Diurnal Changes in Active Carbon and Nitrogen Pathways Along the Temperature Gradient in Porcelana Hot Spring Microbial Mat
Composition, carbon and nitrogen uptake, and gene transcription of microbial mat communities in Porcelana neutral hot spring (Northern Chilean Patagonia) were analyzed using metagenomics, metatranscriptomics and isotopically labeled carbon (H CO ) and nitrogen ( NH Cl and K NO ) assimilation rates....
Saved in:
| Published in: | Frontiers in microbiology Vol. 9; p. 2353 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
Frontiers Media
02.10.2018
Frontiers Media S.A |
| Subjects: | |
| ISSN: | 1664-302X, 1664-302X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Composition, carbon and nitrogen uptake, and gene transcription of microbial mat communities in Porcelana neutral hot spring (Northern Chilean Patagonia) were analyzed using metagenomics, metatranscriptomics and isotopically labeled carbon (H
CO
) and nitrogen (
NH
Cl and K
NO
) assimilation rates. The microbial mat community included 31 phyla, of which only
and
were dominant. At 58°C both phyla co-occurred, with similar contributions in relative abundances in metagenomes and total transcriptional activity. At 66°C, filamentous anoxygenic phototrophic
were >90% responsible for the total transcriptional activity recovered, while
contributed most metagenomics and metatranscriptomics reads at 48°C. According to such reads, phototrophy was carried out both through oxygenic photosynthesis by
(mostly
) and anoxygenic phototrophy due mainly to
. Inorganic carbon assimilation through the Calvin-Benson cycle was almost exclusively due to
, which was the main primary producer at lower temperatures. Two other CO
fixation pathways were active at certain times and temperatures as indicated by transcripts: 3-hydroxypropionate (3-HP) bi-cycle due to
and 3-hydroxypropionate-4-hydroxybutyrate (HH) cycle carried out by
. The active transcription of the genes involved in these C-fixation pathways correlated with high
determined carbon fixation rates.
measurements of ammonia assimilation and nitrogen fixation (exclusively attributed to
and mostly to
sp.) showed these were the most important nitrogen acquisition pathways at 58 and 48°C. At 66°C ammonia oxidation genes were actively transcribed (mostly due to
). Reads indicated that denitrification was present as a nitrogen sink at all temperatures and that dissimilatory nitrate reduction to ammonia (DNRA) contributed very little. The combination of metagenomic and metatranscriptomic analysis with
assimilation rates, allowed the reconstruction of day and night carbon and nitrogen assimilation pathways together with the contribution of keystone microorganisms in this natural hot spring microbial mat. |
|---|---|
| AbstractList | Composition, carbon and nitrogen uptake, and gene transcription of microbial mat communities in Porcelana neutral hot spring (Northern Chilean Patagonia) were analyzed using metagenomics, metatranscriptomics and isotopically labeled carbon (H13CO3) and nitrogen (15NH4Cl and K15NO3) assimilation rates. The microbial mat community included 31 phyla, of which only Cyanobacteria and Chloroflexi were dominant. At 58°C both phyla co-occurred, with similar contributions in relative abundances in metagenomes and total transcriptional activity. At 66°C, filamentous anoxygenic phototrophic Chloroflexi were >90% responsible for the total transcriptional activity recovered, while Cyanobacteria contributed most metagenomics and metatranscriptomics reads at 48°C. According to such reads, phototrophy was carried out both through oxygenic photosynthesis by Cyanobacteria (mostly Mastigocladus) and anoxygenic phototrophy due mainly to Chloroflexi. Inorganic carbon assimilation through the Calvin–Benson cycle was almost exclusively due to Mastigocladus, which was the main primary producer at lower temperatures. Two other CO2 fixation pathways were active at certain times and temperatures as indicated by transcripts: 3-hydroxypropionate (3-HP) bi-cycle due to Chloroflexi and 3-hydroxypropionate-4-hydroxybutyrate (HH) cycle carried out by Thaumarchaeota. The active transcription of the genes involved in these C-fixation pathways correlated with high in situ determined carbon fixation rates. In situ measurements of ammonia assimilation and nitrogen fixation (exclusively attributed to Cyanobacteria and mostly to Mastigocladus sp.) showed these were the most important nitrogen acquisition pathways at 58 and 48°C. At 66°C ammonia oxidation genes were actively transcribed (mostly due to Thaumarchaeota). Reads indicated that denitrification was present as a nitrogen sink at all temperatures and that dissimilatory nitrate reduction to ammonia (DNRA) contributed very little. The combination of metagenomic and metatranscriptomic analysis with in situ assimilation rates, allowed the reconstruction of day and night carbon and nitrogen assimilation pathways together with the contribution of keystone microorganisms in this natural hot spring microbial mat. Composition, carbon and nitrogen uptake, and gene transcription of microbial mat communities in Porcelana neutral hot spring (Northern Chilean Patagonia) were analyzed using metagenomics, metatranscriptomics and isotopically labeled carbon (H CO ) and nitrogen ( NH Cl and K NO ) assimilation rates. The microbial mat community included 31 phyla, of which only and were dominant. At 58°C both phyla co-occurred, with similar contributions in relative abundances in metagenomes and total transcriptional activity. At 66°C, filamentous anoxygenic phototrophic were >90% responsible for the total transcriptional activity recovered, while contributed most metagenomics and metatranscriptomics reads at 48°C. According to such reads, phototrophy was carried out both through oxygenic photosynthesis by (mostly ) and anoxygenic phototrophy due mainly to . Inorganic carbon assimilation through the Calvin-Benson cycle was almost exclusively due to , which was the main primary producer at lower temperatures. Two other CO fixation pathways were active at certain times and temperatures as indicated by transcripts: 3-hydroxypropionate (3-HP) bi-cycle due to and 3-hydroxypropionate-4-hydroxybutyrate (HH) cycle carried out by . The active transcription of the genes involved in these C-fixation pathways correlated with high determined carbon fixation rates. measurements of ammonia assimilation and nitrogen fixation (exclusively attributed to and mostly to sp.) showed these were the most important nitrogen acquisition pathways at 58 and 48°C. At 66°C ammonia oxidation genes were actively transcribed (mostly due to ). Reads indicated that denitrification was present as a nitrogen sink at all temperatures and that dissimilatory nitrate reduction to ammonia (DNRA) contributed very little. The combination of metagenomic and metatranscriptomic analysis with assimilation rates, allowed the reconstruction of day and night carbon and nitrogen assimilation pathways together with the contribution of keystone microorganisms in this natural hot spring microbial mat. Composition, carbon and nitrogen uptake, and gene transcription of microbial mat communities in Porcelana neutral hot spring (Northern Chilean Patagonia) were analyzed using metagenomics, metatranscriptomics and isotopically labeled carbon (H13CO3) and nitrogen (15NH4Cl and K15NO3) assimilation rates. The microbial mat community included 31 phyla, of which only Cyanobacteria and Chloroflexi were dominant. At 58°C both phyla co-occurred, with similar contributions in relative abundances in metagenomes and total transcriptional activity. At 66°C, filamentous anoxygenic phototrophic Chloroflexi were >90% responsible for the total transcriptional activity recovered, while Cyanobacteria contributed most metagenomics and metatranscriptomics reads at 48°C. According to such reads, phototrophy was carried out both through oxygenic photosynthesis by Cyanobacteria (mostly Mastigocladus) and anoxygenic phototrophy due mainly to Chloroflexi. Inorganic carbon assimilation through the Calvin-Benson cycle was almost exclusively due to Mastigocladus, which was the main primary producer at lower temperatures. Two other CO2 fixation pathways were active at certain times and temperatures as indicated by transcripts: 3-hydroxypropionate (3-HP) bi-cycle due to Chloroflexi and 3-hydroxypropionate-4-hydroxybutyrate (HH) cycle carried out by Thaumarchaeota. The active transcription of the genes involved in these C-fixation pathways correlated with high in situ determined carbon fixation rates. In situ measurements of ammonia assimilation and nitrogen fixation (exclusively attributed to Cyanobacteria and mostly to Mastigocladus sp.) showed these were the most important nitrogen acquisition pathways at 58 and 48°C. At 66°C ammonia oxidation genes were actively transcribed (mostly due to Thaumarchaeota). Reads indicated that denitrification was present as a nitrogen sink at all temperatures and that dissimilatory nitrate reduction to ammonia (DNRA) contributed very little. The combination of metagenomic and metatranscriptomic analysis with in situ assimilation rates, allowed the reconstruction of day and night carbon and nitrogen assimilation pathways together with the contribution of keystone microorganisms in this natural hot spring microbial mat.Composition, carbon and nitrogen uptake, and gene transcription of microbial mat communities in Porcelana neutral hot spring (Northern Chilean Patagonia) were analyzed using metagenomics, metatranscriptomics and isotopically labeled carbon (H13CO3) and nitrogen (15NH4Cl and K15NO3) assimilation rates. The microbial mat community included 31 phyla, of which only Cyanobacteria and Chloroflexi were dominant. At 58°C both phyla co-occurred, with similar contributions in relative abundances in metagenomes and total transcriptional activity. At 66°C, filamentous anoxygenic phototrophic Chloroflexi were >90% responsible for the total transcriptional activity recovered, while Cyanobacteria contributed most metagenomics and metatranscriptomics reads at 48°C. According to such reads, phototrophy was carried out both through oxygenic photosynthesis by Cyanobacteria (mostly Mastigocladus) and anoxygenic phototrophy due mainly to Chloroflexi. Inorganic carbon assimilation through the Calvin-Benson cycle was almost exclusively due to Mastigocladus, which was the main primary producer at lower temperatures. Two other CO2 fixation pathways were active at certain times and temperatures as indicated by transcripts: 3-hydroxypropionate (3-HP) bi-cycle due to Chloroflexi and 3-hydroxypropionate-4-hydroxybutyrate (HH) cycle carried out by Thaumarchaeota. The active transcription of the genes involved in these C-fixation pathways correlated with high in situ determined carbon fixation rates. In situ measurements of ammonia assimilation and nitrogen fixation (exclusively attributed to Cyanobacteria and mostly to Mastigocladus sp.) showed these were the most important nitrogen acquisition pathways at 58 and 48°C. At 66°C ammonia oxidation genes were actively transcribed (mostly due to Thaumarchaeota). Reads indicated that denitrification was present as a nitrogen sink at all temperatures and that dissimilatory nitrate reduction to ammonia (DNRA) contributed very little. The combination of metagenomic and metatranscriptomic analysis with in situ assimilation rates, allowed the reconstruction of day and night carbon and nitrogen assimilation pathways together with the contribution of keystone microorganisms in this natural hot spring microbial mat. |
| Author | Alcamán-Arias, María E. Fernández, Camila Díez, Beatriz Pérez-Pantoja, Danilo Pedrós-Alió, Carlos Tamames, Javier Vásquez, Mónica |
| AuthorAffiliation | 3 Center for Climate and Resilience Research, Universidad de Chile , Santiago , Chile 2 Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile , Santiago , Chile 5 Laboratoire d’Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, Université Pierre-et-Marie-Curie, Centre National de la Recherche Scientifique , Banyuls-sur-Mer , France 6 Fondap IDEAL, Universidad Austral de Chile , Valdivia , Chile 1 Department of Oceanography, Universidad de Concepción , Concepción , Chile 4 Programa de Biología de Sistemas, Centro Nacional de Biotecnología – Consejo Superior de Investigaciones Científicas , Madrid , Spain 7 Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana , Santiago , Chile |
| AuthorAffiliation_xml | – name: 1 Department of Oceanography, Universidad de Concepción , Concepción , Chile – name: 3 Center for Climate and Resilience Research, Universidad de Chile , Santiago , Chile – name: 7 Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana , Santiago , Chile – name: 4 Programa de Biología de Sistemas, Centro Nacional de Biotecnología – Consejo Superior de Investigaciones Científicas , Madrid , Spain – name: 2 Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile , Santiago , Chile – name: 6 Fondap IDEAL, Universidad Austral de Chile , Valdivia , Chile – name: 5 Laboratoire d’Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, Université Pierre-et-Marie-Curie, Centre National de la Recherche Scientifique , Banyuls-sur-Mer , France |
| Author_xml | – sequence: 1 givenname: María E. surname: Alcamán-Arias fullname: Alcamán-Arias, María E. – sequence: 2 givenname: Carlos surname: Pedrós-Alió fullname: Pedrós-Alió, Carlos – sequence: 3 givenname: Javier surname: Tamames fullname: Tamames, Javier – sequence: 4 givenname: Camila surname: Fernández fullname: Fernández, Camila – sequence: 5 givenname: Danilo surname: Pérez-Pantoja fullname: Pérez-Pantoja, Danilo – sequence: 6 givenname: Mónica surname: Vásquez fullname: Vásquez, Mónica – sequence: 7 givenname: Beatriz surname: Díez fullname: Díez, Beatriz |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30333812$$D View this record in MEDLINE/PubMed https://hal.science/hal-03097589$$DView record in HAL |
| BookMark | eNp1kk1vEzEQhleoiJbSOyfkIxwS_LkfF6QoQFMphUoUiZs1653ddbWxU68TVPHncZIWtZXwwbbG8z4znpnX2ZHzDrPsLaNTIcrqY7uypp5yysop5UKJF9kJy3M5EZT_Onp0P87OxvGGpiUpT_ur7FhQkRCMn2R_PttNcDCQeQ-uw5FYR2Ym2i2SOYTaOwKuId9sDL5DR64g9r_hbiSzwbuOxB7JNa7WGCBuApLzAI1FF3eUKx8MDuCALHwkP9bBJsGlNcHXNsW7hPgme9nCMOLZ_Xma_fz65Xq-mCy_n1_MZ8uJkVUeJ3VV1S2UFS8F0qaoKyVNjQVvDJMFL0plOJoyV0YWIA0oKYqyaYVgbSvyRqI4zS4O3MbDjU6JrCDcaQ9W7w0-dBpCtGZADayluaiZpJhwggJlAKI2UvFG0FIm1qcDa72pV9iY9NkAwxPo0xdne935rc5ZkVOlEuDDAdA_ky1mS72zUUGrQpXVliXf9_fBgr_d4Bj1yo6pqKmq6Dej5oxzVSpVVMn13eO8_pEfOp0c8oNDasA4Bmy1sRGi9bs07aAZ1bup0vup0rup0vupSkL6TPjA_q_kL1Bf0E0 |
| CitedBy_id | crossref_primary_10_1016_j_apsoil_2025_106356 crossref_primary_10_1128_msystems_00498_19 crossref_primary_10_3390_ecologies4010009 crossref_primary_10_1016_j_jece_2024_112215 crossref_primary_10_3389_fgene_2020_568223 crossref_primary_10_1007_s00248_023_02239_1 crossref_primary_10_1038_s41598_024_74830_6 crossref_primary_10_3390_molecules27238515 crossref_primary_10_3389_fmicb_2022_980924 crossref_primary_10_1128_spectrum_01465_21 crossref_primary_10_1128_Spectrum_00694_21 crossref_primary_10_3390_biom12060834 crossref_primary_10_1186_s12864_019_6289_6 crossref_primary_10_1016_j_jwpe_2024_106841 crossref_primary_10_1111_mec_17727 crossref_primary_10_1007_s00792_019_01125_4 crossref_primary_10_1007_s12583_024_0009_0 crossref_primary_10_3389_fmars_2021_773210 crossref_primary_10_1007_s00253_023_12503_6 crossref_primary_10_3389_fmicb_2022_1033158 crossref_primary_10_14712_fb2020066010024 crossref_primary_10_1089_ast_2018_2004 crossref_primary_10_1016_j_envpol_2022_120342 crossref_primary_10_1128_spectrum_00249_23 crossref_primary_10_1093_femsec_fiab090 crossref_primary_10_3389_fmicb_2022_900158 crossref_primary_10_1007_s00792_024_01358_y crossref_primary_10_1007_s12088_024_01346_y crossref_primary_10_22201_ib_20078706e_2023_94_5131 crossref_primary_10_1007_s12583_024_0147_4 crossref_primary_10_1093_femsec_fiab010 crossref_primary_10_1038_s41598_020_80489_6 crossref_primary_10_3390_microorganisms11071803 |
| Cites_doi | 10.1016/j.syapm.2016.11.007 10.1126/science.1252476 10.1111/j.1462-2920.2006.01165.x 10.1128/AEM.00511-15 10.1101/gr.5969107 10.1038/ismej.2011.37 10.1038/ismej.2012.24 10.1093/bioinformatics/btu638 10.1111/j.1462-2920.2007.01506.x 10.1128/JB.184.9.2404-2410.2002 10.1371/journal.pone.0038108 10.1128/AEM.54.7.1738-1743.1988 10.1073/pnas.0708857105 10.1128/JB.01610-09 10.1128/.61.4.533-616.1997 10.1038/ismej.2012.157 10.3389/fmicb.2013.00106 10.1128/AEM.72.4.2793-2800.2006 10.1038/ismej.2007.46 10.1111/j.1472-4669.2012.00335.x 10.1093/bioinformatics/btr669 10.2216/i0031-8884-9-3-261.1 10.1111/j.1432-1033.1993.tb18074.x 10.1007/s00248-011-9943-3 10.1007/978-94-007-1533-2_3 10.2478/v10184-010-0015-4 10.1128/MMBR.62.4.1353-1370.1998 10.1016/B978-0-12-381294-0.00008-0 10.1073/pnas.0507513103 10.4319/lo.1992.37.8.1813 10.3389/fmicb.2017.00943 10.1007/s10482-006-9090-x 10.1038/ismej.2015.63 10.1038/srep22168 10.2216/PH07-69.1 10.1128/AEM.01901-08 10.1186/s12864-015-2230-9 10.1038/ismej.2012.82 10.1016/j.femsec.2004.12.007 10.1371/journal.pone.0002527 10.1128/AEM.68.9.4593-4603.2002 10.5194/bg-13-2051-2016 10.1128/AEM.41.3.775-782.1981 10.3389/fmicb.2016.00919 10.1128/AEM.00705-11 10.1128/AEM.00843-08 10.1111/j.1462-2920.2012.02710.x 10.1078/072320203770865837 10.1099/mic.0.27303-0 10.1111/j.1462-2920.2007.01323.x 10.1128/JB.00543-08 10.1111/j.1574-6941.2010.00835.x 10.1111/j.1574-6941.2008.00466.x 10.1128/AEM.53.10.2343-2352.1987 10.1038/ismej.2010.131 10.1128/AEM.02577-13 10.1007/BF00428590 10.1111/j.1462-2920.2007.01467.x 10.1073/pnas.0506625102 10.1007/s00792-012-0499-z 10.3133/pp492 10.1089/cmb.2012.0021 10.1007/BF00446776 10.1134/S002626171504013X 10.1128/AEM.02945-06 10.1371/journal.pone.0102561 10.1111/j.1574-6941.2007.00405.x 10.1126/science.11538266 10.1371/journal.pone.0053350 10.1038/ismej.2007.117 10.1264/jsme2.ME11321 10.1128/AEM.71.7.3978-3986.2005 10.1371/journal.pone.0062901 10.1038/nmeth.3176 10.1038/nmeth.1923 10.1073/pnas.0908356106 10.1093/bioinformatics/btr595 10.1111/j.1574-6941.2008.00640.x 10.1146/annurev-micro-092412-155614 10.1093/nar/gkn741 10.1111/j.1462-2920.2011.02508.x 10.1038/ismej.2013.52 10.3389/fmicb.2012.00185 10.1264/jsme2.ME3101rh 10.1111/j.1469-8137.1995.tb03051.x 10.1128/genomeA.00897-14 10.1007/978-3-319-46261-5_3 10.3389/fmicb.2013.00067 10.1038/ismej.2011.73 10.1186/1471-2105-11-119 10.3389/fmicb.2015.00209 |
| ContentType | Journal Article |
| Copyright | Distributed under a Creative Commons Attribution 4.0 International License Copyright © 2018 Alcamán-Arias, Pedrós-Alió, Tamames, Fernández, Pérez-Pantoja, Vásquez and Díez. 2018 Alcamán-Arias, Pedrós-Alió, Tamames, Fernández, Pérez-Pantoja, Vásquez and Díez |
| Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright © 2018 Alcamán-Arias, Pedrós-Alió, Tamames, Fernández, Pérez-Pantoja, Vásquez and Díez. 2018 Alcamán-Arias, Pedrós-Alió, Tamames, Fernández, Pérez-Pantoja, Vásquez and Díez |
| DBID | AAYXX CITATION NPM 7X8 1XC VOOES 5PM DOA |
| DOI | 10.3389/fmicb.2018.02353 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Environmental Sciences |
| EISSN | 1664-302X |
| ExternalDocumentID | oai_doaj_org_article_a1f063b140ec4730a01aa3bc452d3084 PMC6176055 oai:HAL:hal-03097589v1 30333812 10_3389_fmicb_2018_02353 |
| Genre | Journal Article |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM ACXDI IPNFZ NPM RIG 7X8 1XC VOOES 5PM |
| ID | FETCH-LOGICAL-c496t-b99bfa89283e0d7b954cbe72dc1472785c2ec865c47a4ca54378df331ff36d4e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446079000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1664-302X |
| IngestDate | Fri Oct 03 12:42:44 EDT 2025 Tue Sep 30 17:03:42 EDT 2025 Tue Oct 14 20:33:37 EDT 2025 Fri Sep 05 13:53:27 EDT 2025 Thu Apr 03 07:06:51 EDT 2025 Sat Nov 29 01:49:44 EST 2025 Tue Nov 18 19:48:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | carbon and nitrogen assimilation neutral hot spring metatranscriptomics photosynthesis metagenomics Cyanobacteria microbial mat |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c496t-b99bfa89283e0d7b954cbe72dc1472785c2ec865c47a4ca54378df331ff36d4e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Ana Beatriz Furlanetto Pacheco, Universidade Federal do Rio de Janeiro, Brazil This article was submitted to Aquatic Microbiology, a section of the journal Frontiers in Microbiology Reviewed by: Eric Daniel Becraft, University of North Alabama, United States; Luisa I. Falcon, Universidad Nacional Autónoma de México, Mexico; Vera Thiel, Tokyo Metropolitan University, Japan |
| OpenAccessLink | https://doaj.org/article/a1f063b140ec4730a01aa3bc452d3084 |
| PMID | 30333812 |
| PQID | 2122585579 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a1f063b140ec4730a01aa3bc452d3084 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6176055 hal_primary_oai_HAL_hal_03097589v1 proquest_miscellaneous_2122585579 pubmed_primary_30333812 crossref_citationtrail_10_3389_fmicb_2018_02353 crossref_primary_10_3389_fmicb_2018_02353 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-02 |
| PublicationDateYYYYMMDD | 2018-10-02 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Frontiers in microbiology |
| PublicationTitleAlternate | Front Microbiol |
| PublicationYear | 2018 |
| Publisher | Frontiers Media Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media – name: Frontiers Media S.A |
| References | Schmid (B68) 2003; 26 Liu (B47); 3 Merkel (B56) 2015; 84 Klatt (B40) 2007; 9 Liu (B49) 2011; 5 Jensen (B37) 2011; 5 Marks (B54) 2012; 10 Loiacono (B50) 2012; 14 Hernández-Prieto (B28) 2016; 6 Ward (B88) 1998; 62 Hamilton (B24) 2014; 80 Alcamán (B1) 2017; 40 Chen (B14) 2016; 13 Anders (B3) 2015; 31 Liu (B48); 6 Duhart (B19) 2000; 9 Sompong (B70) 2005; 52 Zarzycki (B90) 2009; 106 Hyatt (B33) 2010; 8 Klatt (B42); 7 Dodsworth (B17); 486 Hauser (B27) 1989; 16 Bateson (B6) 1988; 54 Hügler (B31) 2002; 184 Urschel (B82) 2015; 81 Canfield (B13) 1994; 251 van der Meer (B84) 2005; 71 Miller (B58) 2007; 73 Sayers (B67) 2009; 37 Zarzycki (B91) 2011; 77 Bushnell (B11) 2014 Zhao (B93) 2012; 28 Alcamán (B2) 2015; 9 Thiel (B80) 2016; 7 Zhang (B92) 2008; 74 Guazzaroni (B23) 2013; 7 Anderson (B4) 1987; 53 Buchfink (B10) 2015; 12 Nübel (B60) 2002; 68 Miller (B57) 2009; 75 Stamps (B72) 2014; 2 Schmieder (B69) 2012; 28 Lin (B46) 2015; 16 Urich (B81) 2008; 3 McGregor (B55) 2008; 63 Steunou (B74) 2008; 2 Finsinger (B20) 2008; 10 Kühl (B44) 1992; 37 Stal (B71) 1995; 131 Langmead (B45) 2012; 9 Bohórquez (B8) 2012; 63 Ward (B87) 2006; 90 de la Torre (B16) 2008; 10 Bhaya (B7) 2007; 1 Cole (B15) 2013; 7 Offre (B61) 2013; 67 Francis (B21) 2005; 102 Klatt (B43) 2011; 5 Hou (B30) 2013; 8 Tank (B78) 2017 Huson (B32) 2007; 17 Steunou (B73) 2006; 103 Wang (B86) 2013; 8 Lukavsky (B51) 2011; 70 Quaiser (B64) 2014; 9 Dodsworth (B18); 13 Miller (B59) 2006; 72 Swingley (B77) 2012; 7 Ionescu (B35) 2010; 72 Thiel (B79) 2017; 8 Waring (B89) 1965 Hatzenpichler (B26) 2008; 105 Jaeschke (B36) 2009; 67 Stewart (B75) 1970; 9 Franck (B22) 2008; 190 Zumft (B94) 1997; 61 Inskeep (B34) 2013; 4 Mackenzie (B52) 2013; 17 Strauss (B76) 1993; 215 Klatt (B41); 4 Bryant (B9) 2012 Holo (B29) 1986; 145 Cabello (B12) 2004; 150 Kim (B39) 2015; 6 Bankevich (B5) 2012; 19 Hanada (B25) 2016; 31 van der Meer (B85) 2007; 9 Madigan (B53) 1977; 113 Kaštovský (B38) 2008; 43 Ottesen (B63) 2014; 345 van der Meer (B83) 2010; 12 Sandbeck (B66) 1981; 41 Okubo (B62) 2012; 27 Reigstad (B65) 2008; 64 |
| References_xml | – volume: 40 start-page: 103 year: 2017 ident: B1 article-title: Physiological and gene expression responses to nitrogen regimes and temperatures in Mastigocladus sp. strain CHP1, a predominant thermotolerant cyanobacterium of hot springs. publication-title: Syst. Appl. Microbiol. doi: 10.1016/j.syapm.2016.11.007 – year: 2014 ident: B11 publication-title: BBMap: A Fast, Accurate, Splice-Aware Aligner. United States. – volume: 345 start-page: 207 year: 2014 ident: B63 article-title: Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. publication-title: Science doi: 10.1126/science.1252476 – volume: 9 start-page: 482 year: 2007 ident: B85 article-title: Impact of carbon metabolism on 13C signatures of cyanobacteria and green nonsulfur-like bacteria inhabiting a microbial mat from an alkaline siliceous hot spring in Yellowstone National Park (USA). publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2006.01165.x – volume: 81 start-page: 3834 year: 2015 ident: B82 article-title: Carbon source preference in chemosynthetic hot spring communities. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00511-15 – volume: 17 start-page: 377 year: 2007 ident: B32 article-title: MEGAN analysis of metagenomic data. publication-title: Genome Res. doi: 10.1101/gr.5969107 – volume: 5 start-page: 1279 year: 2011 ident: B49 article-title: Metatranscriptomic analyses of chlorophototrophs of a hot-spring microbial mat. publication-title: ISME J. doi: 10.1038/ismej.2011.37 – volume: 6 start-page: 1869 ident: B48 article-title: ‘Candidatus Thermochlorobacter aerophilum:’ an aerobic chlorophotoheterotrophic member of the phylum Chlorobi defined by metagenomics and metatranscriptomics. publication-title: ISME J. doi: 10.1038/ismej.2012.24 – volume: 31 start-page: 166 year: 2015 ident: B3 article-title: HTSeq-a Python framework to work with high-throughput sequencing data. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 10 start-page: 810 year: 2008 ident: B16 article-title: Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2007.01506.x – volume: 184 start-page: 2404 year: 2002 ident: B31 article-title: Malonyl-coenzyme a reductase from Chloroflexus aurantiacus, a Key Enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. publication-title: J. Bacteriol. doi: 10.1128/JB.184.9.2404-2410.2002 – volume: 7 year: 2012 ident: B77 article-title: Coordinating environmental genomics and geochemistry reveals metabolic transitions in a hot spring ecosystem. publication-title: PLoS One doi: 10.1371/journal.pone.0038108 – volume: 54 start-page: 1738 year: 1988 ident: B6 article-title: Photoexcretion and fate of glycolate in a hot spring cyanobacterial mat. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.54.7.1738-1743.1988 – volume: 105 start-page: 2134 year: 2008 ident: B26 article-title: A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0708857105 – volume: 12 start-page: 3033 year: 2010 ident: B83 article-title: Cultivation and genomic, nutritional, and lipid biomarker characterization of roseiflexus strains closely related to predominant in situ populations inhabiting yellowstone hot spring microbial mats. publication-title: J. Bacteriol. doi: 10.1128/JB.01610-09 – volume: 61 start-page: 533 year: 1997 ident: B94 article-title: Cell biology and molecular basis of denitrification. publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/.61.4.533-616.1997 – volume: 7 start-page: 718 year: 2013 ident: B15 article-title: Sediment microbial communities in great boiling spring are controlled by temperature and distinct from water communities. publication-title: ISME J. doi: 10.1038/ismej.2012.157 – volume: 4 ident: B41 article-title: Community structure and function of high-temperature chlorophototrophic microbial mats inhabiting diverse geothermal environments. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2013.00106 – volume: 72 start-page: 2793 year: 2006 ident: B59 article-title: Molecular population genetics and phenotypic diversification of two populations of the thermophilic cyanobacterium Mastigocladus laminosus. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.72.4.2793-2800.2006 – volume: 1 start-page: 703 year: 2007 ident: B7 article-title: Population level functional diversity in a microbial community revealed by comparative genomic and metagenomic analyses. publication-title: ISME J. doi: 10.1038/ismej.2007.46 – volume: 10 start-page: 457 year: 2012 ident: B54 article-title: Nitrospira-dominated biofilm within a thermal artesian spring: a case for nitrification-driven primary production in a geothermal setting. publication-title: Geobiology doi: 10.1111/j.1472-4669.2012.00335.x – volume: 28 start-page: 433 year: 2012 ident: B69 article-title: Identification and removal of ribosomal RNA sequences from metatranscriptomes. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr669 – volume: 9 start-page: 261 year: 1970 ident: B75 article-title: Nitrogen fixation by blue-green algae in Yellowstone thermal areas. publication-title: Phycologia doi: 10.2216/i0031-8884-9-3-261.1 – volume: 215 start-page: 633 year: 1993 ident: B76 article-title: Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle. publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1993.tb18074.x – volume: 63 start-page: 103 year: 2012 ident: B8 article-title: In-depth characterization via complementing culture-independent approaches of the microbial community in an acidic hot spring of the colombian andes. publication-title: Microbiol. Ecol. doi: 10.1007/s00248-011-9943-3 – start-page: 47 year: 2012 ident: B9 article-title: “Comparative and functional genomics of anoxygenic green bacteria from the taxa Chlorobi, Chloroflexi, and Acidobacteria,” in publication-title: Functional Genomics and Evolution of Photosynthetic Systems doi: 10.1007/978-94-007-1533-2_3 – volume: 70 start-page: 191 year: 2011 ident: B51 article-title: Cyanobacteria of the thermal spring at Pancharevo, Sofia, Bulgaria. publication-title: Acta Bot. Croat. doi: 10.2478/v10184-010-0015-4 – volume: 62 start-page: 1353 year: 1998 ident: B88 article-title: A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.62.4.1353-1370.1998 – volume: 486 start-page: 172 ident: B17 article-title: Measuring nitrification, denitrification, and related biomarkers in terrestrial geothermal ecosystems. publication-title: Methods Enzymol. doi: 10.1016/B978-0-12-381294-0.00008-0 – volume: 103 start-page: 2398 year: 2006 ident: B73 article-title: In situ analysis of nitrogen fixation and metabolic switching in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0507513103 – volume: 37 start-page: 1813 year: 1992 ident: B44 article-title: Spectral light measurements in microbenthic phototrophic communities with a fiber-optic microprobe coupled to a sensitive diode array detector. publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1992.37.8.1813 – volume: 8 year: 2017 ident: B79 article-title: The Dark Side of the Mushroom spring microbial mat: life in the shadow of chlorophototrophs. II. Metabolic functions of abundant community members predicted from metagenomic analyses. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.00943 – volume: 90 start-page: 309 year: 2006 ident: B87 article-title: Microbial diversity in natural environments: focusing on fundamental questions. publication-title: Antonie Van Leeuwenhoek doi: 10.1007/s10482-006-9090-x – volume: 9 start-page: 2290 year: 2015 ident: B2 article-title: The cyanobacterium Mastigocladus fulfills the nitrogen demand of a terrestrial hot spring microbial mat. publication-title: ISME J. doi: 10.1038/ismej.2015.63 – volume: 6 year: 2016 ident: B28 article-title: The transcriptional landscape of the photosynthetic model cyanobacterium Synechocystis sp. PCC6803. publication-title: Sci. Rep. doi: 10.1038/srep22168 – volume: 43 start-page: 307 year: 2008 ident: B38 article-title: Mastigocladus laminosus (Stigonematales, Cyanobacteria): phylogenetic relationship of strains from thermal springs to soil-inhabiting genera of the order and taxonomic implications for the genus. publication-title: Phycologia doi: 10.2216/PH07-69.1 – volume: 75 start-page: 729 year: 2009 ident: B57 article-title: Ecological specialization in a spatially structured population of the thermophilic cyanobacterium Mastigocladus laminosus. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01901-08 – volume: 16 year: 2015 ident: B46 article-title: Metabolic characteristics of dominant microbes and key rare species from an acidic hot spring in Taiwan revealed by metagenomics. publication-title: BMC Genomics doi: 10.1186/s12864-015-2230-9 – volume: 7 start-page: 122 year: 2013 ident: B23 article-title: Metaproteogenomic insights beyond bacterial response to naphthalene exposure and bio-stimulation. publication-title: ISME J. doi: 10.1038/ismej.2012.82 – volume: 52 start-page: 365 year: 2005 ident: B70 article-title: The distribution of cyanobacteria across physical and chemical gradients in northern Thailand. publication-title: FEMS Microbiol. Ecol. doi: 10.1016/j.femsec.2004.12.007 – volume: 3 year: 2008 ident: B81 article-title: Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. publication-title: PLoS One doi: 10.1371/journal.pone.0002527 – volume: 68 start-page: 4593 year: 2002 ident: B60 article-title: Microscopic examination of distribution and phenotypic properties of phylogenetically diverse Chloroflexaceae-related bacteria in hot spring microbial mats. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.68.9.4593-4603.2002 – volume: 13 start-page: 2051 year: 2016 ident: B14 article-title: Nitrification of archaeal ammonia oxidizers in a hightemperature hot spring. publication-title: Biogeosciences doi: 10.5194/bg-13-2051-2016 – volume: 41 start-page: 775 year: 1981 ident: B66 article-title: Fate of immediate methane precursors in low-sulfate hot spring algal-bacterial mats. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.41.3.775-782.1981 – volume: 7 year: 2016 ident: B80 article-title: The dark side of the mushroom spring microbial mat: life in the shadow of chlorophototrophs. I. microbial diversity based on 16S rRNA gene amplicons and metagenomic sequencing. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.00919 – volume: 77 start-page: 6181 year: 2011 ident: B91 article-title: Coassimilation of organic substrates via the autotrophic 3-Hydroxypropionate Bi-Cycle in Chloroflexus aurantiacus. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00705-11 – volume: 74 start-page: 6417 year: 2008 ident: B92 article-title: Global occurrence of archaeal amoA genes in terrestrial hot springs. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00843-08 – volume: 14 start-page: 1272 year: 2012 ident: B50 article-title: Evidence for high-temperature in situ nifH transcription in an alkaline hot spring of Lower Geyser Basin, Yellowstone National Parkemi. publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2012.02710.x – volume: 26 start-page: 529 year: 2003 ident: B68 article-title: Candidatus ”Scalindua brodae”, sp. nov., Candidatus ”Scalindua wagneri”, sp. nov., two new species of anaerobic ammonium oxidizing bacteria. publication-title: Syst. Appl. Microbiol. doi: 10.1078/072320203770865837 – volume: 150 start-page: 3527 year: 2004 ident: B12 article-title: Nitrate reduction and the nitrogen cycle in archaea. publication-title: Microbiology doi: 10.1099/mic.0.27303-0 – volume: 9 start-page: 2067 year: 2007 ident: B40 article-title: Comparative genomics provides evidence for the 3-hydroxypropionate autotrophic pathway in filamentous anoxygenic phototrophic bacteria and in hot spring microbial mats. publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2007.01323.x – volume: 190 start-page: 6697 year: 2008 ident: B22 article-title: Whole-genome transcriptional profiling of Bradyrhizobium japonicum during chemoautotrophic growth. publication-title: J. Bacteriol. doi: 10.1128/JB.00543-08 – volume: 72 start-page: 103 year: 2010 ident: B35 article-title: Biogeography of thermophilic cyanobacteria: insights from the Zerka Ma’in hot springs (Jordan). publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2010.00835.x – volume: 64 start-page: 167 year: 2008 ident: B65 article-title: Nitrification in terrestrial hot springs of Iceland and Kamchatka. publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2008.00466.x – volume: 53 start-page: 2343 year: 1987 ident: B4 article-title: Formation and fate of fermentation products in hot spring cyanobacterial mats. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.53.10.2343-2352.1987 – volume: 5 start-page: 317 year: 2011 ident: B37 article-title: In situ dynamics of O2, pH and cyanobacterial transcripts associated with CCM, photosynthesis and detoxification of ROS. publication-title: ISME J. doi: 10.1038/ismej.2010.131 – volume: 16 start-page: 229 year: 1989 ident: B27 article-title: Fuentes termales y minerales en torno a la carretera Austral, Regiones X-XI, Chile. publication-title: Rev. Geol. Chile – volume: 80 start-page: 653 year: 2014 ident: B24 article-title: Competition for ammonia influences the structure of chemotrophic communities in geothermal springs. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02577-13 – volume: 113 start-page: 111 year: 1977 ident: B53 article-title: Adaptation by hot spring phototrophs to reduced light intensities. publication-title: Arch. Microbiol. doi: 10.1007/BF00428590 – volume: 10 start-page: 460 year: 2008 ident: B20 article-title: Characterization of true-branching cyanobacteria from geothermal sites and hot springs of Costa Rica. publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2007.01467.x – volume: 9 start-page: 201 year: 2000 ident: B19 article-title: Franjas metalogenicas en Chiloe Continental (41–44S). publication-title: Congreso Geologico Chileno. – volume: 102 start-page: 14683 year: 2005 ident: B21 article-title: Ubiquity and diversity of ammoniaoxidizing archaea in water columns and sediments of the ocean. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0506625102 – volume: 17 start-page: 123 year: 2013 ident: B52 article-title: Bacterial composition of microbial mats in hot springs in Northern Patagonia: variations with seasons and temperature. publication-title: Extremophiles doi: 10.1007/s00792-012-0499-z – year: 1965 ident: B89 article-title: “Thermal springs of the United States and other countries of the world—a summary,” in publication-title: Geological Survey Professional Paper doi: 10.3133/pp492 – volume: 19 start-page: 455 year: 2012 ident: B5 article-title: SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. publication-title: J. Comput. Biol. doi: 10.1089/cmb.2012.0021 – volume: 145 start-page: 173 year: 1986 ident: B29 article-title: Autotrophic growth and CO2 fixation in Chloroflexus aurantiacus. publication-title: Arch. Microbiol. doi: 10.1007/BF00446776 – volume: 84 start-page: 577 year: 2015 ident: B56 article-title: Occurrence, diversity, and abundance of methanogenic archaea in terrestrial hot springs of Kamchatka and Saõ Miguel Island. publication-title: Microbiology doi: 10.1134/S002626171504013X – volume: 73 start-page: 4751 year: 2007 ident: B58 article-title: Phylogeography of the thermophilic cyanobacterium Mastigocladus laminosus. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02945-06 – volume: 9 year: 2014 ident: B64 article-title: Unraveling the stratification of an iron-oxidizing microbial mat by metatranscriptomics. publication-title: PLoS One doi: 10.1371/journal.pone.0102561 – volume: 63 start-page: 23 year: 2008 ident: B55 article-title: Cyanobacterial composition of microbial mats from an Australian thermal spring: a polyphasic evaluation. publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2007.00405.x – volume: 251 start-page: 1471 year: 1994 ident: B13 article-title: Cycling of carbon, sulfur, oxygen and nutrients in a microbial mat. publication-title: Science doi: 10.1126/science.11538266 – volume: 8 year: 2013 ident: B30 article-title: A comprehensive census of microbial diversity in hot springs of tengchong, yunnan province china using 16SrRNA gene pyrosequencing. publication-title: PLoS One doi: 10.1371/journal.pone.0053350 – volume: 2 start-page: 364 year: 2008 ident: B74 article-title: Regulation of nif gene expression and the energetics of N2 fixation over the diel cycle in a hot spring microbial mat. publication-title: ISME J. doi: 10.1038/ismej.2007.117 – volume: 27 start-page: 306 year: 2012 ident: B62 article-title: Complete genome sequence of Bradyrhizobium sp. S23321: insights into symbiosis evolution in soil oligotrophs. publication-title: Microbes Environ. doi: 10.1264/jsme2.ME11321 – volume: 71 start-page: 3978 year: 2005 ident: B84 article-title: Diel variations in carbon metabolism by green nonsulfur-like bacteria in alkaline siliceous hot spring microbial mats from Metatranscriptomics of Chloroflexi. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.71.7.3978-3986.2005 – volume: 8 year: 2013 ident: B86 article-title: Control of temperature on microbial community structure in hot springs of the Tibetan Plateau. publication-title: PLoS One doi: 10.1371/journal.pone.0062901 – volume: 12 start-page: 59 year: 2015 ident: B10 article-title: Fast and sensitive protein alignment using DIAMOND. publication-title: Nat. Methods doi: 10.1038/nmeth.3176 – volume: 9 start-page: 357 year: 2012 ident: B45 article-title: Fast gapped-read alignment with Bowtie 2. publication-title: Nat. Methods doi: 10.1038/nmeth.1923 – volume: 106 start-page: 21317 year: 2009 ident: B90 article-title: Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0908356106 – volume: 28 start-page: 125 year: 2012 ident: B93 article-title: RAPSearch2: a fast and memory-efficient protein similarity search tool for next-generation sequencing data. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr595 – volume: 67 start-page: 343 year: 2009 ident: B36 article-title: 16S rRNA gene and lipid biomarker evidence for anaerobic ammonium-oxidizing bacteria (anammox) in California and Nevada hot spring. publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2008.00640.x – volume: 67 start-page: 437 year: 2013 ident: B61 article-title: Archaea in biogeochemical cycles. publication-title: Annu. Rev. Amicrobiol. doi: 10.1146/annurev-micro-092412-155614 – volume: 37 start-page: 5 year: 2009 ident: B67 article-title: Database resources of the national center for biotechnology information. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn741 – volume: 13 start-page: 2371 ident: B18 article-title: Ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium in two US Great Basin hot springs with abundant ammonia-oxidizing archaea. publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2011.02508.x – volume: 7 start-page: 1775 ident: B42 article-title: Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring. publication-title: ISME J. doi: 10.1038/ismej.2013.52 – volume: 3 ident: B47 article-title: Complete genome of Ignavibacterium album, a metabolically versatile, flagellated, facultative anaerobe from the phylum Chlorobi. publication-title: Front. Microbiol doi: 10.3389/fmicb.2012.00185 – volume: 31 start-page: 1 year: 2016 ident: B25 article-title: Anoxygenic photosynthesis —a photochemical reaction that does not contribute to oxygen reproduction—. publication-title: Microbes Environ. doi: 10.1264/jsme2.ME3101rh – volume: 131 start-page: 1 year: 1995 ident: B71 article-title: Physiological ecology of cyanobacteria in microbial mats and other communities. publication-title: New Phytol. doi: 10.1111/j.1469-8137.1995.tb03051.x – volume: 2 year: 2014 ident: B72 article-title: Draft genome of a novel Chlorobi member assembled by tetranucleotide binning of a hot spring metagenome. publication-title: Genome Announc. doi: 10.1128/genomeA.00897-14 – year: 2017 ident: B78 article-title: “A Panoply of Phototrophs: An Overview of the Thermophilic Chlorophototrophs of the Microbial Mats of Alkaline Siliceous Hot Springs in Yellowstone National Park, WY, USA,” in publication-title: Modern Topics in the Phototrophic Prokaryotes doi: 10.1007/978-3-319-46261-5_3 – volume: 4 year: 2013 ident: B34 article-title: The YNP metagenome project: environmental parameters responsible for microbial distribution in the Yellowstone geothermal ecosystem. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2013.00067 – volume: 5 start-page: 1262 year: 2011 ident: B43 article-title: Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential. publication-title: ISME J. doi: 10.1038/ismej.2011.73 – volume: 8 year: 2010 ident: B33 article-title: Prodigal: prokaryotic gene recognition and translation initiation site identification. publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-119 – volume: 6 year: 2015 ident: B39 article-title: Diel metabolomics analysis of a hot spring chlorophototrophic microbial mat leads to new hypotheses of community member metabolisms. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00209 |
| SSID | ssj0000402000 |
| Score | 2.380388 |
| Snippet | Composition, carbon and nitrogen uptake, and gene transcription of microbial mat communities in Porcelana neutral hot spring (Northern Chilean Patagonia) were... |
| SourceID | doaj pubmedcentral hal proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 2353 |
| SubjectTerms | Biodiversity and Ecology carbon and nitrogen assimilation Cyanobacteria Environmental Sciences metagenomics metatranscriptomics microbial mat Microbiology neutral hot spring |
| Title | Diurnal Changes in Active Carbon and Nitrogen Pathways Along the Temperature Gradient in Porcelana Hot Spring Microbial Mat |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30333812 https://www.proquest.com/docview/2122585579 https://hal.science/hal-03097589 https://pubmed.ncbi.nlm.nih.gov/PMC6176055 https://doaj.org/article/a1f063b140ec4730a01aa3bc452d3084 |
| Volume | 9 |
| WOSCitedRecordID | wos000446079000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-302X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000402000 issn: 1664-302X databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-302X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000402000 issn: 1664-302X databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgAokL4pvwURnEhUNoYjsb-7iUlj10V3soaG-W7dhtpMpB2bSoQuK3M7a3qw1IcOGSg-M4iWeceS8ePyP0rlTWaGqAqYpK5YyYMle0meQOxpUxlvMyroX5elIvFny1Esudrb5CTliSB04dd6BKB1FUAw-whoE7qqJUimrDKtLQgkcl0KIWO2QqfoMDLSqKNC8JLEyAmVqjQyoX_xAkXugoDkW5fogu5yEZ8k-k-XvC5E4EOn6A7m-gI56mR36Ibln_CN1Nm0leP0Y_PrWpQlowsMatx9P4NcOHqtedx8o3eNEOfQdOg5cA_b6r6zWeXnT-DAMOxKcWMHTSWMaf-5gLNoRWll34v6-8wrNuwOlXIJ63UcIJ7jdXwxP05fjo9HCWb7ZWyA0TkyHXQminuABwYYum1qJiRtuaNKZkgGh4ZYg1fFJBlytmVMVozRtHaekcnTTM0qdoz3fePkfYaGGca5hTlDFHlBCOaFK5CQCPhnOXoYObjpZmozsetr-4kMA_gmlkNI0MppHRNBl6v73iW9Lc-Evdj8F223pBLTsWgA_JjQ_Jf_lQht6C5UdtzKYnMpSFGSigVOKqzNCbG8eQMATDvIrytrtcS4j-BFhXVYsMPUuOsm0LEAI8d0kyVI9caHSz8RnfnkeZb8CWwDWrF__jDV-ie6HPYhYieYX2hv7SvkZ3zNXQrvt9dLte8f04guA4_3n0Cz41IQc |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diurnal+Changes+in+Active+Carbon+and+Nitrogen+Pathways+Along+the+Temperature+Gradient+in+Porcelana+Hot+Spring+Microbial+Mat&rft.jtitle=Frontiers+in+microbiology&rft.au=Alcam%C3%A1n-Arias%2C+Mar%C3%ADa+E.&rft.au=Pedr%C3%B3s-Ali%C3%B3%2C+Carlos&rft.au=Tamames%2C+Javier&rft.au=Fern%C3%A1ndez%2C+Camila&rft.date=2018-10-02&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-302X&rft.volume=9&rft_id=info:doi/10.3389%2Ffmicb.2018.02353&rft_id=info%3Apmid%2F30333812&rft.externalDocID=PMC6176055 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |