1111/jiec.12498
10.1111/ina.12310
10.1016/j.buildenv.2015.07.013
10.1016/j.scitotenv.2019.07.257
10.1080/15459624.2018.1557784
10.1016/j.procir.2018.08.114
10.1080/15459624.2019.1591627
10.3389/fpubh.2020.608718
10.1002/prs.12030
10.3390/ijerph18030929
10.1016/j.promfg.2019.10.020
10.1088/1755-1315/373/1/012014
10.1039/C9RA03248G
10.1016/j.chemosphere.2020.127452
10.1021/es063049z
10.1115/MSEC2017-3007
10.1108/RPJ-11-2012-0111
10.1093/annweh/wxaa146
10.1021/acs.est.7b01546
10.1007/s11051-020-04844-4
10.1016/j.buildenv.2016.05.021
10.1021/acs.est.9b02818
10.1016/j.envint.2018.12.014
10.1080/15287394.2020.1751758
10.1016/j.jchas.2016.05.008
10.1080/08958378.2019.1621965
10.1021/acscentsci.8b00090
10.1016/j.coem.2006.07.003
10.1007/s11051-020-4750-8
10.1016/j.jchas.2018.11.001
10.1016/j.buildenv.2019.106209
10.1080/15459624.2019.1612068
10.1111/jiec.12587
10.1016/j.shaw.2019.07.006
10.1016/j.jclepro.2016.08.141
10.1016/j.scitotenv.2017.06.041
10.1016/B978-0-12-812155-9.00002-5
10.1108/13552549910295479
10.1080/15287394.2016.1166467
10.1021/acs.est.9b00765
10.1108/RPJ-03-2017-0050
10.1021/acs.jchemed.6b00745
10.1080/08958370902942632
10.1080/15459624.2019.1696969
10.1016/j.pmatsci.2020.100638
10.1016/j.jclepro.2017.09.193
10.1016/j.shaw.2018.10.003
10.1016/j.jhazmat.2019.02.097
ContentType Journal Article
Copyright 2021 Taylor & Francis 2021
2021 Taylor & Francis
Copyright_xml – notice: 2021 Taylor & Francis 2021
– notice: 2021 Taylor & Francis
DBID AAYXX
CITATION
NPM
7QF
7QP
7QQ
7SC
7SE
7SP
7SR
7ST
7TA
7TB
7U5
7U7
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
SOI
7X8
5PM
DOI 10.1080/10937404.2021.1936319
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Pharmacy, Therapeutics, & Pharmacology
EISSN 1521-6950
EndPage 222
ExternalDocumentID PMC8678392
34139957
10_1080_10937404_2021_1936319
1936319
Genre Review
Journal Article
GrantInformation_xml – fundername: Intramural CDC HHS
  grantid: CC999999
GroupedDBID .7F
.QJ
0BK
0R~
29L
30N
36B
4.4
53G
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACPRK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AEOZL
AFKVX
AFRAH
AFRVT
AGDLA
AGMYJ
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
COF
DGEBU
DKSSO
EBS
EMOBN
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TEI
TFL
TFT
TFW
TQWBC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
NPM
7QF
7QP
7QQ
7SC
7SE
7SP
7SR
7ST
7TA
7TB
7U5
7U7
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
SOI
7X8
5PM
ID FETCH-LOGICAL-c496t-e2bcc16227f21a05feabc0a52cafe6055016e74dc1b5ba77c1f748ab208c48e33
IEDL.DBID TFW
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663186900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1093-7404
1521-6950
IngestDate Thu Aug 21 18:39:14 EDT 2025
Thu Sep 04 17:48:53 EDT 2025
Mon Sep 22 16:12:40 EDT 2025
Sat Aug 16 01:30:47 EDT 2025
Tue Nov 18 21:19:29 EST 2025
Sat Nov 29 06:39:33 EST 2025
Mon Oct 20 23:49:07 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords monitoring
particles
3D printing
gases
Process descriptions
research needs
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-e2bcc16227f21a05feabc0a52cafe6055016e74dc1b5ba77c1f748ab208c48e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author to whom correspondence should be sent
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8678392
PMID 34139957
PQID 2543601417
PQPubID 53068
PageCount 50
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8678392
crossref_citationtrail_10_1080_10937404_2021_1936319
crossref_primary_10_1080_10937404_2021_1936319
pubmed_primary_34139957
proquest_journals_2543601417
informaworld_taylorfrancis_310_1080_10937404_2021_1936319
proquest_miscellaneous_2543452929
PublicationCentury 2000
PublicationDate 2021-07-04
PublicationDateYYYYMMDD 2021-07-04
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-04
  day: 04
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Philadelphia
PublicationTitle Journal of toxicology and environmental health. Part B, Critical reviews
PublicationTitleAlternate J Toxicol Environ Health B Crit Rev
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References cit0077
cit0034
cit0078
cit0031
Philippot C. (cit0057) 2020
cit0075
cit0032
Freiser M. E. (cit0033) 2018; 144
cit0076
cit0073
cit0030
cit0074
Ryan T. (cit0062) 2016; 61
cit0071
cit0072
cit0070
cit0039
cit0037
cit0035
cit0079
cit0036
cit0022
cit0066
cit0023
cit0067
cit0020
cit0064
cit0021
cit0065
cit0063
cit0060
cit0061
McDonnell B. (cit0048) 2016
Beisser R. (cit0006) 2017; 77
cit0028
cit0029
cit0026
cit0027
cit0024
cit0068
cit0025
cit0069
cit0011
cit0055
cit0012
cit0056
cit0053
cit0010
cit0054
cit0051
cit0050
Damanhuri A. A. M. (cit0016) 2019; 11
NIOSH (cit0052) 2007
ISO/ASTM (cit0038) 2015
cit0019
cit0017
cit0018
cit0015
cit0059
cit0013
cit0014
cit0058
cit0044
cit0088
cit0001
cit0045
cit0089
cit0086
cit0043
cit0087
cit0040
cit0084
cit0041
cit0085
cit0082
cit0083
cit0080
cit0081
Kolb T. (cit0042) 2017
cit0008
cit0009
Aluri M. (cit0003) 2021
cit0007
cit0004
cit0005
cit0049
cit0002
cit0046
cit0047
References_xml – volume-title: Paper read at Solid Freeform Fabrication 2016 – An Additive Manufacturing Conference
  year: 2016
  ident: cit0048
– ident: cit0072
  doi: 10.1080/15459624.2015.1091957
– ident: cit0022
  doi: 10.1021/acs.est.0c05309
– ident: cit0054
  doi: 10.1007/s11051-019-4651-x
– ident: cit0050
  doi: 10.1111/jiec.12569
– ident: cit0002
  doi: 10.1016/j.atmosenv.2020.117956
– ident: cit0031
  doi: 10.1016/j.jaerosci.2008.09.007
– ident: cit0070
  doi: 10.1111/ina.12499
– ident: cit0079
  doi: 10.3389/fbioe.2020.00109
– year: 2017
  ident: cit0042
  publication-title: RTeJournal: Fachforum Fur Rapid Technologie2017
– ident: cit0086
  doi: 10.1016/j.proeng.2015.08.1099
– ident: cit0009
  doi: 10.1146/annurev-matsci-070115-031606
– ident: cit0074
  doi: 10.1016/j.addma.2019.100981
– volume: 61
  start-page: 56
  year: 2016
  ident: cit0062
  publication-title: Prof Saf
– ident: cit0029
– ident: cit0047
  doi: 10.1016/j.addr.2018.06.011
– ident: cit0056
  doi: 10.1080/15287394.2019.1663458
– ident: cit0066
  doi: 10.1088/1742-6596/1323/1/012013
– ident: cit0051
  doi: 10.1016/j.procir.2020.01.116
– ident: cit0073
  doi: 10.1016/j.atmosenv.2013.06.050
– ident: cit0039
  doi: 10.1108/RPJ-12-2011-0127
– ident: cit0087
  doi: 10.1080/15459624.2020.1798012
– ident: cit0080
  doi: 10.1007/s13762-019-02444-x
– ident: cit0013
  doi: 10.1539/joh.46.148
– ident: cit0025
  doi: 10.7166/29-4-1975
– ident: cit0063
  doi: 10.1088/1758-5090/ab0798
– ident: cit0041
  doi: 10.1021/acs.est.9b04012
– ident: cit0058
  doi: 10.1016/j.aca.2020.11.012
– ident: cit0043
  doi: 10.1093/annweh/wxy093
– volume-title: Materials Today: Proceedings (E-print)
  year: 2021
  ident: cit0003
– volume-title: 52900: Additive manufacturing — General principles — Terminology Geneva
  year: 2015
  ident: cit0038
– ident: cit0015
  doi: 10.1016/j.jclepro.2019.117790
– volume: 11
  start-page: 140
  issue: 5
  year: 2019
  ident: cit0016
  publication-title: International Journal of Integrated Engineering
– ident: cit0035
  doi: 10.1111/jiec.12498
– ident: cit0067
  doi: 10.1111/ina.12310
– ident: cit0001
  doi: 10.1016/j.buildenv.2015.07.013
– ident: cit0021
  doi: 10.1016/j.scitotenv.2019.07.257
– ident: cit0076
  doi: 10.1080/15459624.2018.1557784
– ident: cit0078
  doi: 10.1016/j.procir.2018.08.114
– ident: cit0061
  doi: 10.1080/15459624.2019.1591627
– ident: cit0040
  doi: 10.3389/fpubh.2020.608718
– ident: cit0045
  doi: 10.1002/prs.12030
– ident: cit0007
  doi: 10.3390/ijerph18030929
– ident: cit0011
  doi: 10.1016/j.promfg.2019.10.020
– ident: cit0017
  doi: 10.1088/1755-1315/373/1/012014
– ident: cit0084
  doi: 10.1039/C9RA03248G
– ident: cit0014
  doi: 10.1016/j.chemosphere.2020.127452
– ident: cit0037
  doi: 10.1021/es063049z
– ident: cit0065
  doi: 10.1115/MSEC2017-3007
– ident: cit0064
  doi: 10.1108/RPJ-11-2012-0111
– ident: cit0044
  doi: 10.1093/annweh/wxaa146
– ident: cit0077
  doi: 10.1021/acs.est.7b01546
– ident: cit0026
  doi: 10.1007/s11051-020-04844-4
– ident: cit0020
  doi: 10.1016/j.buildenv.2016.05.021
– volume: 144
  start-page: 797
  year: 2018
  ident: cit0033
  publication-title: Otolaryngology-Head & Neck Surgery
– ident: cit0089
  doi: 10.1021/acs.est.9b02818
– ident: cit0036
  doi: 10.1016/j.envint.2018.12.014
– ident: cit0012
  doi: 10.1080/15287394.2020.1751758
– ident: cit0088
  doi: 10.1016/j.jchas.2016.05.008
– ident: cit0034
  doi: 10.1080/08958378.2019.1621965
– ident: cit0023
– ident: cit0055
  doi: 10.1021/acscentsci.8b00090
– ident: cit0004
– ident: cit0028
  doi: 10.1016/j.coem.2006.07.003
– ident: cit0027
  doi: 10.1007/s11051-020-4750-8
– ident: cit0068
  doi: 10.1016/j.jchas.2018.11.001
– ident: cit0018
  doi: 10.1016/j.buildenv.2019.106209
– ident: cit0071
  doi: 10.1080/15459624.2019.1612068
– ident: cit0010
  doi: 10.1111/jiec.12587
– ident: cit0046
  doi: 10.1016/j.shaw.2019.07.006
– ident: cit0049
  doi: 10.1016/j.jclepro.2016.08.141
– ident: cit0075
  doi: 10.1016/j.scitotenv.2017.06.041
– ident: cit0085
  doi: 10.1016/B978-0-12-812155-9.00002-5
– ident: cit0019
  doi: 10.1108/13552549910295479
– ident: cit0083
  doi: 10.1080/15287394.2016.1166467
– volume-title: DHHS (NIOSH) Publication 2005-149 ed
  year: 2007
  ident: cit0052
– ident: cit0059
  doi: 10.1021/acs.est.9b00765
– ident: cit0024
  doi: 10.1108/RPJ-03-2017-0050
– ident: cit0008
  doi: 10.1021/acs.jchemed.6b00745
– ident: cit0030
  doi: 10.1080/08958370902942632
– volume-title: Proceedings of Euro Powder Metallurgy, Bilbao, Spain
  year: 2020
  ident: cit0057
– ident: cit0005
  doi: 10.1080/15459624.2019.1696969
– ident: cit0053
– ident: cit0081
  doi: 10.1016/j.pmatsci.2020.100638
– ident: cit0082
  doi: 10.1016/j.jclepro.2017.09.193
– ident: cit0032
– ident: cit0069
  doi: 10.1016/j.shaw.2018.10.003
– volume: 77
  start-page: 487
  year: 2017
  ident: cit0006
  publication-title: Gefahrstoffe Reinhaltung der Luft
– ident: cit0060
  doi: 10.1016/j.jhazmat.2019.02.097
SSID ssj0000598
Score 2.4714808
SecondaryResourceType review_article
Snippet This comprehensive review introduces occupational (industrial) hygienists and toxicologists to the seven basic additive manufacturing (AM) process categories....
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 173
SubjectTerms 3D printing
Abbreviations
ABS resins
Acetaldehyde
Acetylcholine
Acrylonitrile
Acrylonitrile butadiene styrene
Additive manufacturing
Aerodynamics
Air quality
Batteries
Battery chargers
Benzene
Carcinogens
Cellulose
Central nervous system
Charging
Chloroform
Chromium
Condensates
Condensation nuclei
Diffusion
Electronic equipment
Emissions
Energy
Energy loss
Exposure
Fused deposition modeling
gases
Gravimetric analysis
Hygiene
Indoor air pollution
Indoor air quality
Industrial safety
Information processing
Lamination
Lasers
Manganese
Manufacturing
Melting
Microscopy
Mobility
monitoring
Nickel
Occupational exposure
Occupational health
Organic compounds
Outdoor air quality
particles
Particulate matter
Photoionization
Photometers
Polishing
Pollution monitoring
Polyethylene terephthalate
Polylactic acid
Polymers
Polyvinyl alcohol
Process descriptions
Quantitation
Raw materials
research needs
Scanning electron microscopy
Scattering
Spectrometry
Surface area
Thermal analysis
Toxicants
Toxicology
Transmission electron microscopy
VOCs
Volatile organic compounds
Title Additive Manufacturing for Occupational Hygiene: A Comprehensive Review of Processes, Emissions, & Exposures
URI https://www.tandfonline.com/doi/abs/10.1080/10937404.2021.1936319
https://www.ncbi.nlm.nih.gov/pubmed/34139957
https://www.proquest.com/docview/2543601417
https://www.proquest.com/docview/2543452929
https://pubmed.ncbi.nlm.nih.gov/PMC8678392
Volume 24
WOSCitedRecordID wos000663186900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1521-6950
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000598
  issn: 1093-7404
  databaseCode: TFW
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4oCEeJTXQqmMhHpqSuLYccxthXbVA1R7WGBv0dhxaKUqW212Efvv8djOPhCoBzhG9jixMx5_Hs98JuSdKG3uYLZJQIo64aJWiS4am3CdF4axWhl_x9LXT_LiopzN1CRGE3YxrBL30E0givC2Gic36K6PiHuPDEiSp-gRYdmZQyBF7ok_HbJHHZ-Ov21tsVAhGU7lCYr0OTx_a2VvddrjLv0TAv09kHJnZRo_-g99ekweRlhKh0GPnpA7tj0kJ5PAa70-pdNtmlZ3Sk_oZMt4vT4kD4Lzj4acpqfkeljXPiaJfoZ2hbkTPhmSun7SXVpjer7-7kyL_UCHFA3Twl6GeHoajizovKExk8G6146cTqJzz3_B6OfNHL2b3TPyZTyafjxP4rUOieGqWCaWaWOygjHZsAxS0VjQJgXBDDTW7a6EQ6FW8tpkWmiQ0mSN5CVolpaGO9XKn5ODdt7al4QKUFLYNK8Bag4KAGwGRnCuiwwEwIDw_ndWJnKe49Ub11UWqVH7ca9w3Ks47gNythG7CaQftwmoXV2plt7b0oSrUar8FtmjXrGqaD-6CikKCozBlQPydlPsRhmPc6C181Wog8fmzDXxIujh5msRmyglnLTc09BNBWQV3y9pry49u3jp4IsDza_-oUuvyX189FHN_IgcLBcr-4bcMz-WV93imNyVs_LYz9NfWrc5tg
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQQAIJMRhfhQFGQntatsSx43hv1dSqiK7aQ4G9WRfHYZOmdOoHov89PjvpB2LaA7zGPie-nM_n893vCPkkcps6M9tEIEUZcVGqqMgqG_EizQxjpTK-xtK3oRyN8osLtZkLg2GVeIauAlCE19W4uNEZ3YbEHSMEkuQxukRYcuRMkCxF5M_7wj3GsL5x__taGwsV0uFUGiFNm8Vz2zBb-9MWeunfbNA_Qyk39qb-7v-Y1VPypLFMaTeI0jNyz9Z75OA8QFsvD-l4nak1O6QH9HwNer3cI4-D_4-GtKbn5Lpblj4siZ5BvcD0CZ8PSd1E6SayMR0sfzjtYk9ol6JumtrLEFJPw60FnVS0SWaw7rU9J5bo3_Nf0Pt1M0EH5-wF-drvjU8HUVPZITJcZfPIssKYJGNMViyBWFQWChODYAYq6w5YwhmiVvLSJIUoQEqTVJLnULA4N9xJV_qS7NST2r4mVICSwsZpCVByUABgEzCC8yJLQAB0CG__pzYN7DlW37jWSYOO2vJdI991w_cOOVqR3QTcj7sI1Kaw6Ll3uFShOopO76DdbyVLNypkphGlIMMwXNkhH1fNjst4owO1nSxCH7w5Z26IV0EQV1-L5olSwlHLLRFddUBg8e2W-urSA4znzoJxdvObf5jSB_JwMD4b6uHn0Ze35BE2-SBnvk925tOFfUcemJ_zq9n0vV-uvwGPtzzv
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQQAgJ8TG-CgOMhPa0bIljxzFvFbQaYlR9KLC36GI7bNKUVk2L6H-Pz076gUB7gGf7HPt8Pl_Od78j5K3IberMbB2BFCbiwqiozCob8TLNNGNGaV9j6euZHI3y83M1bqMJmzasEv-hqwAU4XU1Hu6ZqbqIuBNEQJI8Ro8IS46dBZKlCPx504NjOZGeDL9tlLFQIRtOpRHSdEk8fxtm53raAS_9kwn6eyTl1tU0vP8fFvWA3GvtUtoPgvSQ3LD1PjkcB2Dr1RGdbPK0miN6SMcbyOvVPrkbvH80JDU9Ild9Y3xQEv0M9RKTJ3w2JHXrpNu4xvR09d3pFvuO9ilqprm9CAH1NLxZ0GlF21QG6z47cEKJ3j0_g8HP2RTdm81j8mU4mLw_jdq6DpHmKltElpVaJxljsmIJxKKyUOoYBNNQWfd7Jdw-WsmNTkpRgpQ6qSTPoWRxrrmTrfQJ2auntX1GqAAlhY1TA2A4KACwCWjBeZklIAB6hHfbWegW9Bxrb1wVSYuN2vG9QL4XLd975HhNNguoH9cRqG1ZKRbe3VKF2ihFeg3tQSdYRatAmgIxCjIMwpU98mbd7LiM7zlQ2-ky9MF3c-aGeBrkcD1bNE6UEo5a7kjougPCiu-21JcXHl48d_aLs5qf_8OSXpPb4w_D4uzj6NMLcgdbfIQzPyB7i_nSviS39I_FZTN_5Q_rL3CvO5M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Additive+Manufacturing+for+Occupational+Hygiene%3A+A+Comprehensive+Review+of+Processes%2C+Emissions%2C+%26+Exposures&rft.jtitle=Journal+of+toxicology+and+environmental+health.+Part+B%2C+Critical+reviews&rft.au=Stefaniak%2C+A.B.&rft.au=Du+Preez%2C+S&rft.au=Du+Plessis%2C+JL&rft.date=2021-07-04&rft.pub=Taylor+%26+Francis&rft.issn=1093-7404&rft.eissn=1521-6950&rft.volume=24&rft.issue=5&rft.spage=173&rft.epage=222&rft_id=info:doi/10.1080%2F10937404.2021.1936319&rft.externalDocID=1936319
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-7404&client=summon