MEG Sensor Selection for Neural Speech Decoding
Direct decoding of speech from the brain is a faster alternative to current electroencephalography (EEG) speller-based brain-computer interfaces (BCI) in providing communication assistance to locked-in patients. Magnetoencephalography (MEG) has recently shown great potential as a non-invasive neuroi...
Uloženo v:
| Vydáno v: | IEEE access Ročník 8; s. 1 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Direct decoding of speech from the brain is a faster alternative to current electroencephalography (EEG) speller-based brain-computer interfaces (BCI) in providing communication assistance to locked-in patients. Magnetoencephalography (MEG) has recently shown great potential as a non-invasive neuroimaging modality for neural speech decoding, owing in part to its spatial selectivity over other high-temporal resolution devices. Standard MEG systems have a large number of cryogenically cooled channels/sensors (200-300) encapsulated within a fixed liquid helium dewar, precluding their use as wearable BCI devices. Fortunately, recently developed optically pumped magnetometers (OPM) do not require cryogens, and have the potential to be wearable and movable making them more suitable for BCI applications. This design is also modular allowing for customized montages to include only the sensors necessary for a particular task. As the number of sensors bears a heavy influence on the cost, size, and weight of MEG systems, minimizing the number of sensors is critical for designing practical MEG-based BCIs in the future. In this study, we sought to identify an optimal set of MEG channels to decode imagined and spoken phrases from the MEG signals. Using a forward selection algorithm with a support vector machine classifier we found that nine optimally located MEG gradiometers provided higher decoding accuracy compared to using all channels. Additionally, the forward selection algorithm achieved similar performance to dimensionality reduction using a stacked-sparse-autoencoder. Analysis of spatial dynamics of speech decoding suggested that both left and right hemisphere sensors contribute to speech decoding. Sensors approximately located near Broca's area were found to be commonly contributing among the higher-ranked sensors across all subjects. |
|---|---|
| AbstractList | Direct decoding of speech from the brain is a faster alternative to current electroencephalography (EEG) speller-based brain-computer interfaces (BCI) in providing communication assistance to locked-in patients. Magnetoencephalography (MEG) has recently shown great potential as a non-invasive neuroimaging modality for neural speech decoding, owing in part to its spatial selectivity over other high-temporal resolution devices. Standard MEG systems have a large number of cryogenically cooled channels/sensors (200 - 300) encapsulated within a fixed liquid helium dewar, precluding their use as wearable BCI devices. Fortunately, recently developed optically pumped magnetometers (OPM) do not require cryogens, and have the potential to be wearable and movable making them more suitable for BCI applications. This design is also modular allowing for customized montages to include only the sensors necessary for a particular task. As the number of sensors bears a heavy influence on the cost, size, and weight of MEG systems, minimizing the number of sensors is critical for designing practical MEG-based BCIs in the future. In this study, we sought to identify an optimal set of MEG channels to decode imagined and spoken phrases from the MEG signals. Using a forward selection algorithm with a support vector machine classifier we found that nine optimally located MEG gradiometers provided higher decoding accuracy compared to using all channels. Additionally, the forward selection algorithm achieved similar performance to dimensionality reduction using a stacked-sparse-autoencoder. Analysis of spatial dynamics of speech decoding suggested that both left and right hemisphere sensors contribute to speech decoding. Sensors approximately located near Broca's area were found to be commonly contributing among the higher-ranked sensors across all subjects.Direct decoding of speech from the brain is a faster alternative to current electroencephalography (EEG) speller-based brain-computer interfaces (BCI) in providing communication assistance to locked-in patients. Magnetoencephalography (MEG) has recently shown great potential as a non-invasive neuroimaging modality for neural speech decoding, owing in part to its spatial selectivity over other high-temporal resolution devices. Standard MEG systems have a large number of cryogenically cooled channels/sensors (200 - 300) encapsulated within a fixed liquid helium dewar, precluding their use as wearable BCI devices. Fortunately, recently developed optically pumped magnetometers (OPM) do not require cryogens, and have the potential to be wearable and movable making them more suitable for BCI applications. This design is also modular allowing for customized montages to include only the sensors necessary for a particular task. As the number of sensors bears a heavy influence on the cost, size, and weight of MEG systems, minimizing the number of sensors is critical for designing practical MEG-based BCIs in the future. In this study, we sought to identify an optimal set of MEG channels to decode imagined and spoken phrases from the MEG signals. Using a forward selection algorithm with a support vector machine classifier we found that nine optimally located MEG gradiometers provided higher decoding accuracy compared to using all channels. Additionally, the forward selection algorithm achieved similar performance to dimensionality reduction using a stacked-sparse-autoencoder. Analysis of spatial dynamics of speech decoding suggested that both left and right hemisphere sensors contribute to speech decoding. Sensors approximately located near Broca's area were found to be commonly contributing among the higher-ranked sensors across all subjects. Direct decoding of speech from the brain is a faster alternative to current electroencephalography (EEG) speller-based brain-computer interfaces (BCI) in providing communication assistance to locked-in patients. Magnetoencephalography (MEG) has recently shown great potential as a non-invasive neuroimaging modality for neural speech decoding, owing in part to its spatial selectivity over other high-temporal resolution devices. Standard MEG systems have a large number of cryogenically cooled channels/sensors (200 – 300) encapsulated within a fixed liquid helium dewar, precluding their use as wearable BCI devices. Fortunately, recently developed optically pumped magnetometers (OPM) do not require cryogens, and have the potential to be wearable and movable making them more suitable for BCI applications. This design is also modular allowing for customized montages to include only the sensors necessary for a particular task. As the number of sensors bears a heavy influence on the cost, size, and weight of MEG systems, minimizing the number of sensors is critical for designing practical MEG-based BCIs in the future. In this study, we sought to identify an optimal set of MEG channels to decode imagined and spoken phrases from the MEG signals. Using a forward selection algorithm with a support vector machine classifier we found that nine optimally located MEG gradiometers provided higher decoding accuracy compared to using all channels. Additionally, the forward selection algorithm achieved similar performance to dimensionality reduction using a stacked-sparse-autoencoder. Analysis of spatial dynamics of speech decoding suggested that both left and right hemisphere sensors contribute to speech decoding. Sensors approximately located near Broca’s area were found to be commonly contributing among the higher-ranked sensors across all subjects. Direct decoding of speech from the brain is a faster alternative to current electroencephalography (EEG) speller-based brain-computer interfaces (BCI) in providing communication assistance to locked-in patients. Magnetoencephalography (MEG) has recently shown great potential as a non-invasive neuroimaging modality for neural speech decoding, owing in part to its spatial selectivity over other high-temporal resolution devices. Standard MEG systems have a large number of cryogenically cooled channels/sensors ([Formula Omitted]) encapsulated within a fixed liquid helium dewar, precluding their use as wearable BCI devices. Fortunately, recently developed optically pumped magnetometers (OPM) do not require cryogens, and have the potential to be wearable and movable making them more suitable for BCI applications. This design is also modular allowing for customized montages to include only the sensors necessary for a particular task. As the number of sensors bears a heavy influence on the cost, size, and weight of MEG systems, minimizing the number of sensors is critical for designing practical MEG-based BCIs in the future. In this study, we sought to identify an optimal set of MEG channels to decode imagined and spoken phrases from the MEG signals. Using a forward selection algorithm with a support vector machine classifier we found that nine optimally located MEG gradiometers provided higher decoding accuracy compared to using all channels. Additionally, the forward selection algorithm achieved similar performance to dimensionality reduction using a stacked-sparse-autoencoder. Analysis of spatial dynamics of speech decoding suggested that both left and right hemisphere sensors contribute to speech decoding. Sensors approximately located near Broca’s area were found to be commonly contributing among the higher-ranked sensors across all subjects. |
| Author | Wisler, Alan Ferrari, Paul Davenport, Elizabeth Wang, Jun Maldjian, Joseph Dash, Debadatta |
| AuthorAffiliation | 3 Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, Austin, TX 78712, USA 2 Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA 1 Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, USA 4 MEG Laboratory, Dell Children’s Medical Center, Austin, TX 78723, USA 6 Department of Radiology, University of Texas at Southwestern, Dallas, TX 75390, USA 5 Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA |
| AuthorAffiliation_xml | – name: 6 Department of Radiology, University of Texas at Southwestern, Dallas, TX 75390, USA – name: 2 Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA – name: 4 MEG Laboratory, Dell Children’s Medical Center, Austin, TX 78723, USA – name: 1 Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, USA – name: 5 Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA – name: 3 Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, Austin, TX 78712, USA |
| Author_xml | – sequence: 1 givenname: Debadatta surname: Dash fullname: Dash, Debadatta organization: Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX 78712 USA and Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX 78712 USA – sequence: 2 givenname: Alan surname: Wisler fullname: Wisler, Alan organization: Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, Austin, TX 78712 USA – sequence: 3 givenname: Paul surname: Ferrari fullname: Ferrari, Paul organization: MEG Lab, Dell Children's Medical Center, Austin, TX 78723 USA and Department of Psychology, University of Texas at Austin, Austin, TX 78712 USA – sequence: 4 givenname: Elizabeth surname: Davenport fullname: Davenport, Elizabeth organization: Department of Radiology, University of Texas at Southwestern, Dallas, TX 75390 USA – sequence: 5 givenname: Joseph surname: Maldjian fullname: Maldjian, Joseph organization: Department of Radiology, University of Texas at Southwestern, Dallas, TX 75390 USA – sequence: 6 givenname: Jun surname: Wang fullname: Wang, Jun organization: Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX 78712 USA and Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, Austin, TX 78712 USA. (e-mail: jun.wang@austin.utexas.edu) |
| BookMark | eNp9UUtvEzEQtlARfdBf0EskLlyS-rV-XJCqNJRKBQ6Bs-XHOHW0WQfvLhL_HqcbEO0BX8Yz_r5vPPOdo5Mud4DQFcELQrC-vlkuV-v1gmKKFwxTpRh5hc4oEXrOGiZO_rmfosu-3-J6VC018g06ZYxi3kh9hq4_r-5ma-j6XGpowQ8pd7NYsy8wFtvO1nsA_zi7BZ9D6jZv0eto2x4uj_ECff-4-rb8NH_4ene_vHmYe67FMLfSEeYJw0ypALTxTjipOVUWuI8OQqTeOgJRSBd5sFIER23DKJE0CILZBbqfdEO2W7MvaWfLL5NtMk-FXDbGliH5FozkqjbV3kXqONbCSg_BRtxE2yhBQ9X6MGntR7eD4KEb6mTPRJ-_dOnRbPJPI4VQnJAq8P4oUPKPEfrB7FLvoW1tB3nsDeWCqKb-QVfouxfQbR5LV1dVUQ0XCmPJK0pPKF9y3xeIxqfBHlZf-6fWEGwOLpvJZXNw2Rxdrlz2gvtnkP-zriZWAoC_DE0J50qz35PDsrI |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_neuroimage_2025_121403 crossref_primary_10_1109_TNSRE_2021_3096874 crossref_primary_10_1016_j_bspc_2025_108068 crossref_primary_10_1044_2024_JSLHR_24_00157 crossref_primary_10_3389_fnhum_2024_1305058 crossref_primary_10_1007_s11517_025_03340_y crossref_primary_10_1016_j_neuroimage_2025_121182 crossref_primary_10_3389_fnhum_2022_874199 crossref_primary_10_1109_TIM_2024_3472830 crossref_primary_10_3390_bioengineering11060609 crossref_primary_10_1007_s11571_024_10085_1 crossref_primary_10_1038_s41467_021_27725_3 crossref_primary_10_31083_j_jin2304073 crossref_primary_10_1016_j_neucom_2025_130928 crossref_primary_10_1038_s41597_023_02286_w crossref_primary_10_3390_s24216965 crossref_primary_10_1016_j_fmre_2024_04_011 crossref_primary_10_1016_j_neuroimage_2024_120864 crossref_primary_10_1109_ACCESS_2024_3524397 crossref_primary_10_1109_THMS_2025_3554449 |
| Cites_doi | 10.1007/s10548-013-0329-3 10.1073/pnas.94.26.14965 10.1063/1.323659 10.3389/fneng.2010.00009 10.1007/978-3-030-05587-5_16 10.1109/EMBC.2019.8857874 10.1113/JP277899 10.1523/JNEUROSCI.3814-11.2012 10.1016/j.neuroimage.2018.09.006 10.1093/brain/awg104 10.1038/s41598-019-41763-4 10.1109/ICASSP.2017.7952714 10.1016/j.neuroimage.2016.12.048 10.3389/fnins.2019.01267 10.1111/j.2044-8317.1992.tb00992.x 10.1088/1741-2552/ab0c59 10.1152/jn.00251.2010 10.1093/geronb/gbx008 10.1121/1.4800429 10.1044/nnsld13.3.4 10.1016/j.jneuroling.2009.08.006 10.1016/j.neuroimage.2019.06.010 10.3389/fpsyg.2012.00169 10.1016/j.isci.2018.09.016 10.1152/jn.00075.2011 10.1038/s41467-019-10994-4 10.1016/j.clinph.2005.11.002 10.1016/j.neuroimage.2019.05.063 10.1001/jama.2019.19813 10.1016/j.tics.2005.11.006 10.1109/TMI.2018.2836965 10.3390/brainsci8040057 10.1088/1741-2552/aa8235 10.1155/2016/7489108 10.1016/j.neuroimage.2011.01.046 10.1016/S1388-2457(02)00057-3 10.1007/s13311-018-00692-2 10.3390/s20082248 10.1126/science.1127647 10.1016/j.neuroimage.2012.10.001 10.1162/089892902760807140 10.3389/fnins.2014.00386 10.1007/978-3-642-34713-9_13 10.5755/j01.eie.23.2.18002 10.3389/fnins.2019.00060 10.1016/j.neuroimage.2017.10.011 10.1016/j.neuroimage.2017.01.034 10.21437/Interspeech.2019-3105 10.1038/s41586-019-1119-1 10.1016/j.specom.2010.01.001 10.3389/fnins.2016.00141 10.1016/j.jphysparis.2017.07.002 10.1016/j.clinph.2019.07.020 10.3389/fnint.2019.00028 10.1109/SMC.2019.8914246 10.1109/GlobalSIP.2018.8646401 10.3389/fnins.2020.00290 10.1109/JSEN.2010.2096465 10.1016/j.ejor.2017.08.040 10.1016/j.tics.2014.05.001 10.21437/Interspeech.2019-3109 10.1523/JNEUROSCI.0559-06.2006 10.1126/science.1164318 10.3389/fnins.2015.00217 10.1038/nature26147 10.1007/978-3-642-02574-7_5 10.1371/journal.pone.0225756 10.1016/S0140-6736(10)61156-7 10.1523/JNEUROSCI.2875-08.2008 10.1227/01.neu.0000333510.03970.80 10.1016/j.neulet.2012.08.030 10.3389/fnins.2018.00422 10.1016/S0042-6989(97)00169-7 10.1007/s00415-012-6821-y 10.1371/journal.pone.0072351 10.3389/fnins.2010.00161 10.1109/NER.2019.8717186 10.1109/ICBBE.2010.5515807 10.3389/fnins.2019.01058 10.1109/TASLP.2017.2758164 10.1007/s00779-017-1083-4 10.1371/journal.pone.0178602 10.1238/Physica.Topical.105a00027 10.1109/ICASSP.2019.8683453 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 5PM DOA |
| DOI | 10.1109/ACCESS.2020.3028831 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_748c499cbf2b4096a7cedaf05fa5862d PMC7668411 10_1109_ACCESS_2020_3028831 9214489 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: University of Texas System Brain Initiative grantid: 362221 – fundername: National Institutes of Health grantid: R01DC016621; R03DC013990 funderid: 10.13039/100000002 |
| GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 5PM |
| ID | FETCH-LOGICAL-c496t-a7b13c130388de25cb6b79428ae4cfbedf2cab1ef67bf4da76db2a532172d6103 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000577882500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:53:18 EDT 2025 Thu Aug 21 18:27:43 EDT 2025 Thu Jul 10 19:19:24 EDT 2025 Sun Jun 29 15:56:20 EDT 2025 Sat Nov 29 04:14:16 EST 2025 Tue Nov 18 22:23:55 EST 2025 Wed Aug 27 02:30:36 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c496t-a7b13c130388de25cb6b79428ae4cfbedf2cab1ef67bf4da76db2a532172d6103 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7265-217X 0000-0002-0543-0304 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9214489 |
| PMID | 33204579 |
| PQID | 2454680074 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2020_3028831 doaj_primary_oai_doaj_org_article_748c499cbf2b4096a7cedaf05fa5862d proquest_miscellaneous_2461854999 crossref_primary_10_1109_ACCESS_2020_3028831 proquest_journals_2454680074 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7668411 ieee_primary_9214489 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref59 ref15 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 bengio (ref85) 2006 ref51 ref50 ref46 ref89 ref45 ref48 ref47 ref86 ref42 ref41 ref88 ref44 ref87 ref43 weston (ref58) 2001 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 dash (ref70) 2020 ref40 ref84 ref83 ref80 ref79 ref35 ref78 ref34 ref37 ref36 ref75 ref31 ref74 ref77 ref33 ref76 ref32 ref2 ref1 ref39 ref38 van der maaten (ref73) 2008; 9 ref71 ref72 ref68 ref24 ref67 ref23 ref26 ref69 ref25 ref64 ref20 ref63 ref66 ref22 ref65 ref21 ref28 ref27 ref29 sun (ref30) 2019 ref60 ref62 ref61 |
| References_xml | – ident: ref42 doi: 10.1007/s10548-013-0329-3 – ident: ref74 doi: 10.1073/pnas.94.26.14965 – ident: ref88 doi: 10.1063/1.323659 – ident: ref33 doi: 10.3389/fneng.2010.00009 – ident: ref65 doi: 10.1007/978-3-030-05587-5_16 – ident: ref11 doi: 10.1109/EMBC.2019.8857874 – ident: ref51 doi: 10.1113/JP277899 – ident: ref81 doi: 10.1523/JNEUROSCI.3814-11.2012 – ident: ref41 doi: 10.1016/j.neuroimage.2018.09.006 – ident: ref75 doi: 10.1093/brain/awg104 – ident: ref50 doi: 10.1038/s41598-019-41763-4 – ident: ref10 doi: 10.1109/ICASSP.2017.7952714 – ident: ref55 doi: 10.1016/j.neuroimage.2016.12.048 – ident: ref18 doi: 10.3389/fnins.2019.01267 – ident: ref57 doi: 10.1111/j.2044-8317.1992.tb00992.x – volume: 9 start-page: 2579 year: 2008 ident: ref73 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res – ident: ref17 doi: 10.1088/1741-2552/ab0c59 – ident: ref38 doi: 10.1152/jn.00251.2010 – ident: ref56 doi: 10.1093/geronb/gbx008 – ident: ref86 doi: 10.1121/1.4800429 – ident: ref40 doi: 10.1044/nnsld13.3.4 – ident: ref72 doi: 10.1016/j.jneuroling.2009.08.006 – ident: ref49 doi: 10.1016/j.neuroimage.2019.06.010 – ident: ref39 doi: 10.3389/fpsyg.2012.00169 – ident: ref62 doi: 10.1016/j.isci.2018.09.016 – ident: ref37 doi: 10.1152/jn.00075.2011 – ident: ref19 doi: 10.1038/s41467-019-10994-4 – ident: ref6 doi: 10.1016/j.clinph.2005.11.002 – ident: ref53 doi: 10.1016/j.neuroimage.2019.05.063 – ident: ref7 doi: 10.1001/jama.2019.19813 – ident: ref63 doi: 10.1016/j.tics.2005.11.006 – ident: ref61 doi: 10.1109/TMI.2018.2836965 – ident: ref5 doi: 10.3390/brainsci8040057 – ident: ref24 doi: 10.1088/1741-2552/aa8235 – ident: ref89 doi: 10.1155/2016/7489108 – ident: ref66 doi: 10.1016/j.neuroimage.2011.01.046 – ident: ref3 doi: 10.1016/S1388-2457(02)00057-3 – ident: ref14 doi: 10.1007/s13311-018-00692-2 – ident: ref45 doi: 10.3390/s20082248 – ident: ref84 doi: 10.1126/science.1127647 – ident: ref64 doi: 10.1016/j.neuroimage.2012.10.001 – start-page: 1 year: 2020 ident: ref70 article-title: Role of brainwaves in neural speech decoding publication-title: Proc IEEE 28th Eur Signal Process Conf – ident: ref35 doi: 10.1162/089892902760807140 – ident: ref78 doi: 10.3389/fnins.2014.00386 – ident: ref36 doi: 10.1007/978-3-642-34713-9_13 – ident: ref60 doi: 10.5755/j01.eie.23.2.18002 – ident: ref29 doi: 10.3389/fnins.2019.00060 – ident: ref27 doi: 10.1016/j.neuroimage.2017.10.011 – ident: ref47 doi: 10.1016/j.neuroimage.2017.01.034 – ident: ref59 doi: 10.21437/Interspeech.2019-3105 – ident: ref16 doi: 10.1038/s41586-019-1119-1 – ident: ref4 doi: 10.1016/j.specom.2010.01.001 – ident: ref34 doi: 10.3389/fnins.2016.00141 – ident: ref87 doi: 10.1016/j.jphysparis.2017.07.002 – ident: ref32 doi: 10.1016/j.clinph.2019.07.020 – ident: ref83 doi: 10.3389/fnint.2019.00028 – ident: ref22 doi: 10.1109/SMC.2019.8914246 – ident: ref46 doi: 10.1109/GlobalSIP.2018.8646401 – ident: ref12 doi: 10.3389/fnins.2020.00290 – ident: ref68 doi: 10.1109/JSEN.2010.2096465 – ident: ref69 doi: 10.1016/j.ejor.2017.08.040 – start-page: 153 year: 2006 ident: ref85 article-title: Greedy layer-wise training of deep networks publication-title: Proc 19th Int Conf Neural Inf Process Syst – ident: ref76 doi: 10.1016/j.tics.2014.05.001 – ident: ref20 doi: 10.21437/Interspeech.2019-3109 – start-page: 668 year: 2001 ident: ref58 article-title: Feature selection for SVMs publication-title: Proc Adv Neural Inf Process Syst – ident: ref77 doi: 10.1523/JNEUROSCI.0559-06.2006 – ident: ref9 doi: 10.1126/science.1164318 – ident: ref15 doi: 10.3389/fnins.2015.00217 – ident: ref48 doi: 10.1038/nature26147 – ident: ref21 doi: 10.1007/978-3-642-02574-7_5 – ident: ref82 doi: 10.1371/journal.pone.0225756 – ident: ref2 doi: 10.1016/S0140-6736(10)61156-7 – ident: ref79 doi: 10.1523/JNEUROSCI.2875-08.2008 – ident: ref80 doi: 10.1227/01.neu.0000333510.03970.80 – ident: ref43 doi: 10.1016/j.neulet.2012.08.030 – ident: ref28 doi: 10.3389/fnins.2018.00422 – ident: ref71 doi: 10.1016/S0042-6989(97)00169-7 – ident: ref1 doi: 10.1007/s00415-012-6821-y – ident: ref67 doi: 10.1371/journal.pone.0072351 – ident: ref8 doi: 10.3389/fnins.2010.00161 – ident: ref44 doi: 10.1109/NER.2019.8717186 – year: 2019 ident: ref30 article-title: Brain2Char: A deep architecture for decoding text from brain recordings publication-title: arXiv 1909 01401 – ident: ref13 doi: 10.1109/ICBBE.2010.5515807 – ident: ref31 doi: 10.3389/fnins.2019.01058 – ident: ref25 doi: 10.1109/TASLP.2017.2758164 – ident: ref23 doi: 10.1007/s00779-017-1083-4 – ident: ref54 doi: 10.1371/journal.pone.0178602 – ident: ref52 doi: 10.1238/Physica.Topical.105a00027 – ident: ref26 doi: 10.1109/ICASSP.2019.8683453 |
| SSID | ssj0000816957 |
| Score | 2.3405788 |
| Snippet | Direct decoding of speech from the brain is a faster alternative to current electroencephalography (EEG) speller-based brain-computer interfaces (BCI) in... |
| SourceID | doaj pubmedcentral proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Autoencoder brain-computer interface Brain-computer interfaces Channels Decoding Electroencephalography forward selection algorithm Gradiometers Human-computer interface Liquid helium Magnetic measurement Magnetoencephalography Magnetometers Medical imaging Modular design neural speech decoding OPM Optimization Production Selectivity Sensors Spatial resolution Speech Speech processing Support vector machines SVM Temporal resolution Wearable technology |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5EPOhBfGJ1lQoeLdtm2zyO6_o6qAg-8BaSNEFBusu6-vudaeuyvejFU6FJS_NNk_m-NnwDcIKUG_OmZ4kqkL5hCvCJRR2UmLKwqTQ-k_Xf8-cbcXcnX17U_UKpL9oT1tgDN8D1RS4dsnJnA7OoRbgRzpcmpEUwBbLxklZfZD0LYqpeg2XGVSFam6EsVf3haIQjQkHIUKemVGM366Si2rG_LbHSYZvdvZILyedyA9Zb1hgPm6fdhCVfbcHagpfgNvRvL67iBxSl4yke3usdVlWMlDQm_w28-GHivXuNz1FvUr7agafLi8fRddJWQ0hw_HyWGGGzgaOUI2XpWeEstziZGAKau2B9GZgzNvOBC9p8ZwRVijLFgCpQlUiSBruwXI0rvwcxc04MZI5c0as8BERVlYKnwTjSf4ZFwH6A0a61CqeKFe-6lgyp0g2amtDULZoRnM4vmjROGb93PyPE513J5ro-gcHXbfD1X8GPYJviNb-JIgM4qSLo_cRPt1PyQ7O8yLkkyhTB8bwZJxP9ITGVH39SH478hURgBKIT985zdluqt9falltwLvMs2_-PgR3AKoHVfOvpwfJs-ukPYcV9zd4-pkf1u_4NUocAoQ priority: 102 providerName: Directory of Open Access Journals |
| Title | MEG Sensor Selection for Neural Speech Decoding |
| URI | https://ieeexplore.ieee.org/document/9214489 https://www.proquest.com/docview/2454680074 https://www.proquest.com/docview/2461854999 https://pubmed.ncbi.nlm.nih.gov/PMC7668411 https://doaj.org/article/748c499cbf2b4096a7cedaf05fa5862d |
| Volume | 8 |
| WOSCitedRecordID | wos000577882500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21FQc4AKUgAmUVJI4Nm3gTfxzLsm0PtEIqoL1ZtmOrlapstd3lyG9nxnGjRkJIvSRR7ET22Na85483AJ8QcqPf9KxQDcI3dAG-sMiDCtM2tpTGVzKunv_6Ji4u5HKpvu_A0XAWxnsfN5_5z_QY1_LbldvSVNlUkb6XVLuwK4Toz2oN8ykUQEI1IgkLVaWaHs_nWAekgAyZaUlRdauR84ka_SmoyghfjndHPnA3Jy8eV9CX8DzByvy47wf7sOO7V_DsgdjgAUzPF6f5JbLW1RpvN3ELVpcjZs1JoAM_vrz13l3lX5GQkkN7DT9PFj_mZ0UKl1C4WvFNYYStZo58kpStZ42z3OJoY2jx2gXr28CcsZUPXNDuPCMolJRpZhSiqkUUNXsDe92q828hZ86JmawRTHpVh4A0R7WCl8E4IoiGZcDu7ahd0hKnkBY3OnKKUune-JqMr5PxMzgaPrrtpTT-n_0LNdCQlXSw4wu0tE7DSotaYuWVs4FZZKrcCOdbE8ommAa5WpvBAbXO8JPUMBkc3je3TmP2TrO6qbkkTJXBxyEZRxstoZjOr7aUhyPAIZaYgRh1k1E5xynd9VXU7Racy7qq3v27TO_hKVW_n945hL3Neus_wBP3e3N9t55gl1_KSZwxwOv5n8Ukdv-_Mzv_3A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQceLWIQIEgcWzYxOvnsSwtRWxXSC2oN8txbLVSla22u_x-Zpw0aiSExClRbEf22NZ8nx_fAHxEyI1-M7DCCIRv6AJCUSMPKlwj6lK7UOm0e_5rrhYLfX5ufmzB_nAXJoSQDp-FT_Sa9vKbpd_QUtnEkL6XNvfgvuCcVd1trWFFhUJIGKF6aaGqNJOD2QxbgSSQITctKa5uNXI_SaW_D6syQpjj85F3HM7R0_-r6jN40gPL_KAbCc9hK7Qv4PEducEdmJwcfs1PkbcuV_i4Soew2hxRa04SHVj49DoEf5F_QUpKLm0Xfh4dns2Oiz5gQuG5kevCqbqaevJKWjeBCV_LGucbQ5tzH-vQROZdXYUoFZ3Pc4qCSTkxpSBVDeKo6UvYbpdteAU5815NNUc4GQyPEYmOaZQso_NEER3LgN3a0fpeTZyCWlzZxCpKYzvjWzK-7Y2fwf5Q6LoT0_h39s_UQUNWUsJOH9DStp9YVnGNjTe-jqxGriqd8qFxsRTRCWRrTQY71DvDT_qOyWDvtrttP2tvLOOCS02oKoMPQzLON9pEcW1YbiiPRIhDPDEDNRomo3qOU9rLi6TcraTUvKpe_71O7-Hh8dnJ3M6_Lb6_gUdkim6xZw-216tNeAsP_O_15c3qXRr4fwCW-wAk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MEG+Sensor+Selection+for+Neural+Speech+Decoding&rft.jtitle=IEEE+access&rft.au=DASH%2C+DEBADATTA&rft.au=WISLER%2C+ALAN&rft.au=FERRARI%2C+PAUL&rft.au=DAVENPORT%2C+ELIZABETH+MOODY&rft.date=2020-01-01&rft.eissn=2169-3536&rft.volume=8&rft.spage=182320&rft.epage=182337&rft_id=info:doi/10.1109%2Faccess.2020.3028831&rft_id=info%3Apmid%2F33204579&rft.externalDocID=PMC7668411 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |