Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor
The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular pr...
Gespeichert in:
| Veröffentlicht in: | Nature nanotechnology Jg. 12; H. 11; S. 1077 - 1082 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
01.11.2017
Nature Publishing Group |
| Schlagworte: | |
| ISSN: | 1748-3387, 1748-3395, 1748-3395 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular precursors to yield GNR heterojunctions. Here we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through late-stage functionalization of chevron GNRs obtained from a single precursor. Post-growth excitation of fully cyclized GNRs induces cleavage of sacrificial carbonyl groups, resulting in atomically well-defined heterojunctions within a single GNR. The GNR heterojunction structure was characterized using bond-resolved scanning tunnelling microscopy, which enables chemical bond imaging at
T
= 4.5 K. Scanning tunnelling spectroscopy reveals that band alignment across the heterojunction interface yields a type II heterojunction, in agreement with first-principles calculations. GNR heterojunction band realignment proceeds over a distance less than 1 nm, leading to extremely large effective fields.
Bottom-up fabrication of GNR heterojunctions exhibiting atomically perfect heterojunction interfaces can be obtained from a single molecular precursor via post-growth modification |
|---|---|
| AbstractList | The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular precursors to yield GNR heterojunctions. Here we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through late-stage functionalization of chevron GNRs obtained from a single precursor. Post-growth excitation of fully cyclized GNRs induces cleavage of sacrificial carbonyl groups, resulting in atomically well-defined heterojunctions within a single GNR. The GNR heterojunction structure was characterized using bond-resolved scanning tunnelling microscopy, which enables chemical bond imaging at T = 4.5 K. Scanning tunnelling spectroscopy reveals that band alignment across the heterojunction interface yields a type II heterojunction, in agreement with first-principles calculations. GNR heterojunction band realignment proceeds over a distance less than 1 nm, leading to extremely large effective fields. The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular precursors to yield GNR heterojunctions. In this paper we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through late-stage functionalization of chevron GNRs obtained from a single precursor. Post-growth excitation of fully cyclized GNRs induces cleavage of sacrificial carbonyl groups, resulting in atomically well-defined heterojunctions within a single GNR. The GNR heterojunction structure was characterized using bond-resolved scanning tunnelling microscopy, which enables chemical bond imaging at T = 4.5 K. Scanning tunnelling spectroscopy reveals that band alignment across the heterojunction interface yields a type II heterojunction, in agreement with first-principles calculations. Finally, GNR heterojunction band realignment proceeds over a distance less than 1 nm, leading to extremely large effective fields. The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular precursors to yield GNR heterojunctions. Here we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through late-stage functionalization of chevron GNRs obtained from a single precursor. Post-growth excitation of fully cyclized GNRs induces cleavage of sacrificial carbonyl groups, resulting in atomically well-defined heterojunctions within a single GNR. The GNR heterojunction structure was characterized using bond-resolved scanning tunnelling microscopy, which enables chemical bond imaging at T = 4.5 K. Scanning tunnelling spectroscopy reveals that band alignment across the heterojunction interface yields a type II heterojunction, in agreement with first-principles calculations. GNR heterojunction band realignment proceeds over a distance less than 1 nm, leading to extremely large effective fields.The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular precursors to yield GNR heterojunctions. Here we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through late-stage functionalization of chevron GNRs obtained from a single precursor. Post-growth excitation of fully cyclized GNRs induces cleavage of sacrificial carbonyl groups, resulting in atomically well-defined heterojunctions within a single GNR. The GNR heterojunction structure was characterized using bond-resolved scanning tunnelling microscopy, which enables chemical bond imaging at T = 4.5 K. Scanning tunnelling spectroscopy reveals that band alignment across the heterojunction interface yields a type II heterojunction, in agreement with first-principles calculations. GNR heterojunction band realignment proceeds over a distance less than 1 nm, leading to extremely large effective fields. The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular precursors to yield GNR heterojunctions. Here we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through late-stage functionalization of chevron GNRs obtained from a single precursor. Post-growth excitation of fully cyclized GNRs induces cleavage of sacrificial carbonyl groups, resulting in atomically well-defined heterojunctions within a single GNR. The GNR heterojunction structure was characterized using bond-resolved scanning tunnelling microscopy, which enables chemical bond imaging at T = 4.5 K. Scanning tunnelling spectroscopy reveals that band alignment across the heterojunction interface yields a type II heterojunction, in agreement with first-principles calculations. GNR heterojunction band realignment proceeds over a distance less than 1 nm, leading to extremely large effective fields. Bottom-up fabrication of GNR heterojunctions exhibiting atomically perfect heterojunction interfaces can be obtained from a single molecular precursor via post-growth modification |
| Author | Rizzo, Daniel J. Louie, Steven G. Crommie, Michael F. Omrani, Arash A. Cloke, Ryan R. Marangoni, Tomas Sakai, Yuki Tsai, Hsin-Zon Chelikowsky, James R. Aikawa, Andrew S. Fischer, Felix R. Durr, Rebecca A. Liou, Franklin Rodgers, Griffin F. Nguyen, Giang D. Wu, Meng |
| Author_xml | – sequence: 1 givenname: Giang D. surname: Nguyen fullname: Nguyen, Giang D. organization: Department of Physics, University of California at Berkeley, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory – sequence: 2 givenname: Hsin-Zon surname: Tsai fullname: Tsai, Hsin-Zon organization: Department of Physics, University of California at Berkeley – sequence: 3 givenname: Arash A. surname: Omrani fullname: Omrani, Arash A. organization: Department of Physics, University of California at Berkeley – sequence: 4 givenname: Tomas surname: Marangoni fullname: Marangoni, Tomas organization: Department of Chemistry, University of California at Berkeley – sequence: 5 givenname: Meng surname: Wu fullname: Wu, Meng organization: Department of Physics, University of California at Berkeley, Materials Sciences Division, Lawrence Berkeley National Laboratory – sequence: 6 givenname: Daniel J. surname: Rizzo fullname: Rizzo, Daniel J. organization: Department of Physics, University of California at Berkeley – sequence: 7 givenname: Griffin F. surname: Rodgers fullname: Rodgers, Griffin F. organization: Department of Physics, University of California at Berkeley – sequence: 8 givenname: Ryan R. surname: Cloke fullname: Cloke, Ryan R. organization: Department of Chemistry, University of California at Berkeley – sequence: 9 givenname: Rebecca A. surname: Durr fullname: Durr, Rebecca A. organization: Department of Chemistry, University of California at Berkeley – sequence: 10 givenname: Yuki surname: Sakai fullname: Sakai, Yuki organization: Departments of Physics and Chemical Engineering, Center for Computational Materials, Institute for Computational Engineering and Sciences, The University of Texas at Austin – sequence: 11 givenname: Franklin surname: Liou fullname: Liou, Franklin organization: Department of Physics, University of California at Berkeley – sequence: 12 givenname: Andrew S. surname: Aikawa fullname: Aikawa, Andrew S. organization: Department of Physics, University of California at Berkeley – sequence: 13 givenname: James R. surname: Chelikowsky fullname: Chelikowsky, James R. organization: Departments of Physics and Chemical Engineering, Center for Computational Materials, Institute for Computational Engineering and Sciences, The University of Texas at Austin – sequence: 14 givenname: Steven G. surname: Louie fullname: Louie, Steven G. email: sglouie@berkeley.edu organization: Department of Physics, University of California at Berkeley, Materials Sciences Division, Lawrence Berkeley National Laboratory – sequence: 15 givenname: Felix R. surname: Fischer fullname: Fischer, Felix R. email: ffischer@berkeley.edu organization: Department of Chemistry, University of California at Berkeley, Materials Sciences Division, Lawrence Berkeley National Laboratory, Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory – sequence: 16 givenname: Michael F. surname: Crommie fullname: Crommie, Michael F. email: crommie@berkeley.edu organization: Department of Physics, University of California at Berkeley, Materials Sciences Division, Lawrence Berkeley National Laboratory, Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28945240$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1461121$$D View this record in Osti.gov |
| BookMark | eNp1kT1vHCEURZHlyF9JmzIaJY2bXQMDw1BaVmJHspQmkdIhYN7ssmJgA0zhf2_G61iR5VS84pwr3rvn6DjEAAh9JHhNcNtfhaBDXFNMxJpwfoTOiGD9qm0lP36Ze3GKznPeYcyppOwEndJeMk4ZPkO_r0ucnNXePzT7BNZlaDZJ77cQoFmykzMmhmYLBVLczcEWF0NuxhSnRjfZhY2HZooe7Ox1esqYU47pPXo3ap_hw_N7gX59-_rz5m51_-P2-831_coy2ZWV7g3phBzAGGYYt7ozVo9Daw0exSDYYAyVYPoRBjlI1kvdYsMpWK6pJALaC_T5kBtzcSpbV8BubQwBbFGEdYRQUqHLA7RP8c8MuajJZQve6wBxzopIRgXGkvCKfnmF7uKcQl2hUh2WUrBuoT49U7OZYFD75CadHtTfw1ZgfQBsijknGF8QgtXSnHpqTi3NqdpcFdgroa6il2OXpJ3_v3Z10HLNDxtI_3z3beMRIF2vQw |
| CitedBy_id | crossref_primary_10_1021_jacs_2c10711 crossref_primary_10_1002_adma_201801838 crossref_primary_10_1038_s41586_024_08296_x crossref_primary_10_1021_jacs_5c03736 crossref_primary_10_1002_chem_202501399 crossref_primary_10_1002_adma_201705630 crossref_primary_10_1515_nanoph_2020_0646 crossref_primary_10_1021_jacs_2c13822 crossref_primary_10_1002_adts_201800172 crossref_primary_10_1021_prechem_3c00072 crossref_primary_10_1088_1361_6528_adf562 crossref_primary_10_1021_jacs_4c18051 crossref_primary_10_1007_s12274_020_2797_6 crossref_primary_10_1021_jacs_8b06028 crossref_primary_10_1002_anie_202310880 crossref_primary_10_1016_j_carbon_2018_03_054 crossref_primary_10_1002_anie_202008925 crossref_primary_10_1021_jacs_0c05235 crossref_primary_10_1016_j_chaos_2025_116176 crossref_primary_10_3390_nano12030488 crossref_primary_10_1038_s41467_024_50086_6 crossref_primary_10_1063_1_5025101 crossref_primary_10_1002_ange_201913783 crossref_primary_10_1002_ange_202500490 crossref_primary_10_1002_adfm_202005957 crossref_primary_10_1002_adma_202001893 crossref_primary_10_1088_2053_1583_ab31bd crossref_primary_10_35848_1347_4065_adda53 crossref_primary_10_1016_j_susc_2024_122625 crossref_primary_10_1002_admi_202001464 crossref_primary_10_1039_D3MH00574G crossref_primary_10_1109_TED_2019_2896315 crossref_primary_10_1088_1367_2630_ab8cac crossref_primary_10_1016_j_susmat_2022_e00393 crossref_primary_10_1039_D5CC03666F crossref_primary_10_1002_marc_202200950 crossref_primary_10_1021_jacs_4c00270 crossref_primary_10_1002_aelm_202200252 crossref_primary_10_1070_RCR4923 crossref_primary_10_1002_cnma_201900706 crossref_primary_10_1016_j_carbon_2020_04_070 crossref_primary_10_1038_s41557_020_0540_2 crossref_primary_10_1002_anie_202204736 crossref_primary_10_1002_smll_202202368 crossref_primary_10_1088_1361_648X_adc52c crossref_primary_10_1002_cphc_201900445 crossref_primary_10_1002_smll_202100655 crossref_primary_10_1002_smll_202308430 crossref_primary_10_1002_adfm_202109543 crossref_primary_10_1021_jacs_8b10329 crossref_primary_10_1007_s12274_021_3539_0 crossref_primary_10_1002_smsc_202400161 crossref_primary_10_1039_D5MA00239G crossref_primary_10_1002_bio_4334 crossref_primary_10_1002_ange_202008925 crossref_primary_10_1039_D5CC02473K crossref_primary_10_1073_pnas_2303262120 crossref_primary_10_1007_s12274_022_4593_y crossref_primary_10_1039_D5NR01919B crossref_primary_10_1177_0003702820932229 crossref_primary_10_1016_j_matt_2021_01_013 crossref_primary_10_1016_j_carbon_2018_10_015 crossref_primary_10_1002_adfm_201903770 crossref_primary_10_1088_2053_1583_abf716 crossref_primary_10_1002_smtd_202500193 crossref_primary_10_1002_ange_201808640 crossref_primary_10_1002_pssb_201800498 crossref_primary_10_1021_jacs_0c01856 crossref_primary_10_1021_jacs_3c11652 crossref_primary_10_1002_ange_202204736 crossref_primary_10_1038_s41467_021_26198_8 crossref_primary_10_1039_C8SC03780A crossref_primary_10_1002_anie_201913783 crossref_primary_10_1002_adma_202411182 crossref_primary_10_1002_anie_202500490 crossref_primary_10_1021_acsanm_5c02753 crossref_primary_10_1002_smtd_202401168 crossref_primary_10_1038_s41586_018_0376_8 crossref_primary_10_1080_23746149_2019_1651672 crossref_primary_10_1002_adma_201905957 crossref_primary_10_1016_j_carbon_2018_02_058 crossref_primary_10_1038_s41467_024_45138_w crossref_primary_10_1088_2053_1583_ab1e0a crossref_primary_10_1016_j_physe_2019_113648 crossref_primary_10_1038_s41563_022_01460_6 crossref_primary_10_1088_2053_1583_aabb70 crossref_primary_10_1002_andp_202500099 crossref_primary_10_1016_j_mtquan_2025_100041 crossref_primary_10_1002_adma_202306311 crossref_primary_10_1002_adma_201801586 crossref_primary_10_1016_j_carbon_2023_01_054 crossref_primary_10_1002_smtd_201900683 crossref_primary_10_1088_1674_1056_abfbd0 crossref_primary_10_1038_s42004_024_01344_7 crossref_primary_10_1002_adma_202110099 crossref_primary_10_1039_D2RA01008A crossref_primary_10_1002_smll_202102246 crossref_primary_10_1002_ange_202310880 crossref_primary_10_1002_adma_201802065 crossref_primary_10_1002_anie_201808640 crossref_primary_10_1038_s41467_021_22774_0 crossref_primary_10_1038_s41524_019_0165_4 crossref_primary_10_1002_ange_201712637 crossref_primary_10_1021_jacs_7b11886 crossref_primary_10_1002_smtd_202100771 crossref_primary_10_1038_s41586_018_0375_9 crossref_primary_10_1016_j_surfrep_2019_05_001 crossref_primary_10_1016_j_rser_2025_115527 crossref_primary_10_1021_jacs_9b01805 crossref_primary_10_1002_nadc_20184072148 crossref_primary_10_1021_jacs_2c05670 crossref_primary_10_1016_j_cclet_2021_10_013 crossref_primary_10_1021_acsnano_5c08991 crossref_primary_10_1039_C7CC08353J crossref_primary_10_1021_jacs_0c05337 crossref_primary_10_1038_s41467_020_15898_2 crossref_primary_10_1007_s12274_023_5605_2 crossref_primary_10_1002_chem_202203622 crossref_primary_10_1016_j_cclet_2024_110100 crossref_primary_10_1038_natrevmats_2017_62 crossref_primary_10_1039_D0NR01270J crossref_primary_10_1038_s41467_023_37023_9 crossref_primary_10_1002_anie_201712637 |
| Cites_doi | 10.1016/j.spmi.2014.07.042 10.1088/0953-8984/21/39/395502 10.1038/nmat4061 10.1021/acs.nanolett.6b00171 10.1126/science.1176210 10.1103/PhysRevB.90.085421 10.1038/nature09211 10.1021/jacs.5b02523 10.1002/chem.201603497 10.1021/nn401948e 10.1038/ncomms9098 10.1038/nature19765 10.1038/35046000 10.1126/science.1238187 10.1109/PROC.1982.12226 10.1038/nnano.2014.184 10.1038/nature05180 10.1021/nl201504x 10.1063/1.3431661 10.1063/1.4855116 10.1002/anie.201209735 10.1038/nnano.2014.307 10.1021/acs.jpcc.5b09986 10.1126/science.1253405 10.1021/nl901860n 10.1021/acs.nanolett.5b01723 10.1103/PhysRevB.43.1993 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2017 Copyright Nature Publishing Group Nov 2017 |
| Copyright_xml | – notice: Springer Nature Limited 2017 – notice: Copyright Nature Publishing Group Nov 2017 |
| CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) |
| CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) |
| DBID | AAYXX CITATION NPM 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 OIOZB OTOTI |
| DOI | 10.1038/nnano.2017.155 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1748-3395 |
| EndPage | 1082 |
| ExternalDocumentID | 1461121 28945240 10_1038_nnano_2017_155 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ADBBV AENEX AEUYN AFANA AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DU5 EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ KB. L6V LK8 M1P M7P M7S NNMJJ O9- P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG UKHRP AAYXX ACSTC AFFHD AGSTI ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB 5M7 5S5 ABAWZ ABDBF ABFSG ACUHS AEZWR AFBBN AFHIU AHWEU AIXLP DB5 EMOBN I-F MM. NFIDA NPM ODYON SV3 TUS ~8M 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PKEHL PQEST PQUKI PRINS 7X8 PUEGO AADEA AADWK AAEXX AAJMP AAPBV AAYJO ABEEJ ABGIJ ABPTK ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADQMX ADZGE AEDAW AEFTE AGEZK AGGBP AHGBK AJDOV NYICJ OIOZB OTOTI |
| ID | FETCH-LOGICAL-c496t-a8b1679debb4b45ca6bcafd3cb0f7d74dbb29eb8fed9d9489a30b52ec5a2917e3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 185 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414531800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1748-3387 1748-3395 |
| IngestDate | Mon Jul 03 03:59:19 EDT 2023 Thu Sep 04 17:26:42 EDT 2025 Sat Nov 29 14:40:34 EST 2025 Mon Jul 21 06:07:22 EDT 2025 Sat Nov 29 03:11:28 EST 2025 Tue Nov 18 22:35:14 EST 2025 Fri Feb 21 02:40:36 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c496t-a8b1679debb4b45ca6bcafd3cb0f7d74dbb29eb8fed9d9489a30b52ec5a2917e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) US Department of the Navy, Office of Naval Research (ONR) US Army Research Laboratory (USARL) Army Research Office (ARO) Swiss National Science Foundation (SNSF) National Science Foundation (NSF) Defense Advanced Research Projects Agency (DARPA) Welch Foundation AC02-05CH11231; SC0010409; FG02-06ER46286; W911NF-15-1-0237; DMR-1508412; F-1837; P2ELP2-151852 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1461121 |
| PMID | 28945240 |
| PQID | 1960997465 |
| PQPubID | 546299 |
| PageCount | 6 |
| ParticipantIDs | osti_scitechconnect_1461121 proquest_miscellaneous_1942700915 proquest_journals_1960997465 pubmed_primary_28945240 crossref_primary_10_1038_nnano_2017_155 crossref_citationtrail_10_1038_nnano_2017_155 springer_journals_10_1038_nnano_2017_155 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-11-01 |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England – name: United States |
| PublicationTitle | Nature nanotechnology |
| PublicationTitleAbbrev | Nature Nanotech |
| PublicationTitleAlternate | Nat Nanotechnol |
| PublicationYear | 2017 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Kawai (CR9) 2015; 6 Kroemer (CR25) 1982; 70 Chen (CR19) 2015; 10 de Oteyza (CR24) 2013; 340 Ghoreishi, Saghafi, Yousefi, Moravvej-Farshi (CR12) 2014; 75 Imada (CR15) 2016; 538 Cai (CR3) 2010; 466 Neamen (CR13) 2003 Son, Cohen, Louie (CR1) 2006; 444 Gross, Mohn, Moll, Liljeroth, Meyer (CR22) 2009; 325 Shen (CR2) 2011; 11 Marangoni, Haberer, Rizzo, Cloke, Fischer (CR10) 2016; 22 Bennett (CR4) 2013; 103 Yang, Park, Son, Cohen, Louie (CR26) 2007; 99 Nguyen (CR7) 2016; 120 Tao (CR16) 2009; 9 Bronner (CR6) 2013; 52 Yoon, Salahuddin (CR11) 2010; 97 Joachim, Gimzewski, Aviram (CR14) 2000; 408 Ugeda (CR27) 2014; 13 Hapala (CR21) 2014; 90 Giannozzi (CR28) 2009; 21 Troullier, Martins (CR29) 1991; 43 Vo (CR20) 2015; 15 Cai (CR18) 2014; 9 Cloke (CR8) 2015; 137 Chen (CR5) 2013; 7 Chiang, Xu, Han, Ho (CR23) 2014; 344 Smerdon, Giebink, Guisinger, Darancet, Guest (CR17) 2016; 16 J Cai (BFnnano2017155_CR3) 2010; 466 H Kroemer (BFnnano2017155_CR25) 1982; 70 C Chiang (BFnnano2017155_CR23) 2014; 344 Y-W Son (BFnnano2017155_CR1) 2006; 444 DA Neamen (BFnnano2017155_CR13) 2003 DG de Oteyza (BFnnano2017155_CR24) 2013; 340 L Yang (BFnnano2017155_CR26) 2007; 99 Y-C Chen (BFnnano2017155_CR19) 2015; 10 C Bronner (BFnnano2017155_CR6) 2013; 52 SS Ghoreishi (BFnnano2017155_CR12) 2014; 75 S Kawai (BFnnano2017155_CR9) 2015; 6 J Cai (BFnnano2017155_CR18) 2014; 9 RR Cloke (BFnnano2017155_CR8) 2015; 137 MM Ugeda (BFnnano2017155_CR27) 2014; 13 H Imada (BFnnano2017155_CR15) 2016; 538 P Hapala (BFnnano2017155_CR21) 2014; 90 N Troullier (BFnnano2017155_CR29) 1991; 43 YT Shen (BFnnano2017155_CR2) 2011; 11 P Giannozzi (BFnnano2017155_CR28) 2009; 21 YC Chen (BFnnano2017155_CR5) 2013; 7 GD Nguyen (BFnnano2017155_CR7) 2016; 120 Y Yoon (BFnnano2017155_CR11) 2010; 97 C Joachim (BFnnano2017155_CR14) 2000; 408 TH Vo (BFnnano2017155_CR20) 2015; 15 L Gross (BFnnano2017155_CR22) 2009; 325 C Tao (BFnnano2017155_CR16) 2009; 9 PB Bennett (BFnnano2017155_CR4) 2013; 103 T Marangoni (BFnnano2017155_CR10) 2016; 22 JA Smerdon (BFnnano2017155_CR17) 2016; 16 |
| References_xml | – volume: 75 start-page: 245 year: 2014 end-page: 256 ident: CR12 article-title: Graphene nanoribbon tunnel field effect transistor with lightly doped drain: numerical simulations publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2014.07.042 – volume: 99 start-page: 6 year: 2007 end-page: 9 ident: CR26 article-title: Quasiparticle energies and band gaps in graphene nanoribbons publication-title: Phys. Rev. Lett. – volume: 21 start-page: 395502 year: 2009 ident: CR28 article-title: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/39/395502 – volume: 13 start-page: 1091 year: 2014 end-page: 1095 ident: CR27 article-title: Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor publication-title: Nature Mater. doi: 10.1038/nmat4061 – volume: 16 start-page: 2603 year: 2016 end-page: 2607 ident: CR17 article-title: Large spatially resolved rectification in a donor–acceptor molecular heterojunction publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00171 – volume: 325 start-page: 1110 year: 2009 end-page: 1114 ident: CR22 article-title: The chemical structure of a molecule resolved by atomic force microscopy publication-title: Science doi: 10.1126/science.1176210 – volume: 90 start-page: 85421 year: 2014 ident: CR21 article-title: Mechanism of high-resolution STM/AFM imaging with functionalized tips publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.085421 – volume: 466 start-page: 470 year: 2010 end-page: 473 ident: CR3 article-title: Atomically precise bottom-up fabrication of graphene nanoribbons publication-title: Nature doi: 10.1038/nature09211 – volume: 137 start-page: 8872 year: 2015 end-page: 8875 ident: CR8 article-title: Site-specific substitutional boron doping of semiconducting armchair graphene nanoribbons publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b02523 – volume: 22 start-page: 13037 year: 2016 end-page: 13040 ident: CR10 article-title: Heterostructures through divergent edge reconstruction in nitrogen-doped segmented graphene nanoribbons publication-title: Eur. J. Chem. A doi: 10.1002/chem.201603497 – volume: 7 start-page: 6123 year: 2013 end-page: 6128 ident: CR5 article-title: Tuning the band gap of graphene nanoribbons synthesized from molecular precursors publication-title: ACS Nano doi: 10.1021/nn401948e – volume: 6 start-page: 8098 year: 2015 ident: CR9 article-title: Atomically controlled substitutional boron-doping of graphene nanoribbons publication-title: Nature Commun. doi: 10.1038/ncomms9098 – volume: 538 start-page: 364 year: 2016 end-page: 367 ident: CR15 article-title: Real-space investigation of energy transfer in heterogeneous molecular dimers publication-title: Nature doi: 10.1038/nature19765 – volume: 408 start-page: 541 year: 2000 end-page: 548 ident: CR14 article-title: Electronics using hybrid-molecular and mono-molecular devices publication-title: Nature doi: 10.1038/35046000 – volume: 340 start-page: 1434 year: 2013 end-page: 1437 ident: CR24 article-title: Direct imaging of covalent bond structure in single-molecule chemical reactions publication-title: Science doi: 10.1126/science.1238187 – volume: 70 start-page: 13 year: 1982 end-page: 25 ident: CR25 article-title: Heterostructure bipolar transistors and integrated circuits publication-title: Proc. IEEE doi: 10.1109/PROC.1982.12226 – volume: 9 start-page: 896 year: 2014 end-page: 900 ident: CR18 article-title: Graphene nanoribbon heterojunctions publication-title: Nature Nanotech. doi: 10.1038/nnano.2014.184 – volume: 444 start-page: 347 year: 2006 end-page: 349 ident: CR1 article-title: Half-metallic graphene nanoribbons publication-title: Nature doi: 10.1038/nature05180 – year: 2003 ident: CR13 publication-title: Semiconductor Physics and Devices: Basic Principles – volume: 11 start-page: 3245 year: 2011 end-page: 3250 ident: CR2 article-title: Switchable ternary nanoporous supramolecular network on photo-regulation publication-title: Nano Lett. doi: 10.1021/nl201504x – volume: 97 start-page: 33102 year: 2010 ident: CR11 article-title: Barrier-free tunneling in a carbon heterojunction transistor publication-title: Appl. Phys. Lett. doi: 10.1063/1.3431661 – volume: 103 start-page: 253114 year: 2013 ident: CR4 article-title: Bottom-up graphene nanoribbon field-effect transistors publication-title: Appl. Phys. Lett. doi: 10.1063/1.4855116 – volume: 52 start-page: 4422 year: 2013 end-page: 4425 ident: CR6 article-title: Aligning the band gap of graphene nanoribbons by monomer doping publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201209735 – volume: 10 start-page: 156 year: 2015 end-page: 160 ident: CR19 article-title: Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions publication-title: Nature Nanotech. doi: 10.1038/nnano.2014.307 – volume: 120 start-page: 2684 year: 2016 end-page: 2687 ident: CR7 article-title: Bottom-up synthesis of = 13 sulfur-doped graphene nanoribbons publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b09986 – volume: 344 start-page: 885 year: 2014 end-page: 888 ident: CR23 article-title: Real-space imaging of molecular structure and chemical bonding by single-molecule inelastic tunneling probe publication-title: Science doi: 10.1126/science.1253405 – volume: 9 start-page: 3963 year: 2009 end-page: 3967 ident: CR16 article-title: Spatial resolution of a type II heterojunction in a single bipolar molecule publication-title: Nano Lett. doi: 10.1021/nl901860n – volume: 15 start-page: 5770 year: 2015 end-page: 5777 ident: CR20 article-title: Nitrogen-doping induced self-assembly of graphene nanoribbon-based two-dimensional and three-dimensional metamaterials publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01723 – volume: 43 start-page: 1993 year: 1991 end-page: 2006 ident: CR29 article-title: Efficient pseudopotentials for plane-wave calculations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.43.1993 – volume: 13 start-page: 1091 year: 2014 ident: BFnnano2017155_CR27 publication-title: Nature Mater. doi: 10.1038/nmat4061 – volume: 11 start-page: 3245 year: 2011 ident: BFnnano2017155_CR2 publication-title: Nano Lett. doi: 10.1021/nl201504x – volume: 466 start-page: 470 year: 2010 ident: BFnnano2017155_CR3 publication-title: Nature doi: 10.1038/nature09211 – volume: 15 start-page: 5770 year: 2015 ident: BFnnano2017155_CR20 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01723 – volume: 344 start-page: 885 year: 2014 ident: BFnnano2017155_CR23 publication-title: Science doi: 10.1126/science.1253405 – volume: 9 start-page: 3963 year: 2009 ident: BFnnano2017155_CR16 publication-title: Nano Lett. doi: 10.1021/nl901860n – volume: 70 start-page: 13 year: 1982 ident: BFnnano2017155_CR25 publication-title: Proc. IEEE doi: 10.1109/PROC.1982.12226 – volume: 52 start-page: 4422 year: 2013 ident: BFnnano2017155_CR6 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201209735 – volume: 9 start-page: 896 year: 2014 ident: BFnnano2017155_CR18 publication-title: Nature Nanotech. doi: 10.1038/nnano.2014.184 – volume: 325 start-page: 1110 year: 2009 ident: BFnnano2017155_CR22 publication-title: Science doi: 10.1126/science.1176210 – volume: 538 start-page: 364 year: 2016 ident: BFnnano2017155_CR15 publication-title: Nature doi: 10.1038/nature19765 – volume: 340 start-page: 1434 year: 2013 ident: BFnnano2017155_CR24 publication-title: Science doi: 10.1126/science.1238187 – volume: 99 start-page: 6 year: 2007 ident: BFnnano2017155_CR26 publication-title: Phys. Rev. Lett. – volume: 103 start-page: 253114 year: 2013 ident: BFnnano2017155_CR4 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4855116 – volume: 16 start-page: 2603 year: 2016 ident: BFnnano2017155_CR17 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00171 – volume: 6 start-page: 8098 year: 2015 ident: BFnnano2017155_CR9 publication-title: Nature Commun. doi: 10.1038/ncomms9098 – volume: 97 start-page: 33102 year: 2010 ident: BFnnano2017155_CR11 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3431661 – volume: 43 start-page: 1993 year: 1991 ident: BFnnano2017155_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.43.1993 – volume: 408 start-page: 541 year: 2000 ident: BFnnano2017155_CR14 publication-title: Nature doi: 10.1038/35046000 – volume: 75 start-page: 245 year: 2014 ident: BFnnano2017155_CR12 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2014.07.042 – volume: 10 start-page: 156 year: 2015 ident: BFnnano2017155_CR19 publication-title: Nature Nanotech. doi: 10.1038/nnano.2014.307 – volume: 90 start-page: 85421 year: 2014 ident: BFnnano2017155_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.085421 – volume: 137 start-page: 8872 year: 2015 ident: BFnnano2017155_CR8 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b02523 – volume: 22 start-page: 13037 year: 2016 ident: BFnnano2017155_CR10 publication-title: Eur. J. Chem. A doi: 10.1002/chem.201603497 – volume: 120 start-page: 2684 year: 2016 ident: BFnnano2017155_CR7 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b09986 – volume-title: Semiconductor Physics and Devices: Basic Principles year: 2003 ident: BFnnano2017155_CR13 – volume: 21 start-page: 395502 year: 2009 ident: BFnnano2017155_CR28 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/39/395502 – volume: 7 start-page: 6123 year: 2013 ident: BFnnano2017155_CR5 publication-title: ACS Nano doi: 10.1021/nn401948e – volume: 444 start-page: 347 year: 2006 ident: BFnnano2017155_CR1 publication-title: Nature doi: 10.1038/nature05180 |
| SSID | ssj0052924 |
| Score | 2.6242023 |
| Snippet | The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale... |
| SourceID | osti proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1077 |
| SubjectTerms | 147/138 147/3 639/301/357/995 639/925/357/918/1052 Carbonyl compounds Carbonyl groups Carbonyls Chemical synthesis Copolymerization Electronic devices Electronic equipment electronic properties and devices electronic properties and materials Fabrication Graphene Heterojunctions Materials Science Nanoribbons NANOSCIENCE AND NANOTECHNOLOGY Nanotechnology Nanotechnology and Microengineering Precursors Realignment Scanning tunneling microscopy Spectroscopy |
| Title | Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor |
| URI | https://link.springer.com/article/10.1038/nnano.2017.155 https://www.ncbi.nlm.nih.gov/pubmed/28945240 https://www.proquest.com/docview/1960997465 https://www.proquest.com/docview/1942700915 https://www.osti.gov/servlets/purl/1461121 |
| Volume | 12 |
| WOSCitedRecordID | wos000414531800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1748-3395 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0052924 issn: 1748-3387 databaseCode: P5Z dateStart: 20061001 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1748-3395 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0052924 issn: 1748-3387 databaseCode: M7P dateStart: 20061001 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1748-3395 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0052924 issn: 1748-3387 databaseCode: M7S dateStart: 20061001 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1748-3395 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0052924 issn: 1748-3387 databaseCode: 7X7 dateStart: 20061001 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1748-3395 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0052924 issn: 1748-3387 databaseCode: KB. dateStart: 20061001 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1748-3395 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0052924 issn: 1748-3387 databaseCode: BENPR dateStart: 20061001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEC7cWQ968P2Iuw4tCHrJbh7dk-6T7MougjIMrsrgJfQruDIm40xG8N9b1UnGAVcvXhpCKqGSquqq7ur6CuA591WiKpRA6pIq5pyKlX06iQtRcVEJb9OwdfHpXTGdyvlczfoNt3V_rHKYE8NE7RpLe-THKUGjYfA7Ea-W32PqGkXZ1b6Fxh7sE0pCFo7uXQwzschU19S24DLGpVgxgDbm8riudU21f2lxlFKZ345TGjVoXFcFnH8kS4MPOr_9v9zfgVt99MlOOnW5C9d8fQ9u7mAS3of5SdsECIHFT7Yk6Iu1ZwHVGidFRp-zujSmqdkXOkfTfEW3GDSXUZ0K04y2HhaefRu67oZ3bDCqXz2Aj-dnH16_ifv2C7HlatLGWhrK0ThvDDdcWD0xVlcutyapCldwZ0ymvJGVd8opLpXOEyMyb4XOcBHo84cwqpvaPwYmcmeE1pVNpef4sE6cS3Jn0TMqkQseQTz8_9L22OTUImNRhhx5Lssgr5LkVaK8InixpV92qBx_pTwgcZYYTxAorqXTQ7alBQ8GmmkEh4O4yt521-VvWUXwbHsbrY5SKbr2zYZoOGXsVYo0jzrt2DKCS1guMFCK4OWgLjsvv5LLJ__m4wBuEGVXAnkIo3a18U_huv3RXq5XY9gr5kUY5Rj2T8-ms_d49fb0aEzWMAvjBY4z8fkX-kMSzQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VBYly4P0ILWAkEFxC87A38QGhCqhadVlxKGhvqV9Ri5Zk2c226p_qb-yMs1lWonDrgXNsy7E_j2c8M98AvOKujGSJOxDbqAw5p2RlF_fDTJRclMKZ2D9dfB9kw2E-Gsmva3De5cJQWGUnE72gtrWhN_KtmKjRUPntiw-TXyFVjSLvaldCo4XFvjs7RZNt9n7vE-7v6yTZ-XzwcTdcVBUIDZf9JlS5JteDdVpzzYVRfW1UaVOjozKzGbdaJ9LpvHRWWslzqdJIi8QZoRK0bVyK416D6yjHMwohy0ZLA08ksi2im_E8RNMv60gi03yrqlRFuYZx9i6mtMKVS7BX42G-TMH9wznr77ydO__bat2F2wvtmm23x-EerLnqPtxa4Vx8AKPtpvYUCeMzNiFqj5ljnrUbhT6j5Zsea11X7IjihOofeO37k8koD4cpRk8rY8d-dlWF_RhztFqmD-HblfzaI-hVdeWeABOp1UKp0sS549hZRdZGqTV480uRCh5A2O13YRbc61QCZFz4GIA0Lzw-CsJHgfgI4M2y_aRlHflryw2CT4H6EpH-GoqOMg0ZdKhIxwFsdvAoFrJpVvzGRgAvl59RqpCrSFWunlMbThEJMsY2j1s0LieCJjoXqAgG8LaD58rgl87y6b_n8QJu7h58GRSDveH-BqxTrzbdcxN6zXTunsENc9Icz6bP_XljcHjVkL0AdxVuVA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VgFA58H4sLWAkEFyW7MPOrg8IVZSIqlWUA6CIy9avVYvCbkg2oP41fh0z3myIROHWA-e1La_9zXjGnvkG4Bl3ZSRL3IHYRmXIOSUru3gQZqLkohTOxP7q4tNRNhrlk4kcb8HPLheGwio7negVta0N3ZH3Y6JGQ-N3IPrlKixivD98M_sWUgUpemntymm0EDl0Zz_QfVu8PtjHvX6eJMN3H96-D1cVBkLD5aAJVa7pGcI6rbnmwqiBNqq0qdFRmdmMW60T6XReOiut5LlUaaRF4oxQCfo5LsVxL8FlnJUkx28sPnengEhkW1A343mIbmDWEUameb-qVEV5h3H2KqYUw40DsVejYJ9n7P7xUOvPv-GN_3nlbsL1ldXN9loxuQVbrroN1za4GO_AZK-pPXXC9IzNiPJj4Zhn88bDgNFSzk-1rit2QvFD9Rc0B7zEMsrPYYrRlcvUsa9dtWE_xhK9mfld-Hghv3YPelVduQfARGq1UKo0ce44dlaRtVFqDVoEUqSCBxB2e1-YFSc7lQaZFj42IM0Lj5WCsFIgVgJ4sW4_a9lI_tpyh6BUoB1FZMCGoqZMQ44eGthxALsdVIqVzloUv3ESwNP1Z9Q29ISkKlcvqQ2nSAUZY5v7LTLXE0HXnQs0EAN42UF1Y_BzZ_nw3_N4AlcRqcXRwehwB7apU5sFugu9Zr50j-CK-d6cLuaPvegxOL5oxP4CAuh3Rw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomically+precise+graphene+nanoribbon+heterojunctions+from+a+single+molecular+precursor&rft.jtitle=Nature+nanotechnology&rft.au=Nguyen%2C+Giang+D&rft.au=Tsai%2C+Hsin-zon&rft.au=Omrani%2C+Arash+A&rft.au=Marangoni%2C+Tomas&rft.date=2017-11-01&rft.pub=Nature+Publishing+Group&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=12&rft.issue=11&rft.spage=1077&rft_id=info:doi/10.1038%2Fnnano.2017.155&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |