Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor

The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology Jg. 12; H. 11; S. 1077 - 1082
Hauptverfasser: Nguyen, Giang D., Tsai, Hsin-Zon, Omrani, Arash A., Marangoni, Tomas, Wu, Meng, Rizzo, Daniel J., Rodgers, Griffin F., Cloke, Ryan R., Durr, Rebecca A., Sakai, Yuki, Liou, Franklin, Aikawa, Andrew S., Chelikowsky, James R., Louie, Steven G., Fischer, Felix R., Crommie, Michael F.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 01.11.2017
Nature Publishing Group
Schlagworte:
ISSN:1748-3387, 1748-3395, 1748-3395
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular precursors to yield GNR heterojunctions. Here we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through late-stage functionalization of chevron GNRs obtained from a single precursor. Post-growth excitation of fully cyclized GNRs induces cleavage of sacrificial carbonyl groups, resulting in atomically well-defined heterojunctions within a single GNR. The GNR heterojunction structure was characterized using bond-resolved scanning tunnelling microscopy, which enables chemical bond imaging at T  = 4.5 K. Scanning tunnelling spectroscopy reveals that band alignment across the heterojunction interface yields a type II heterojunction, in agreement with first-principles calculations. GNR heterojunction band realignment proceeds over a distance less than 1 nm, leading to extremely large effective fields. Bottom-up fabrication of GNR heterojunctions exhibiting atomically perfect heterojunction interfaces can be obtained from a single molecular precursor via post-growth modification
AbstractList The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular precursors to yield GNR heterojunctions. Here we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through late-stage functionalization of chevron GNRs obtained from a single precursor. Post-growth excitation of fully cyclized GNRs induces cleavage of sacrificial carbonyl groups, resulting in atomically well-defined heterojunctions within a single GNR. The GNR heterojunction structure was characterized using bond-resolved scanning tunnelling microscopy, which enables chemical bond imaging at T = 4.5 K. Scanning tunnelling spectroscopy reveals that band alignment across the heterojunction interface yields a type II heterojunction, in agreement with first-principles calculations. GNR heterojunction band realignment proceeds over a distance less than 1 nm, leading to extremely large effective fields.
The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular precursors to yield GNR heterojunctions. In this paper we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through late-stage functionalization of chevron GNRs obtained from a single precursor. Post-growth excitation of fully cyclized GNRs induces cleavage of sacrificial carbonyl groups, resulting in atomically well-defined heterojunctions within a single GNR. The GNR heterojunction structure was characterized using bond-resolved scanning tunnelling microscopy, which enables chemical bond imaging at T = 4.5 K. Scanning tunnelling spectroscopy reveals that band alignment across the heterojunction interface yields a type II heterojunction, in agreement with first-principles calculations. Finally, GNR heterojunction band realignment proceeds over a distance less than 1 nm, leading to extremely large effective fields.
The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular precursors to yield GNR heterojunctions. Here we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through late-stage functionalization of chevron GNRs obtained from a single precursor. Post-growth excitation of fully cyclized GNRs induces cleavage of sacrificial carbonyl groups, resulting in atomically well-defined heterojunctions within a single GNR. The GNR heterojunction structure was characterized using bond-resolved scanning tunnelling microscopy, which enables chemical bond imaging at T = 4.5 K. Scanning tunnelling spectroscopy reveals that band alignment across the heterojunction interface yields a type II heterojunction, in agreement with first-principles calculations. GNR heterojunction band realignment proceeds over a distance less than 1 nm, leading to extremely large effective fields.The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular precursors to yield GNR heterojunctions. Here we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through late-stage functionalization of chevron GNRs obtained from a single precursor. Post-growth excitation of fully cyclized GNRs induces cleavage of sacrificial carbonyl groups, resulting in atomically well-defined heterojunctions within a single GNR. The GNR heterojunction structure was characterized using bond-resolved scanning tunnelling microscopy, which enables chemical bond imaging at T = 4.5 K. Scanning tunnelling spectroscopy reveals that band alignment across the heterojunction interface yields a type II heterojunction, in agreement with first-principles calculations. GNR heterojunction band realignment proceeds over a distance less than 1 nm, leading to extremely large effective fields.
The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular precursors to yield GNR heterojunctions. Here we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through late-stage functionalization of chevron GNRs obtained from a single precursor. Post-growth excitation of fully cyclized GNRs induces cleavage of sacrificial carbonyl groups, resulting in atomically well-defined heterojunctions within a single GNR. The GNR heterojunction structure was characterized using bond-resolved scanning tunnelling microscopy, which enables chemical bond imaging at T  = 4.5 K. Scanning tunnelling spectroscopy reveals that band alignment across the heterojunction interface yields a type II heterojunction, in agreement with first-principles calculations. GNR heterojunction band realignment proceeds over a distance less than 1 nm, leading to extremely large effective fields. Bottom-up fabrication of GNR heterojunctions exhibiting atomically perfect heterojunction interfaces can be obtained from a single molecular precursor via post-growth modification
Author Rizzo, Daniel J.
Louie, Steven G.
Crommie, Michael F.
Omrani, Arash A.
Cloke, Ryan R.
Marangoni, Tomas
Sakai, Yuki
Tsai, Hsin-Zon
Chelikowsky, James R.
Aikawa, Andrew S.
Fischer, Felix R.
Durr, Rebecca A.
Liou, Franklin
Rodgers, Griffin F.
Nguyen, Giang D.
Wu, Meng
Author_xml – sequence: 1
  givenname: Giang D.
  surname: Nguyen
  fullname: Nguyen, Giang D.
  organization: Department of Physics, University of California at Berkeley, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory
– sequence: 2
  givenname: Hsin-Zon
  surname: Tsai
  fullname: Tsai, Hsin-Zon
  organization: Department of Physics, University of California at Berkeley
– sequence: 3
  givenname: Arash A.
  surname: Omrani
  fullname: Omrani, Arash A.
  organization: Department of Physics, University of California at Berkeley
– sequence: 4
  givenname: Tomas
  surname: Marangoni
  fullname: Marangoni, Tomas
  organization: Department of Chemistry, University of California at Berkeley
– sequence: 5
  givenname: Meng
  surname: Wu
  fullname: Wu, Meng
  organization: Department of Physics, University of California at Berkeley, Materials Sciences Division, Lawrence Berkeley National Laboratory
– sequence: 6
  givenname: Daniel J.
  surname: Rizzo
  fullname: Rizzo, Daniel J.
  organization: Department of Physics, University of California at Berkeley
– sequence: 7
  givenname: Griffin F.
  surname: Rodgers
  fullname: Rodgers, Griffin F.
  organization: Department of Physics, University of California at Berkeley
– sequence: 8
  givenname: Ryan R.
  surname: Cloke
  fullname: Cloke, Ryan R.
  organization: Department of Chemistry, University of California at Berkeley
– sequence: 9
  givenname: Rebecca A.
  surname: Durr
  fullname: Durr, Rebecca A.
  organization: Department of Chemistry, University of California at Berkeley
– sequence: 10
  givenname: Yuki
  surname: Sakai
  fullname: Sakai, Yuki
  organization: Departments of Physics and Chemical Engineering, Center for Computational Materials, Institute for Computational Engineering and Sciences, The University of Texas at Austin
– sequence: 11
  givenname: Franklin
  surname: Liou
  fullname: Liou, Franklin
  organization: Department of Physics, University of California at Berkeley
– sequence: 12
  givenname: Andrew S.
  surname: Aikawa
  fullname: Aikawa, Andrew S.
  organization: Department of Physics, University of California at Berkeley
– sequence: 13
  givenname: James R.
  surname: Chelikowsky
  fullname: Chelikowsky, James R.
  organization: Departments of Physics and Chemical Engineering, Center for Computational Materials, Institute for Computational Engineering and Sciences, The University of Texas at Austin
– sequence: 14
  givenname: Steven G.
  surname: Louie
  fullname: Louie, Steven G.
  email: sglouie@berkeley.edu
  organization: Department of Physics, University of California at Berkeley, Materials Sciences Division, Lawrence Berkeley National Laboratory
– sequence: 15
  givenname: Felix R.
  surname: Fischer
  fullname: Fischer, Felix R.
  email: ffischer@berkeley.edu
  organization: Department of Chemistry, University of California at Berkeley, Materials Sciences Division, Lawrence Berkeley National Laboratory, Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory
– sequence: 16
  givenname: Michael F.
  surname: Crommie
  fullname: Crommie, Michael F.
  email: crommie@berkeley.edu
  organization: Department of Physics, University of California at Berkeley, Materials Sciences Division, Lawrence Berkeley National Laboratory, Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28945240$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1461121$$D View this record in Osti.gov
BookMark eNp1kT1vHCEURZHlyF9JmzIaJY2bXQMDw1BaVmJHspQmkdIhYN7ssmJgA0zhf2_G61iR5VS84pwr3rvn6DjEAAh9JHhNcNtfhaBDXFNMxJpwfoTOiGD9qm0lP36Ze3GKznPeYcyppOwEndJeMk4ZPkO_r0ucnNXePzT7BNZlaDZJ77cQoFmykzMmhmYLBVLczcEWF0NuxhSnRjfZhY2HZooe7Ox1esqYU47pPXo3ap_hw_N7gX59-_rz5m51_-P2-831_coy2ZWV7g3phBzAGGYYt7ozVo9Daw0exSDYYAyVYPoRBjlI1kvdYsMpWK6pJALaC_T5kBtzcSpbV8BubQwBbFGEdYRQUqHLA7RP8c8MuajJZQve6wBxzopIRgXGkvCKfnmF7uKcQl2hUh2WUrBuoT49U7OZYFD75CadHtTfw1ZgfQBsijknGF8QgtXSnHpqTi3NqdpcFdgroa6il2OXpJ3_v3Z10HLNDxtI_3z3beMRIF2vQw
CitedBy_id crossref_primary_10_1021_jacs_2c10711
crossref_primary_10_1002_adma_201801838
crossref_primary_10_1038_s41586_024_08296_x
crossref_primary_10_1021_jacs_5c03736
crossref_primary_10_1002_chem_202501399
crossref_primary_10_1002_adma_201705630
crossref_primary_10_1515_nanoph_2020_0646
crossref_primary_10_1021_jacs_2c13822
crossref_primary_10_1002_adts_201800172
crossref_primary_10_1021_prechem_3c00072
crossref_primary_10_1088_1361_6528_adf562
crossref_primary_10_1021_jacs_4c18051
crossref_primary_10_1007_s12274_020_2797_6
crossref_primary_10_1021_jacs_8b06028
crossref_primary_10_1002_anie_202310880
crossref_primary_10_1016_j_carbon_2018_03_054
crossref_primary_10_1002_anie_202008925
crossref_primary_10_1021_jacs_0c05235
crossref_primary_10_1016_j_chaos_2025_116176
crossref_primary_10_3390_nano12030488
crossref_primary_10_1038_s41467_024_50086_6
crossref_primary_10_1063_1_5025101
crossref_primary_10_1002_ange_201913783
crossref_primary_10_1002_ange_202500490
crossref_primary_10_1002_adfm_202005957
crossref_primary_10_1002_adma_202001893
crossref_primary_10_1088_2053_1583_ab31bd
crossref_primary_10_35848_1347_4065_adda53
crossref_primary_10_1016_j_susc_2024_122625
crossref_primary_10_1002_admi_202001464
crossref_primary_10_1039_D3MH00574G
crossref_primary_10_1109_TED_2019_2896315
crossref_primary_10_1088_1367_2630_ab8cac
crossref_primary_10_1016_j_susmat_2022_e00393
crossref_primary_10_1039_D5CC03666F
crossref_primary_10_1002_marc_202200950
crossref_primary_10_1021_jacs_4c00270
crossref_primary_10_1002_aelm_202200252
crossref_primary_10_1070_RCR4923
crossref_primary_10_1002_cnma_201900706
crossref_primary_10_1016_j_carbon_2020_04_070
crossref_primary_10_1038_s41557_020_0540_2
crossref_primary_10_1002_anie_202204736
crossref_primary_10_1002_smll_202202368
crossref_primary_10_1088_1361_648X_adc52c
crossref_primary_10_1002_cphc_201900445
crossref_primary_10_1002_smll_202100655
crossref_primary_10_1002_smll_202308430
crossref_primary_10_1002_adfm_202109543
crossref_primary_10_1021_jacs_8b10329
crossref_primary_10_1007_s12274_021_3539_0
crossref_primary_10_1002_smsc_202400161
crossref_primary_10_1039_D5MA00239G
crossref_primary_10_1002_bio_4334
crossref_primary_10_1002_ange_202008925
crossref_primary_10_1039_D5CC02473K
crossref_primary_10_1073_pnas_2303262120
crossref_primary_10_1007_s12274_022_4593_y
crossref_primary_10_1039_D5NR01919B
crossref_primary_10_1177_0003702820932229
crossref_primary_10_1016_j_matt_2021_01_013
crossref_primary_10_1016_j_carbon_2018_10_015
crossref_primary_10_1002_adfm_201903770
crossref_primary_10_1088_2053_1583_abf716
crossref_primary_10_1002_smtd_202500193
crossref_primary_10_1002_ange_201808640
crossref_primary_10_1002_pssb_201800498
crossref_primary_10_1021_jacs_0c01856
crossref_primary_10_1021_jacs_3c11652
crossref_primary_10_1002_ange_202204736
crossref_primary_10_1038_s41467_021_26198_8
crossref_primary_10_1039_C8SC03780A
crossref_primary_10_1002_anie_201913783
crossref_primary_10_1002_adma_202411182
crossref_primary_10_1002_anie_202500490
crossref_primary_10_1021_acsanm_5c02753
crossref_primary_10_1002_smtd_202401168
crossref_primary_10_1038_s41586_018_0376_8
crossref_primary_10_1080_23746149_2019_1651672
crossref_primary_10_1002_adma_201905957
crossref_primary_10_1016_j_carbon_2018_02_058
crossref_primary_10_1038_s41467_024_45138_w
crossref_primary_10_1088_2053_1583_ab1e0a
crossref_primary_10_1016_j_physe_2019_113648
crossref_primary_10_1038_s41563_022_01460_6
crossref_primary_10_1088_2053_1583_aabb70
crossref_primary_10_1002_andp_202500099
crossref_primary_10_1016_j_mtquan_2025_100041
crossref_primary_10_1002_adma_202306311
crossref_primary_10_1002_adma_201801586
crossref_primary_10_1016_j_carbon_2023_01_054
crossref_primary_10_1002_smtd_201900683
crossref_primary_10_1088_1674_1056_abfbd0
crossref_primary_10_1038_s42004_024_01344_7
crossref_primary_10_1002_adma_202110099
crossref_primary_10_1039_D2RA01008A
crossref_primary_10_1002_smll_202102246
crossref_primary_10_1002_ange_202310880
crossref_primary_10_1002_adma_201802065
crossref_primary_10_1002_anie_201808640
crossref_primary_10_1038_s41467_021_22774_0
crossref_primary_10_1038_s41524_019_0165_4
crossref_primary_10_1002_ange_201712637
crossref_primary_10_1021_jacs_7b11886
crossref_primary_10_1002_smtd_202100771
crossref_primary_10_1038_s41586_018_0375_9
crossref_primary_10_1016_j_surfrep_2019_05_001
crossref_primary_10_1016_j_rser_2025_115527
crossref_primary_10_1021_jacs_9b01805
crossref_primary_10_1002_nadc_20184072148
crossref_primary_10_1021_jacs_2c05670
crossref_primary_10_1016_j_cclet_2021_10_013
crossref_primary_10_1021_acsnano_5c08991
crossref_primary_10_1039_C7CC08353J
crossref_primary_10_1021_jacs_0c05337
crossref_primary_10_1038_s41467_020_15898_2
crossref_primary_10_1007_s12274_023_5605_2
crossref_primary_10_1002_chem_202203622
crossref_primary_10_1016_j_cclet_2024_110100
crossref_primary_10_1038_natrevmats_2017_62
crossref_primary_10_1039_D0NR01270J
crossref_primary_10_1038_s41467_023_37023_9
crossref_primary_10_1002_anie_201712637
Cites_doi 10.1016/j.spmi.2014.07.042
10.1088/0953-8984/21/39/395502
10.1038/nmat4061
10.1021/acs.nanolett.6b00171
10.1126/science.1176210
10.1103/PhysRevB.90.085421
10.1038/nature09211
10.1021/jacs.5b02523
10.1002/chem.201603497
10.1021/nn401948e
10.1038/ncomms9098
10.1038/nature19765
10.1038/35046000
10.1126/science.1238187
10.1109/PROC.1982.12226
10.1038/nnano.2014.184
10.1038/nature05180
10.1021/nl201504x
10.1063/1.3431661
10.1063/1.4855116
10.1002/anie.201209735
10.1038/nnano.2014.307
10.1021/acs.jpcc.5b09986
10.1126/science.1253405
10.1021/nl901860n
10.1021/acs.nanolett.5b01723
10.1103/PhysRevB.43.1993
ContentType Journal Article
Copyright Springer Nature Limited 2017
Copyright Nature Publishing Group Nov 2017
Copyright_xml – notice: Springer Nature Limited 2017
– notice: Copyright Nature Publishing Group Nov 2017
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
DBID AAYXX
CITATION
NPM
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
OIOZB
OTOTI
DOI 10.1038/nnano.2017.155
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 1082
ExternalDocumentID 1461121
28945240
10_1038_nnano_2017_155
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ADBBV
AENEX
AEUYN
AFANA
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DU5
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
KB.
L6V
LK8
M1P
M7P
M7S
NNMJJ
O9-
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
UKHRP
AAYXX
ACSTC
AFFHD
AGSTI
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
5M7
5S5
ABAWZ
ABDBF
ABFSG
ACUHS
AEZWR
AFBBN
AFHIU
AHWEU
AIXLP
DB5
EMOBN
I-F
MM.
NFIDA
NPM
ODYON
SV3
TUS
~8M
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
AADEA
AADWK
AAEXX
AAJMP
AAPBV
AAYJO
ABEEJ
ABGIJ
ABPTK
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AGEZK
AGGBP
AHGBK
AJDOV
NYICJ
OIOZB
OTOTI
ID FETCH-LOGICAL-c496t-a8b1679debb4b45ca6bcafd3cb0f7d74dbb29eb8fed9d9489a30b52ec5a2917e3
IEDL.DBID M7S
ISICitedReferencesCount 185
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414531800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1748-3387
1748-3395
IngestDate Mon Jul 03 03:59:19 EDT 2023
Thu Sep 04 17:26:42 EDT 2025
Sat Nov 29 14:40:34 EST 2025
Mon Jul 21 06:07:22 EDT 2025
Sat Nov 29 03:11:28 EST 2025
Tue Nov 18 22:35:14 EST 2025
Fri Feb 21 02:40:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-a8b1679debb4b45ca6bcafd3cb0f7d74dbb29eb8fed9d9489a30b52ec5a2917e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES)
US Department of the Navy, Office of Naval Research (ONR)
US Army Research Laboratory (USARL)
Army Research Office (ARO)
Swiss National Science Foundation (SNSF)
National Science Foundation (NSF)
Defense Advanced Research Projects Agency (DARPA)
Welch Foundation
AC02-05CH11231; SC0010409; FG02-06ER46286; W911NF-15-1-0237; DMR-1508412; F-1837; P2ELP2-151852
OpenAccessLink https://www.osti.gov/servlets/purl/1461121
PMID 28945240
PQID 1960997465
PQPubID 546299
PageCount 6
ParticipantIDs osti_scitechconnect_1461121
proquest_miscellaneous_1942700915
proquest_journals_1960997465
pubmed_primary_28945240
crossref_primary_10_1038_nnano_2017_155
crossref_citationtrail_10_1038_nnano_2017_155
springer_journals_10_1038_nnano_2017_155
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nature Nanotech
PublicationTitleAlternate Nat Nanotechnol
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Kawai (CR9) 2015; 6
Kroemer (CR25) 1982; 70
Chen (CR19) 2015; 10
de Oteyza (CR24) 2013; 340
Ghoreishi, Saghafi, Yousefi, Moravvej-Farshi (CR12) 2014; 75
Imada (CR15) 2016; 538
Cai (CR3) 2010; 466
Neamen (CR13) 2003
Son, Cohen, Louie (CR1) 2006; 444
Gross, Mohn, Moll, Liljeroth, Meyer (CR22) 2009; 325
Shen (CR2) 2011; 11
Marangoni, Haberer, Rizzo, Cloke, Fischer (CR10) 2016; 22
Bennett (CR4) 2013; 103
Yang, Park, Son, Cohen, Louie (CR26) 2007; 99
Nguyen (CR7) 2016; 120
Tao (CR16) 2009; 9
Bronner (CR6) 2013; 52
Yoon, Salahuddin (CR11) 2010; 97
Joachim, Gimzewski, Aviram (CR14) 2000; 408
Ugeda (CR27) 2014; 13
Hapala (CR21) 2014; 90
Giannozzi (CR28) 2009; 21
Troullier, Martins (CR29) 1991; 43
Vo (CR20) 2015; 15
Cai (CR18) 2014; 9
Cloke (CR8) 2015; 137
Chen (CR5) 2013; 7
Chiang, Xu, Han, Ho (CR23) 2014; 344
Smerdon, Giebink, Guisinger, Darancet, Guest (CR17) 2016; 16
J Cai (BFnnano2017155_CR3) 2010; 466
H Kroemer (BFnnano2017155_CR25) 1982; 70
C Chiang (BFnnano2017155_CR23) 2014; 344
Y-W Son (BFnnano2017155_CR1) 2006; 444
DA Neamen (BFnnano2017155_CR13) 2003
DG de Oteyza (BFnnano2017155_CR24) 2013; 340
L Yang (BFnnano2017155_CR26) 2007; 99
Y-C Chen (BFnnano2017155_CR19) 2015; 10
C Bronner (BFnnano2017155_CR6) 2013; 52
SS Ghoreishi (BFnnano2017155_CR12) 2014; 75
S Kawai (BFnnano2017155_CR9) 2015; 6
J Cai (BFnnano2017155_CR18) 2014; 9
RR Cloke (BFnnano2017155_CR8) 2015; 137
MM Ugeda (BFnnano2017155_CR27) 2014; 13
H Imada (BFnnano2017155_CR15) 2016; 538
P Hapala (BFnnano2017155_CR21) 2014; 90
N Troullier (BFnnano2017155_CR29) 1991; 43
YT Shen (BFnnano2017155_CR2) 2011; 11
P Giannozzi (BFnnano2017155_CR28) 2009; 21
YC Chen (BFnnano2017155_CR5) 2013; 7
GD Nguyen (BFnnano2017155_CR7) 2016; 120
Y Yoon (BFnnano2017155_CR11) 2010; 97
C Joachim (BFnnano2017155_CR14) 2000; 408
TH Vo (BFnnano2017155_CR20) 2015; 15
L Gross (BFnnano2017155_CR22) 2009; 325
C Tao (BFnnano2017155_CR16) 2009; 9
PB Bennett (BFnnano2017155_CR4) 2013; 103
T Marangoni (BFnnano2017155_CR10) 2016; 22
JA Smerdon (BFnnano2017155_CR17) 2016; 16
References_xml – volume: 75
  start-page: 245
  year: 2014
  end-page: 256
  ident: CR12
  article-title: Graphene nanoribbon tunnel field effect transistor with lightly doped drain: numerical simulations
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2014.07.042
– volume: 99
  start-page: 6
  year: 2007
  end-page: 9
  ident: CR26
  article-title: Quasiparticle energies and band gaps in graphene nanoribbons
  publication-title: Phys. Rev. Lett.
– volume: 21
  start-page: 395502
  year: 2009
  ident: CR28
  article-title: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/21/39/395502
– volume: 13
  start-page: 1091
  year: 2014
  end-page: 1095
  ident: CR27
  article-title: Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor
  publication-title: Nature Mater.
  doi: 10.1038/nmat4061
– volume: 16
  start-page: 2603
  year: 2016
  end-page: 2607
  ident: CR17
  article-title: Large spatially resolved rectification in a donor–acceptor molecular heterojunction
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00171
– volume: 325
  start-page: 1110
  year: 2009
  end-page: 1114
  ident: CR22
  article-title: The chemical structure of a molecule resolved by atomic force microscopy
  publication-title: Science
  doi: 10.1126/science.1176210
– volume: 90
  start-page: 85421
  year: 2014
  ident: CR21
  article-title: Mechanism of high-resolution STM/AFM imaging with functionalized tips
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.085421
– volume: 466
  start-page: 470
  year: 2010
  end-page: 473
  ident: CR3
  article-title: Atomically precise bottom-up fabrication of graphene nanoribbons
  publication-title: Nature
  doi: 10.1038/nature09211
– volume: 137
  start-page: 8872
  year: 2015
  end-page: 8875
  ident: CR8
  article-title: Site-specific substitutional boron doping of semiconducting armchair graphene nanoribbons
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b02523
– volume: 22
  start-page: 13037
  year: 2016
  end-page: 13040
  ident: CR10
  article-title: Heterostructures through divergent edge reconstruction in nitrogen-doped segmented graphene nanoribbons
  publication-title: Eur. J. Chem. A
  doi: 10.1002/chem.201603497
– volume: 7
  start-page: 6123
  year: 2013
  end-page: 6128
  ident: CR5
  article-title: Tuning the band gap of graphene nanoribbons synthesized from molecular precursors
  publication-title: ACS Nano
  doi: 10.1021/nn401948e
– volume: 6
  start-page: 8098
  year: 2015
  ident: CR9
  article-title: Atomically controlled substitutional boron-doping of graphene nanoribbons
  publication-title: Nature Commun.
  doi: 10.1038/ncomms9098
– volume: 538
  start-page: 364
  year: 2016
  end-page: 367
  ident: CR15
  article-title: Real-space investigation of energy transfer in heterogeneous molecular dimers
  publication-title: Nature
  doi: 10.1038/nature19765
– volume: 408
  start-page: 541
  year: 2000
  end-page: 548
  ident: CR14
  article-title: Electronics using hybrid-molecular and mono-molecular devices
  publication-title: Nature
  doi: 10.1038/35046000
– volume: 340
  start-page: 1434
  year: 2013
  end-page: 1437
  ident: CR24
  article-title: Direct imaging of covalent bond structure in single-molecule chemical reactions
  publication-title: Science
  doi: 10.1126/science.1238187
– volume: 70
  start-page: 13
  year: 1982
  end-page: 25
  ident: CR25
  article-title: Heterostructure bipolar transistors and integrated circuits
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1982.12226
– volume: 9
  start-page: 896
  year: 2014
  end-page: 900
  ident: CR18
  article-title: Graphene nanoribbon heterojunctions
  publication-title: Nature Nanotech.
  doi: 10.1038/nnano.2014.184
– volume: 444
  start-page: 347
  year: 2006
  end-page: 349
  ident: CR1
  article-title: Half-metallic graphene nanoribbons
  publication-title: Nature
  doi: 10.1038/nature05180
– year: 2003
  ident: CR13
  publication-title: Semiconductor Physics and Devices: Basic Principles
– volume: 11
  start-page: 3245
  year: 2011
  end-page: 3250
  ident: CR2
  article-title: Switchable ternary nanoporous supramolecular network on photo-regulation
  publication-title: Nano Lett.
  doi: 10.1021/nl201504x
– volume: 97
  start-page: 33102
  year: 2010
  ident: CR11
  article-title: Barrier-free tunneling in a carbon heterojunction transistor
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3431661
– volume: 103
  start-page: 253114
  year: 2013
  ident: CR4
  article-title: Bottom-up graphene nanoribbon field-effect transistors
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4855116
– volume: 52
  start-page: 4422
  year: 2013
  end-page: 4425
  ident: CR6
  article-title: Aligning the band gap of graphene nanoribbons by monomer doping
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201209735
– volume: 10
  start-page: 156
  year: 2015
  end-page: 160
  ident: CR19
  article-title: Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions
  publication-title: Nature Nanotech.
  doi: 10.1038/nnano.2014.307
– volume: 120
  start-page: 2684
  year: 2016
  end-page: 2687
  ident: CR7
  article-title: Bottom-up synthesis of  = 13 sulfur-doped graphene nanoribbons
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b09986
– volume: 344
  start-page: 885
  year: 2014
  end-page: 888
  ident: CR23
  article-title: Real-space imaging of molecular structure and chemical bonding by single-molecule inelastic tunneling probe
  publication-title: Science
  doi: 10.1126/science.1253405
– volume: 9
  start-page: 3963
  year: 2009
  end-page: 3967
  ident: CR16
  article-title: Spatial resolution of a type II heterojunction in a single bipolar molecule
  publication-title: Nano Lett.
  doi: 10.1021/nl901860n
– volume: 15
  start-page: 5770
  year: 2015
  end-page: 5777
  ident: CR20
  article-title: Nitrogen-doping induced self-assembly of graphene nanoribbon-based two-dimensional and three-dimensional metamaterials
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01723
– volume: 43
  start-page: 1993
  year: 1991
  end-page: 2006
  ident: CR29
  article-title: Efficient pseudopotentials for plane-wave calculations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.43.1993
– volume: 13
  start-page: 1091
  year: 2014
  ident: BFnnano2017155_CR27
  publication-title: Nature Mater.
  doi: 10.1038/nmat4061
– volume: 11
  start-page: 3245
  year: 2011
  ident: BFnnano2017155_CR2
  publication-title: Nano Lett.
  doi: 10.1021/nl201504x
– volume: 466
  start-page: 470
  year: 2010
  ident: BFnnano2017155_CR3
  publication-title: Nature
  doi: 10.1038/nature09211
– volume: 15
  start-page: 5770
  year: 2015
  ident: BFnnano2017155_CR20
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01723
– volume: 344
  start-page: 885
  year: 2014
  ident: BFnnano2017155_CR23
  publication-title: Science
  doi: 10.1126/science.1253405
– volume: 9
  start-page: 3963
  year: 2009
  ident: BFnnano2017155_CR16
  publication-title: Nano Lett.
  doi: 10.1021/nl901860n
– volume: 70
  start-page: 13
  year: 1982
  ident: BFnnano2017155_CR25
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1982.12226
– volume: 52
  start-page: 4422
  year: 2013
  ident: BFnnano2017155_CR6
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201209735
– volume: 9
  start-page: 896
  year: 2014
  ident: BFnnano2017155_CR18
  publication-title: Nature Nanotech.
  doi: 10.1038/nnano.2014.184
– volume: 325
  start-page: 1110
  year: 2009
  ident: BFnnano2017155_CR22
  publication-title: Science
  doi: 10.1126/science.1176210
– volume: 538
  start-page: 364
  year: 2016
  ident: BFnnano2017155_CR15
  publication-title: Nature
  doi: 10.1038/nature19765
– volume: 340
  start-page: 1434
  year: 2013
  ident: BFnnano2017155_CR24
  publication-title: Science
  doi: 10.1126/science.1238187
– volume: 99
  start-page: 6
  year: 2007
  ident: BFnnano2017155_CR26
  publication-title: Phys. Rev. Lett.
– volume: 103
  start-page: 253114
  year: 2013
  ident: BFnnano2017155_CR4
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4855116
– volume: 16
  start-page: 2603
  year: 2016
  ident: BFnnano2017155_CR17
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00171
– volume: 6
  start-page: 8098
  year: 2015
  ident: BFnnano2017155_CR9
  publication-title: Nature Commun.
  doi: 10.1038/ncomms9098
– volume: 97
  start-page: 33102
  year: 2010
  ident: BFnnano2017155_CR11
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3431661
– volume: 43
  start-page: 1993
  year: 1991
  ident: BFnnano2017155_CR29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.43.1993
– volume: 408
  start-page: 541
  year: 2000
  ident: BFnnano2017155_CR14
  publication-title: Nature
  doi: 10.1038/35046000
– volume: 75
  start-page: 245
  year: 2014
  ident: BFnnano2017155_CR12
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2014.07.042
– volume: 10
  start-page: 156
  year: 2015
  ident: BFnnano2017155_CR19
  publication-title: Nature Nanotech.
  doi: 10.1038/nnano.2014.307
– volume: 90
  start-page: 85421
  year: 2014
  ident: BFnnano2017155_CR21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.085421
– volume: 137
  start-page: 8872
  year: 2015
  ident: BFnnano2017155_CR8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b02523
– volume: 22
  start-page: 13037
  year: 2016
  ident: BFnnano2017155_CR10
  publication-title: Eur. J. Chem. A
  doi: 10.1002/chem.201603497
– volume: 120
  start-page: 2684
  year: 2016
  ident: BFnnano2017155_CR7
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b09986
– volume-title: Semiconductor Physics and Devices: Basic Principles
  year: 2003
  ident: BFnnano2017155_CR13
– volume: 21
  start-page: 395502
  year: 2009
  ident: BFnnano2017155_CR28
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/21/39/395502
– volume: 7
  start-page: 6123
  year: 2013
  ident: BFnnano2017155_CR5
  publication-title: ACS Nano
  doi: 10.1021/nn401948e
– volume: 444
  start-page: 347
  year: 2006
  ident: BFnnano2017155_CR1
  publication-title: Nature
  doi: 10.1038/nature05180
SSID ssj0052924
Score 2.6242023
Snippet The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale...
SourceID osti
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1077
SubjectTerms 147/138
147/3
639/301/357/995
639/925/357/918/1052
Carbonyl compounds
Carbonyl groups
Carbonyls
Chemical synthesis
Copolymerization
Electronic devices
Electronic equipment
electronic properties and devices
electronic properties and materials
Fabrication
Graphene
Heterojunctions
Materials Science
Nanoribbons
NANOSCIENCE AND NANOTECHNOLOGY
Nanotechnology
Nanotechnology and Microengineering
Precursors
Realignment
Scanning tunneling microscopy
Spectroscopy
Title Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor
URI https://link.springer.com/article/10.1038/nnano.2017.155
https://www.ncbi.nlm.nih.gov/pubmed/28945240
https://www.proquest.com/docview/1960997465
https://www.proquest.com/docview/1942700915
https://www.osti.gov/servlets/purl/1461121
Volume 12
WOSCitedRecordID wos000414531800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1748-3395
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0052924
  issn: 1748-3387
  databaseCode: P5Z
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1748-3395
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0052924
  issn: 1748-3387
  databaseCode: M7P
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1748-3395
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0052924
  issn: 1748-3387
  databaseCode: M7S
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1748-3395
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0052924
  issn: 1748-3387
  databaseCode: 7X7
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1748-3395
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0052924
  issn: 1748-3387
  databaseCode: KB.
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1748-3395
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0052924
  issn: 1748-3387
  databaseCode: BENPR
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEC7cWQ968P2Iuw4tCHrJbh7dk-6T7MougjIMrsrgJfQruDIm40xG8N9b1UnGAVcvXhpCKqGSquqq7ur6CuA591WiKpRA6pIq5pyKlX06iQtRcVEJb9OwdfHpXTGdyvlczfoNt3V_rHKYE8NE7RpLe-THKUGjYfA7Ea-W32PqGkXZ1b6Fxh7sE0pCFo7uXQwzschU19S24DLGpVgxgDbm8riudU21f2lxlFKZ345TGjVoXFcFnH8kS4MPOr_9v9zfgVt99MlOOnW5C9d8fQ9u7mAS3of5SdsECIHFT7Yk6Iu1ZwHVGidFRp-zujSmqdkXOkfTfEW3GDSXUZ0K04y2HhaefRu67oZ3bDCqXz2Aj-dnH16_ifv2C7HlatLGWhrK0ThvDDdcWD0xVlcutyapCldwZ0ymvJGVd8opLpXOEyMyb4XOcBHo84cwqpvaPwYmcmeE1pVNpef4sE6cS3Jn0TMqkQseQTz8_9L22OTUImNRhhx5Lssgr5LkVaK8InixpV92qBx_pTwgcZYYTxAorqXTQ7alBQ8GmmkEh4O4yt521-VvWUXwbHsbrY5SKbr2zYZoOGXsVYo0jzrt2DKCS1guMFCK4OWgLjsvv5LLJ__m4wBuEGVXAnkIo3a18U_huv3RXq5XY9gr5kUY5Rj2T8-ms_d49fb0aEzWMAvjBY4z8fkX-kMSzQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VBYly4P0ILWAkEFxC87A38QGhCqhadVlxKGhvqV9Ri5Zk2c226p_qb-yMs1lWonDrgXNsy7E_j2c8M98AvOKujGSJOxDbqAw5p2RlF_fDTJRclMKZ2D9dfB9kw2E-Gsmva3De5cJQWGUnE72gtrWhN_KtmKjRUPntiw-TXyFVjSLvaldCo4XFvjs7RZNt9n7vE-7v6yTZ-XzwcTdcVBUIDZf9JlS5JteDdVpzzYVRfW1UaVOjozKzGbdaJ9LpvHRWWslzqdJIi8QZoRK0bVyK416D6yjHMwohy0ZLA08ksi2im_E8RNMv60gi03yrqlRFuYZx9i6mtMKVS7BX42G-TMH9wznr77ydO__bat2F2wvtmm23x-EerLnqPtxa4Vx8AKPtpvYUCeMzNiFqj5ljnrUbhT6j5Zsea11X7IjihOofeO37k8koD4cpRk8rY8d-dlWF_RhztFqmD-HblfzaI-hVdeWeABOp1UKp0sS549hZRdZGqTV480uRCh5A2O13YRbc61QCZFz4GIA0Lzw-CsJHgfgI4M2y_aRlHflryw2CT4H6EpH-GoqOMg0ZdKhIxwFsdvAoFrJpVvzGRgAvl59RqpCrSFWunlMbThEJMsY2j1s0LieCJjoXqAgG8LaD58rgl87y6b_n8QJu7h58GRSDveH-BqxTrzbdcxN6zXTunsENc9Icz6bP_XljcHjVkL0AdxVuVA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VgFA58H4sLWAkEFyW7MPOrg8IVZSIqlWUA6CIy9avVYvCbkg2oP41fh0z3myIROHWA-e1La_9zXjGnvkG4Bl3ZSRL3IHYRmXIOSUru3gQZqLkohTOxP7q4tNRNhrlk4kcb8HPLheGwio7negVta0N3ZH3Y6JGQ-N3IPrlKixivD98M_sWUgUpemntymm0EDl0Zz_QfVu8PtjHvX6eJMN3H96-D1cVBkLD5aAJVa7pGcI6rbnmwqiBNqq0qdFRmdmMW60T6XReOiut5LlUaaRF4oxQCfo5LsVxL8FlnJUkx28sPnengEhkW1A343mIbmDWEUameb-qVEV5h3H2KqYUw40DsVejYJ9n7P7xUOvPv-GN_3nlbsL1ldXN9loxuQVbrroN1za4GO_AZK-pPXXC9IzNiPJj4Zhn88bDgNFSzk-1rit2QvFD9Rc0B7zEMsrPYYrRlcvUsa9dtWE_xhK9mfld-Hghv3YPelVduQfARGq1UKo0ce44dlaRtVFqDVoEUqSCBxB2e1-YFSc7lQaZFj42IM0Lj5WCsFIgVgJ4sW4_a9lI_tpyh6BUoB1FZMCGoqZMQ44eGthxALsdVIqVzloUv3ESwNP1Z9Q29ISkKlcvqQ2nSAUZY5v7LTLXE0HXnQs0EAN42UF1Y_BzZ_nw3_N4AlcRqcXRwehwB7apU5sFugu9Zr50j-CK-d6cLuaPvegxOL5oxP4CAuh3Rw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomically+precise+graphene+nanoribbon+heterojunctions+from+a+single+molecular+precursor&rft.jtitle=Nature+nanotechnology&rft.au=Nguyen%2C+Giang+D&rft.au=Tsai%2C+Hsin-zon&rft.au=Omrani%2C+Arash+A&rft.au=Marangoni%2C+Tomas&rft.date=2017-11-01&rft.pub=Nature+Publishing+Group&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=12&rft.issue=11&rft.spage=1077&rft_id=info:doi/10.1038%2Fnnano.2017.155&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon