On the computational power of winner-take-all

This article initiates a rigorous theoretical analysis of the computational power of circuits that employ modules for computing winner-take-all. Computational models that involve competitive stages have so far been neglected in computational complexity theory, although they are widely used in comput...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computation Ročník 12; číslo 11; s. 2519
Hlavní autor: Maass, W
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.11.2000
Témata:
ISSN:0899-7667
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This article initiates a rigorous theoretical analysis of the computational power of circuits that employ modules for computing winner-take-all. Computational models that involve competitive stages have so far been neglected in computational complexity theory, although they are widely used in computational brain models, artificial neural networks, and analog VLSI. Our theoretical analysis shows that winner-take-all is a surprisingly powerful computational module in comparison with threshold gates (also referred to as McCulloch-Pitts neurons) and sigmoidal gates. We prove an optimal quadratic lower bound for computing winner-take-all in any feedforward circuit consisting of threshold gates. In addition we show that arbitrary continuous functions can be approximated by circuits employing a single soft winner-take-all gate as their only nonlinear operation. Our theoretical analysis also provides answers to two basic questions raised by neurophysiologists in view of the well-known asymmetry between excitatory and inhibitory connections in cortical circuits: how much computational power of neural networks is lost if only positive weights are employed in weighted sums and how much adaptive capability is lost if only the positive weights are subject to plasticity.
AbstractList This article initiates a rigorous theoretical analysis of the computational power of circuits that employ modules for computing winner-take-all. Computational models that involve competitive stages have so far been neglected in computational complexity theory, although they are widely used in computational brain models, artificial neural networks, and analog VLSI. Our theoretical analysis shows that winner-take-all is a surprisingly powerful computational module in comparison with threshold gates (also referred to as McCulloch-Pitts neurons) and sigmoidal gates. We prove an optimal quadratic lower bound for computing winner-take-all in any feedforward circuit consisting of threshold gates. In addition we show that arbitrary continuous functions can be approximated by circuits employing a single soft winner-take-all gate as their only nonlinear operation. Our theoretical analysis also provides answers to two basic questions raised by neurophysiologists in view of the well-known asymmetry between excitatory and inhibitory connections in cortical circuits: how much computational power of neural networks is lost if only positive weights are employed in weighted sums and how much adaptive capability is lost if only the positive weights are subject to plasticity.This article initiates a rigorous theoretical analysis of the computational power of circuits that employ modules for computing winner-take-all. Computational models that involve competitive stages have so far been neglected in computational complexity theory, although they are widely used in computational brain models, artificial neural networks, and analog VLSI. Our theoretical analysis shows that winner-take-all is a surprisingly powerful computational module in comparison with threshold gates (also referred to as McCulloch-Pitts neurons) and sigmoidal gates. We prove an optimal quadratic lower bound for computing winner-take-all in any feedforward circuit consisting of threshold gates. In addition we show that arbitrary continuous functions can be approximated by circuits employing a single soft winner-take-all gate as their only nonlinear operation. Our theoretical analysis also provides answers to two basic questions raised by neurophysiologists in view of the well-known asymmetry between excitatory and inhibitory connections in cortical circuits: how much computational power of neural networks is lost if only positive weights are employed in weighted sums and how much adaptive capability is lost if only the positive weights are subject to plasticity.
This article initiates a rigorous theoretical analysis of the computational power of circuits that employ modules for computing winner-take-all. Computational models that involve competitive stages have so far been neglected in computational complexity theory, although they are widely used in computational brain models, artificial neural networks, and analog VLSI. Our theoretical analysis shows that winner-take-all is a surprisingly powerful computational module in comparison with threshold gates (also referred to as McCulloch-Pitts neurons) and sigmoidal gates. We prove an optimal quadratic lower bound for computing winner-take-all in any feedforward circuit consisting of threshold gates. In addition we show that arbitrary continuous functions can be approximated by circuits employing a single soft winner-take-all gate as their only nonlinear operation. Our theoretical analysis also provides answers to two basic questions raised by neurophysiologists in view of the well-known asymmetry between excitatory and inhibitory connections in cortical circuits: how much computational power of neural networks is lost if only positive weights are employed in weighted sums and how much adaptive capability is lost if only the positive weights are subject to plasticity.
Author Maass, W
Author_xml – sequence: 1
  givenname: W
  surname: Maass
  fullname: Maass, W
  organization: Institute for Theoretical Computer Science, Technische Universität Graz, Austria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11110125$$D View this record in MEDLINE/PubMed
BookMark eNo1j01LxDAYhHNYcb_8Ax6kJ2_RN2maNEdZ_IKFvbjnkqZvsZomtUlZ_PdWXOcy8MwwMGuy8MEjIdcM7hiT_B5KrZWUADkAMFFytSCrX0hnqpZkHePHnEgGxSVZslnAeLEi9OCz9I6ZDf0wJZO64I3LhnDCMQttduq8x5Em84nUOLclF61xEa_OviHHp8e33QvdH55fdw97aoWWiVrGBHKbI9SmtLq1GmuluREFNlBbqwAaXrRSWxA6t4BS8lw0CqWYLxjNN-T2b3cYw9eEMVV9Fy06ZzyGKVaKCwWclXPx5lyc6h6bahi73ozf1f9B_gNUslFa
CitedBy_id crossref_primary_10_1016_S0893_6080_03_00205_3
crossref_primary_10_1523_JNEUROSCI_0155_18_2018
crossref_primary_10_1109_TMC_2023_3294188
crossref_primary_10_1242_jeb_234963
crossref_primary_10_1023_B_NEPL_0000016837_13436_d3
crossref_primary_10_1109_TNN_2006_890804
crossref_primary_10_1007_s12559_023_10181_0
crossref_primary_10_1177_1477153516675910
crossref_primary_10_1177_1073858416631966
crossref_primary_10_1371_journal_pcbi_1009434
crossref_primary_10_1126_science_add8468
crossref_primary_10_1523_JNEUROSCI_2186_12_2012
crossref_primary_10_1016_j_ins_2012_10_011
crossref_primary_10_1016_j_neunet_2007_12_044
crossref_primary_10_1109_TNN_2008_2003287
crossref_primary_10_1109_TSMC_2016_2627579
crossref_primary_10_1016_j_neucom_2019_09_038
crossref_primary_10_1016_j_neucom_2014_01_074
crossref_primary_10_1038_s41598_017_18666_3
crossref_primary_10_3389_fncom_2015_00012
crossref_primary_10_1371_journal_pcbi_1013081
crossref_primary_10_3389_fnins_2019_01085
crossref_primary_10_1016_j_jcss_2004_04_001
crossref_primary_10_1109_TAC_2016_2578645
crossref_primary_10_1109_TNN_2011_2169086
crossref_primary_10_1162_neco_a_01047
crossref_primary_10_1088_2634_4386_ace64c
crossref_primary_10_3390_s19020437
crossref_primary_10_1371_journal_pcbi_1003037
crossref_primary_10_1016_j_jmp_2020_102447
crossref_primary_10_1016_j_neucom_2017_06_070
crossref_primary_10_1155_2008_386059
crossref_primary_10_1016_j_cviu_2010_07_008
crossref_primary_10_1088_2634_4386_acc6e8
crossref_primary_10_3389_fncir_2020_00040
crossref_primary_10_1016_j_amc_2012_07_057
crossref_primary_10_1016_j_neulet_2008_02_036
crossref_primary_10_1016_j_neuron_2023_03_015
crossref_primary_10_1088_2634_4386_ad8c78
crossref_primary_10_1162_neco_2008_03_08_734
crossref_primary_10_1007_s12559_008_9000_9
crossref_primary_10_1016_j_arcontrol_2022_05_001
crossref_primary_10_3389_fnins_2018_00961
crossref_primary_10_7554_eLife_08362
crossref_primary_10_1088_2752_5724_accd87
crossref_primary_10_1109_ACCESS_2024_3479968
crossref_primary_10_1038_s41467_018_06899_3
crossref_primary_10_1038_s43588_021_00184_y
crossref_primary_10_1016_j_ins_2021_01_059
crossref_primary_10_1109_TCYB_2021_3079457
crossref_primary_10_1007_s10827_018_0708_6
crossref_primary_10_1038_s42256_020_0187_0
crossref_primary_10_1088_2634_4386_ad850f
crossref_primary_10_1371_journal_pcbi_1004039
crossref_primary_10_1016_S0304_3975_02_00097_X
crossref_primary_10_1007_s42514_020_00037_6
crossref_primary_10_1016_j_asoc_2018_02_054
crossref_primary_10_3389_fncom_2017_00020
crossref_primary_10_3390_s22020440
crossref_primary_10_1016_j_neunet_2009_03_020
crossref_primary_10_1038_s41565_023_01391_6
crossref_primary_10_1109_JETCAS_2017_2771392
crossref_primary_10_1371_journal_pcbi_1004558
crossref_primary_10_3758_s13428_023_02295_y
crossref_primary_10_1016_j_biosystems_2024_105164
crossref_primary_10_1080_23746149_2021_1894234
crossref_primary_10_1080_09540091_2014_956288
crossref_primary_10_1371_journal_pcbi_1012973
crossref_primary_10_1523_JNEUROSCI_3989_14_2015
crossref_primary_10_1038_s41467_022_28487_2
crossref_primary_10_1093_hmg_ddt539
crossref_primary_10_3389_fncom_2014_00068
crossref_primary_10_1007_s00285_024_02136_2
crossref_primary_10_1080_01677063_2020_1719407
crossref_primary_10_1007_s11370_024_00533_6
crossref_primary_10_1016_j_neunet_2007_04_020
crossref_primary_10_1109_TNNLS_2012_2202400
crossref_primary_10_1109_JPROC_2014_2313954
crossref_primary_10_1016_j_neucom_2025_130391
crossref_primary_10_1007_s00422_023_00956_x
crossref_primary_10_1039_D0NR07865D
crossref_primary_10_1109_TVLSI_2013_2245351
crossref_primary_10_1016_j_heliyon_2020_e05347
crossref_primary_10_1088_1361_6528_acebf5
crossref_primary_10_1109_JETCAS_2017_2777784
crossref_primary_10_1016_j_jsis_2010_06_001
crossref_primary_10_1371_journal_pcbi_1010270
crossref_primary_10_3758_s13428_018_1067_y
crossref_primary_10_1162_NECO_a_00029
crossref_primary_10_1162_NECO_a_00304
crossref_primary_10_1016_j_neucom_2005_04_012
crossref_primary_10_1371_journal_pcbi_1009045
crossref_primary_10_1016_j_neunet_2021_07_033
crossref_primary_10_1162_neco_2009_07_08_829
crossref_primary_10_1016_j_automatica_2018_11_001
crossref_primary_10_1109_TNN_2006_881046
crossref_primary_10_1038_s41598_021_92170_7
crossref_primary_10_1109_LED_2023_3240419
crossref_primary_10_1109_TNN_2010_2050781
crossref_primary_10_1088_2634_4386_aca710
crossref_primary_10_1109_JAS_2022_105731
crossref_primary_10_1146_annurev_neuro_27_070203_144152
crossref_primary_10_1162_089976602760407955
crossref_primary_10_7554_eLife_73783
crossref_primary_10_1162_089976602760408008
crossref_primary_10_7554_eLife_51473
crossref_primary_10_1088_2634_4386_ac7c8a
crossref_primary_10_1109_MSP_2019_2928376
crossref_primary_10_1109_TNNLS_2016_2582517
crossref_primary_10_1109_JLT_2020_3000670
crossref_primary_10_7554_eLife_101506
crossref_primary_10_1088_1361_6528_ab86e8
crossref_primary_10_1109_JPROC_2015_2444094
crossref_primary_10_1109_TSMC_2022_3189479
crossref_primary_10_1109_TCSI_2025_3549060
crossref_primary_10_3390_app12052679
crossref_primary_10_7554_eLife_101506_3
crossref_primary_10_1109_JETCAS_2023_3330069
crossref_primary_10_1088_2634_4386_ad2d5c
crossref_primary_10_1002_aisy_202100054
crossref_primary_10_1007_s00422_005_0023_y
crossref_primary_10_1016_j_neucom_2020_11_072
crossref_primary_10_1038_s43588_021_00157_1
crossref_primary_10_1109_TNNLS_2023_3237381
crossref_primary_10_1162_neco_a_01242
crossref_primary_10_1162_NECO_a_00091
crossref_primary_10_1007_s00429_021_02347_z
crossref_primary_10_1016_j_neunet_2006_06_006
crossref_primary_10_1007_s00521_022_07345_8
crossref_primary_10_1007_s10489_014_0525_1
crossref_primary_10_1007_s12559_012_9141_8
crossref_primary_10_1016_j_patcog_2006_04_041
crossref_primary_10_1371_journal_pcbi_1003994
crossref_primary_10_1109_ACCESS_2020_3027966
crossref_primary_10_1016_S0304_3975_02_00099_3
crossref_primary_10_1016_j_asoc_2025_113115
crossref_primary_10_1016_j_neunet_2014_09_003
crossref_primary_10_1038_s44335_025_00024_6
crossref_primary_10_3389_fnsys_2015_00119
crossref_primary_10_1038_s41467_018_05517_6
crossref_primary_10_1162_neco_2010_03_09_980
crossref_primary_10_1016_j_neuron_2022_10_026
crossref_primary_10_4218_etrij_2020_0052
crossref_primary_10_1073_pnas_2312992121
crossref_primary_10_1162_neco_a_01113
crossref_primary_10_1126_science_adu1327
crossref_primary_10_1371_journal_pone_0099681
crossref_primary_10_1016_j_neucom_2011_10_017
crossref_primary_10_1016_j_ecoinf_2013_10_006
crossref_primary_10_1016_j_neunet_2004_07_003
crossref_primary_10_1155_2018_4573631
crossref_primary_10_1162_neco_2008_06_08_804
crossref_primary_10_1145_3304103
crossref_primary_10_1088_2516_1091_acb51c
crossref_primary_10_1038_s41586_018_0289_6
crossref_primary_10_3389_fncom_2017_00070
crossref_primary_10_1007_s42113_020_00095_7
crossref_primary_10_1039_D0SC05860B
crossref_primary_10_3389_fnins_2017_00269
crossref_primary_10_1016_j_cub_2021_08_051
crossref_primary_10_1088_2632_072X_ac3ad4
crossref_primary_10_1109_TNN_2010_2052631
crossref_primary_10_1371_journal_pcbi_1007579
crossref_primary_10_1016_j_ecocom_2024_101083
crossref_primary_10_1002_adfm_201804844
crossref_primary_10_1162_089976603322518731
crossref_primary_10_3389_fnins_2018_00665
crossref_primary_10_1002_adma_201808032
crossref_primary_10_1016_j_neunet_2007_12_036
crossref_primary_10_1073_pnas_1917551117
crossref_primary_10_1523_JNEUROSCI_1259_18_2018
crossref_primary_10_1162_neco_a_01074
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1162/089976600300014827
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 11110125
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
-~X
.4S
.DC
0R~
123
36B
4.4
41~
53G
6IK
AAJGR
AALMD
AAYOK
ABAZT
ABDBF
ABDNZ
ABEFU
ABIVO
ABJNI
ACGFO
ACUHS
ACYGS
ADIYS
ADMLS
AEGXH
AEILP
AENEX
AFHIN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVWKF
AZFZN
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAG
CGR
COF
CS3
CUY
CVF
DU5
EAP
EAS
EBC
EBD
EBS
ECM
ECS
EDO
EIF
EJD
EMB
EMK
EMOBN
EPL
EPS
EST
ESX
F5P
FEDTE
FNEHJ
HVGLF
HZ~
H~9
I-F
IPLJI
JAVBF
MCG
MINIK
MKJ
NPM
O9-
OCL
P2P
PK0
PQQKQ
RMI
SV3
TUS
WG8
WH7
XJE
ZWS
7X8
ABUFD
ABVLG
AMVHM
ID FETCH-LOGICAL-c496t-c114e2c3e0ba8c9fc9eb792a45ed0bcc700d25f69c0493c0e66234d7e64660a92
IEDL.DBID 7X8
ISICitedReferencesCount 249
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000165399700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0899-7667
IngestDate Sun Nov 09 09:36:01 EST 2025
Wed Feb 19 01:31:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-c114e2c3e0ba8c9fc9eb792a45ed0bcc700d25f69c0493c0e66234d7e64660a92
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 11110125
PQID 72470218
PQPubID 23479
ParticipantIDs proquest_miscellaneous_72470218
pubmed_primary_11110125
PublicationCentury 2000
PublicationDate 2000-11-01
PublicationDateYYYYMMDD 2000-11-01
PublicationDate_xml – month: 11
  year: 2000
  text: 2000-11-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural computation
PublicationTitleAlternate Neural Comput
PublicationYear 2000
SSID ssj0006105
Score 2.1769476
Snippet This article initiates a rigorous theoretical analysis of the computational power of circuits that employ modules for computing winner-take-all. Computational...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2519
SubjectTerms Animals
Brain - physiology
Models, Neurological
Models, Theoretical
Neural Networks (Computer)
Neuronal Plasticity
Title On the computational power of winner-take-all
URI https://www.ncbi.nlm.nih.gov/pubmed/11110125
https://www.proquest.com/docview/72470218
Volume 12
WOSCitedRecordID wos000165399700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4VysBCeVOeHlitRokftYSEEKJioXQAqVvlnB0JUSWBFvj7nN1ETIiBJYOjSNH5fPed7_EBXIaZVC71ggvyHlzkaMgOqoxLpxKjncCiEJFsQo_Hw-nUTDpw1fbChLLK1iZGQ-0qDHfkA50KHfzRdf3GA2dUyK02BBpr0M0IyISCLj39mRWumgJGiii4Vkq3LTMqHYQ1WgoaHmKEYap_B5jR0Yx6__vFbdhqACa7WWnEDnR8uQu9lryBNWd5D_hjyQj8MYxvmitBVgfSNFYV7CtycvGlffXczuf78Dy6e7q95w13Akdh1JIjxTk-xcwnuR2iKdD4XJvUCuldkiPqhLZIFsoghQgZJl4RDhJOeyVILtakB7BeVqU_AkbysRQHOklIT8jcGBnSqSIn8GA9wbk-XLTimJFuhoSDLX31sZi1AunD4Uqis3o1QiPGHeQa5fGf357AZux-j-1_p9At6FT6M9jAz-XL4v08bjk9x5OHbwWQsmg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+computational+power+of+winner-take-all&rft.jtitle=Neural+computation&rft.au=Maass%2C+W&rft.date=2000-11-01&rft.issn=0899-7667&rft.volume=12&rft.issue=11&rft.spage=2519&rft_id=info:doi/10.1162%2F089976600300014827&rft_id=info%3Apmid%2F11110125&rft_id=info%3Apmid%2F11110125&rft.externalDocID=11110125
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-7667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-7667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-7667&client=summon