REDN: A Recursive Encoder-Decoder Network for Edge Detection
In this paper, we introduce REDN: A Recursive Encoder-Decoder Network with Skip-Connections for edge detection in natural images. The proposed network is a novel integration of a Recursive Neural Network with an Encoder-Decoder architecture. The recursive network enables iterative refinement of the...
Uložené v:
| Vydané v: | IEEE access Ročník 8; s. 90153 - 90164 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, we introduce REDN: A Recursive Encoder-Decoder Network with Skip-Connections for edge detection in natural images. The proposed network is a novel integration of a Recursive Neural Network with an Encoder-Decoder architecture. The recursive network enables iterative refinement of the edges using a single network model. Adding skip-connections between encoder and decoder helps the gradients reach all the layers of a network more easily and allows information related to finer details in the early stage of the encoder to be fully utilized in the decoder. Based on our extensive experiments on popular boundary detection datasets including BSDS500 [1], NYUD [2] and Pascal Context [3], REDN significantly advances the state-of-the-art on edge detection regarding standard evaluation metrics such as Optimal Dataset Scale (ODS) F-measure, Optimal Image Scale (OIS) F-measure, and Average Precision (AP). |
|---|---|
| AbstractList | In this paper, we introduce REDN: A Recursive Encoder-Decoder Network with Skip-Connections for edge detection in natural images. The proposed network is a novel integration of a Recursive Neural Network with an Encoder-Decoder architecture. The recursive network enables iterative refinement of the edges using a single network model. Adding skip-connections between encoder and decoder helps the gradients reach all the layers of a network more easily and allows information related to finer details in the early stage of the encoder to be fully utilized in the decoder. Based on our extensive experiments on popular boundary detection datasets including BSDS500 [1], NYUD [2] and Pascal Context [3], REDN significantly advances the state-of-the-art on edge detection regarding standard evaluation metrics such as Optimal Dataset Scale (ODS) F-measure, Optimal Image Scale (OIS) F-measure, and Average Precision (AP). In this paper, we introduce REDN: A Recursive Encoder-Decoder Network with Skip-Connections for edge detection in natural images. The proposed network is a novel integration of a Recursive Neural Network with an Encoder-Decoder architecture. The recursive network enables iterative refinement of the edges using a single network model. Adding skip-connections between encoder and decoder helps the gradients reach all the layers of a network more easily and allows information related to finer details in the early stage of the encoder to be fully utilized in the decoder. Based on our extensive experiments on popular boundary detection datasets including BSDS500 [1], NYUD [2] and Pascal Context [3], REDN significantly advances the state-of-the-art on edge detection regarding standard evaluation metrics such as Optimal Dataset Scale (ODS) F-measure, Optimal Image Scale (OIS) F-measure, and Average Precision (AP).In this paper, we introduce REDN: A Recursive Encoder-Decoder Network with Skip-Connections for edge detection in natural images. The proposed network is a novel integration of a Recursive Neural Network with an Encoder-Decoder architecture. The recursive network enables iterative refinement of the edges using a single network model. Adding skip-connections between encoder and decoder helps the gradients reach all the layers of a network more easily and allows information related to finer details in the early stage of the encoder to be fully utilized in the decoder. Based on our extensive experiments on popular boundary detection datasets including BSDS500 [1], NYUD [2] and Pascal Context [3], REDN significantly advances the state-of-the-art on edge detection regarding standard evaluation metrics such as Optimal Dataset Scale (ODS) F-measure, Optimal Image Scale (OIS) F-measure, and Average Precision (AP). |
| Author | Le, Truc Duan, Ye |
| Author_xml | – sequence: 1 givenname: Truc surname: Le fullname: Le, Truc organization: Department of EECS, University of Missouri, Columbia, MO, USA – sequence: 2 givenname: Ye orcidid: 0000-0002-1166-7703 surname: Duan fullname: Duan, Ye email: duanye@missouri.edu organization: Department of EECS, University of Missouri, Columbia, MO, USA |
| BookMark | eNp9kU1v1DAQhi1UREvpL-glEhcuWfwZrxFCWu2mpVJVpBbOlj8mi5ds3DpJEf8e72ZBtAd88FjjeZ-x532NjrrYAULnBM8Iwer9Yrms7-5mFFM8o0pxUuEX6ISSSpVMsOron_MxOuv7Dc5rnlNCvkLHjApOiRQn6ONtvbr5UCyKW3Bj6sMjFHXnoodUrmAfixsYfsb0o2hiKmq_hmIFA7ghxO4NetmYtoezQzxF3y7qr8vP5fWXy6vl4rp0XFVDaUTDHSHcecp5Yw2YvFmGBePUKiYpt576hjaVEV5hQkUD3nNLuQBvnGWn6Gri-mg2-j6FrUm_dDRB7xMxrbVJQ3AtaOl4VVErqTGeK2mNcJk-9zI3UpapzPo0se5HuwXvoBuSaZ9An9504btex0ctqRKE0Qx4dwCk-DBCP-ht6B20rekgjr2mnDClxHwucunbZ6WbOKYujypXCU4wFfsXqanKpdj3CRrtwmB28839Q6sJ1jvL9WS53lmuD5ZnLXum_fOR_6vOJ1UAgL8KhRWRCrPfynK3Vw |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1007_s11063_023_11323_z crossref_primary_10_1002_cav_2051 crossref_primary_10_1007_s00521_024_10936_2 crossref_primary_10_1038_s41598_023_50899_3 crossref_primary_10_1007_s11760_024_03795_w crossref_primary_10_1016_j_patcog_2023_109361 crossref_primary_10_3390_app13021034 crossref_primary_10_1007_s11760_021_01899_1 crossref_primary_10_1109_TAI_2022_3223893 crossref_primary_10_1109_TGRS_2025_3529134 crossref_primary_10_3389_fnbot_2025_1550939 crossref_primary_10_1007_s11220_021_00351_5 crossref_primary_10_1016_j_neucom_2022_02_079 crossref_primary_10_1016_j_compmedimag_2024_102417 crossref_primary_10_3390_electronics13173540 |
| Cites_doi | 10.1109/CVPR.2014.49 10.1109/TPAMI.2007.1144 10.1109/CVPR.2019.01133 10.1109/CVPR.2017.191 10.1023/B:VISI.0000022288.19776.77 10.1109/ICCV.2011.6126343 10.1109/CVPR.2016.90 10.1109/TPAMI.2014.2377715 10.1109/ICCV.2015.164 10.1023/A:1011174803800 10.1098/rspb.1980.0020 10.1007/978-3-642-33718-5_56 10.1109/CVPR.2018.00474 10.1109/CVPR.2015.7299067 10.5244/C.29.110 10.1109/CVPR.2015.7298594 10.1109/CVPR.2017.622 10.1109/CVPR.2018.00716 10.1109/ACCESS.2020.2981720 10.1109/CVPR.1999.786963 10.1109/34.1000236 10.1109/ICCV.2015.304 10.1109/TAC.1974.1100577 10.1109/34.56205 10.1109/TPAMI.2012.231 10.1109/CVPR.2017.195 10.1109/TPAMI.2010.161 10.1109/CVPR.2006.298 10.1109/T-C.1975.224274 10.1109/CVPR.2017.187 10.1109/34.99234 10.1109/TPAMI.1986.4767769 10.1109/TPAMI.1986.4767851 10.1007/978-3-319-46448-0_3 10.1109/CVPR.2016.488 10.1117/12.7972120 10.1109/CVPR.2015.7298965 10.1007/978-3-030-01231-1_35 10.1109/CVPR.2016.181 10.1109/CVPR.2019.00395 10.1109/TPAMI.2017.2700300 10.1109/CVPR.2015.7298782 10.1007/s11263-017-1004-z 10.1007/978-3-030-01219-9_24 10.1109/TPAMI.2016.2599174 10.1109/TPAMI.2014.17 10.1007/978-3-540-88690-7_4 10.1109/CVPR.2007.383343 10.1109/TPAMI.2016.2577031 10.1109/CVPR.2014.119 10.1109/CVPR.2018.00031 10.1109/CVPR.2015.7298652 10.1109/TPAMI.2004.1273918 10.1109/CVPR.2018.00346 10.1109/CVPR.2017.243 10.1109/ICMLA.2011.102 10.1007/978-3-642-15552-9_47 10.1109/ICCV.2015.178 10.24963/ijcai.2019/110 10.1109/CVPR.2013.262 10.1109/CVPR.2015.7298651 10.1109/CVPR.2013.406 10.1109/CVPR.2016.28 10.1109/34.93808 10.1007/BF00133570 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 5PM DOA |
| DOI | 10.1109/ACCESS.2020.2994160 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 90164 |
| ExternalDocumentID | oai_doaj_org_article_7c4662b72aad497ba5c4bd8d7b939b39 PMC7295132 10_1109_ACCESS_2020_2994160 9091790 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Institute of Biomedical Imaging and Bioengineering grantid: R03-EB028427 funderid: 10.13039/100000070 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 5PM |
| ID | FETCH-LOGICAL-c496t-a5f4c114cd244fbaeafbab305342b93724bd2df2f6a5d90125fedd4b245edacb3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538727700103&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:21:05 EDT 2025 Tue Sep 30 15:52:25 EDT 2025 Thu Oct 02 07:12:32 EDT 2025 Sun Jun 29 15:37:20 EDT 2025 Sat Nov 29 02:42:25 EST 2025 Tue Nov 18 22:52:10 EST 2025 Wed Aug 27 02:30:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c496t-a5f4c114cd244fbaeafbab305342b93724bd2df2f6a5d90125fedd4b245edacb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1166-7703 |
| OpenAccessLink | https://doaj.org/article/7c4662b72aad497ba5c4bd8d7b939b39 |
| PMID | 32542175 |
| PQID | 2454102539 |
| PQPubID | 4845423 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2020_2994160 proquest_miscellaneous_2413995885 ieee_primary_9091790 proquest_journals_2454102539 crossref_primary_10_1109_ACCESS_2020_2994160 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7295132 doaj_primary_oai_doaj_org_article_7c4662b72aad497ba5c4bd8d7b939b39 |
| PublicationCentury | 2000 |
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 20200000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref56 ref59 ref15 shi (ref35) 2016 ref58 ref14 ref53 ref52 ref55 ref11 howard (ref86) 2017 ref54 ref17 ref16 chen (ref18) 2015 ref19 maas (ref74) 2013 duda (ref42) 1973 ren (ref57) 2012 ref51 ref50 ref90 ref46 ref89 ref45 ref48 ref47 ref44 ref87 poma (ref32) 2020 ref8 ref7 ref9 ref4 ref3 simonyan (ref13) 2014 ref6 ref5 ref82 ronneberger (ref36) 2015 xu (ref66) 2017 ref81 ref40 kingma (ref76) 2014 ref80 ref79 krizhevsky (ref12) 2012 ref78 ref34 kokkinos (ref10) 2016 ref37 nathan silberman (ref2) 2012 ref31 ref30 ref77 ref33 abadi (ref75) 2015 ref1 ref39 ref38 ioffe (ref73) 2015 kivinen (ref60) 2014; 33 iandola (ref88) 2016 ganin (ref83) 2015 shen (ref63) 2015 ref71 ref70 ref72 badrinarayanan (ref20) 2015 ziou (ref49) 1998; 8 ref68 ref24 ref67 ref23 gupta (ref85) 2014 ref26 ref69 ref25 ref64 hwang (ref84) 2015 marr (ref43) 1980; 207 ref22 ref65 ref21 ref28 sobel (ref41) 0 ref27 ref29 ref62 ref61 |
| References_xml | – year: 2016 ident: ref88 article-title: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5MB model size publication-title: arXiv 1602 07360 – ident: ref80 doi: 10.1109/CVPR.2014.49 – start-page: 3982 year: 2015 ident: ref63 article-title: DeepContour: A deep convolutional feature learned by positive-sharing loss for contour detection publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR) – ident: ref8 doi: 10.1109/TPAMI.2007.1144 – ident: ref70 doi: 10.1109/CVPR.2019.01133 – ident: ref30 doi: 10.1109/CVPR.2017.191 – ident: ref78 doi: 10.1023/B:VISI.0000022288.19776.77 – ident: ref69 doi: 10.1109/ICCV.2011.6126343 – start-page: 1 year: 2014 ident: ref76 article-title: Adam: A method for stochastic optimization publication-title: Proc IEEE Int Conf Learn Represent – ident: ref38 doi: 10.1109/CVPR.2016.90 – start-page: 3961 year: 2017 ident: ref66 article-title: Learning deep structured multi-scale features using attention-gated crfs for contour prediction publication-title: Advances Neural Information Processing Systems – ident: ref59 doi: 10.1109/TPAMI.2014.2377715 – ident: ref25 doi: 10.1109/ICCV.2015.164 – ident: ref9 doi: 10.1023/A:1011174803800 – volume: 207 start-page: 187 year: 1980 ident: ref43 article-title: Theory of edge detection publication-title: Proc Roy Soc London B Biol Sci doi: 10.1098/rspb.1980.0020 – ident: ref55 doi: 10.1007/978-3-642-33718-5_56 – ident: ref87 doi: 10.1109/CVPR.2018.00474 – ident: ref62 doi: 10.1109/CVPR.2015.7299067 – ident: ref82 doi: 10.5244/C.29.110 – year: 2016 ident: ref35 article-title: Learning non-lambertian object intrinsics across ShapeNet categories publication-title: arXiv 1612 08510 – ident: ref14 doi: 10.1109/CVPR.2015.7298594 – year: 2015 ident: ref20 article-title: SegNet: A deep convolutional encoder-decoder architecture for image segmentation publication-title: arXiv 1511 00561 – year: 1973 ident: ref42 publication-title: Pattern Classification Scene Analysis – ident: ref28 doi: 10.1109/CVPR.2017.622 – ident: ref89 doi: 10.1109/CVPR.2018.00716 – ident: ref90 doi: 10.1109/ACCESS.2020.2981720 – ident: ref48 doi: 10.1109/CVPR.1999.786963 – ident: ref77 doi: 10.1109/34.1000236 – ident: ref22 doi: 10.1109/ICCV.2015.304 – ident: ref4 doi: 10.1109/TAC.1974.1100577 – ident: ref46 doi: 10.1109/34.56205 – start-page: 345 year: 2014 ident: ref85 article-title: Learning rich features from RGB-D images for object detection and segmentation publication-title: Proc IEEE Eur Conf Comput Vis – ident: ref16 doi: 10.1109/TPAMI.2012.231 – ident: ref33 doi: 10.1109/CVPR.2017.195 – ident: ref1 doi: 10.1109/TPAMI.2010.161 – ident: ref51 doi: 10.1109/CVPR.2006.298 – start-page: 234 year: 2015 ident: ref36 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Proc Med Image Comput Comput -Assist Intervent – ident: ref5 doi: 10.1109/T-C.1975.224274 – ident: ref27 doi: 10.1109/CVPR.2017.187 – start-page: 746 year: 2012 ident: ref2 article-title: Indoor segmentation and support inference from RGBD images publication-title: Proc Eur Conf Comput Vis – ident: ref7 doi: 10.1109/34.99234 – ident: ref44 doi: 10.1109/TPAMI.1986.4767769 – ident: ref45 doi: 10.1109/TPAMI.1986.4767851 – year: 2015 ident: ref75 publication-title: TensorFlow Large-Scale Machine Learning on Heterogeneous Systems – ident: ref39 doi: 10.1007/978-3-319-46448-0_3 – ident: ref37 doi: 10.1109/CVPR.2016.488 – ident: ref6 doi: 10.1117/12.7972120 – start-page: 271 year: 0 ident: ref41 article-title: A $3\times3$ isotropic gradient operator for image processing publication-title: Pattern Classification and Scene Analysis – ident: ref19 doi: 10.1109/CVPR.2015.7298965 – volume: 33 start-page: 512 year: 2014 ident: ref60 article-title: Visual boundary prediction: A deep neural prediction network and quality dissection publication-title: Proc 17th Int Conf Artif Intell Statist – ident: ref65 doi: 10.1007/978-3-030-01231-1_35 – ident: ref40 doi: 10.1109/CVPR.2016.181 – start-page: 3 year: 2013 ident: ref74 article-title: Rectifier nonlinearities improve neural network acoustic models publication-title: Proc IEEE Int Conf Mach Learn – ident: ref31 doi: 10.1109/CVPR.2019.00395 – ident: ref29 doi: 10.1109/TPAMI.2017.2700300 – ident: ref81 doi: 10.1109/CVPR.2015.7298782 – ident: ref64 doi: 10.1007/s11263-017-1004-z – ident: ref68 doi: 10.1007/978-3-030-01219-9_24 – year: 2017 ident: ref86 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv 1704 04861 – start-page: 584 year: 2012 ident: ref57 article-title: Discriminatively trained sparse code gradients for contour detection publication-title: Proc Int Conf Neural Inf Process – start-page: 1 year: 2015 ident: ref84 article-title: Pixel-wise deep learning for contour detection publication-title: Proc IEEE Int Conf Learn Represent – ident: ref24 doi: 10.1109/TPAMI.2016.2599174 – ident: ref56 doi: 10.1109/TPAMI.2014.17 – start-page: 1 year: 2015 ident: ref18 article-title: Semantic image segmentation with deep convolutional nets and fully connected CRFS publication-title: Proc Int Conf Learn Represent – ident: ref53 doi: 10.1007/978-3-540-88690-7_4 – start-page: 1923 year: 2020 ident: ref32 article-title: Dense extreme inception network: Towards a robust CNN model for edge detection publication-title: Proc IEEE Winter Conf Appl Comput Vis (WACV) – ident: ref52 doi: 10.1109/CVPR.2007.383343 – ident: ref15 doi: 10.1109/TPAMI.2016.2577031 – ident: ref3 doi: 10.1109/CVPR.2014.119 – start-page: 1097 year: 2012 ident: ref12 article-title: Imagenet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref72 doi: 10.1109/CVPR.2018.00031 – ident: ref23 doi: 10.1109/CVPR.2015.7298652 – start-page: 536 year: 2015 ident: ref83 article-title: N4-fields: Neural network nearest neighbor fields for image transforms publication-title: Proc Asian Conf Comput Vis – ident: ref50 doi: 10.1109/TPAMI.2004.1273918 – start-page: 1 year: 2016 ident: ref10 article-title: Pushing the boundaries of boundary detection using deep learning publication-title: Proc Int Conf Learn Represent – ident: ref71 doi: 10.1109/CVPR.2018.00346 – start-page: 1 year: 2015 ident: ref73 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proc Int Conf Mach Learn – ident: ref34 doi: 10.1109/CVPR.2017.243 – ident: ref61 doi: 10.1109/ICMLA.2011.102 – ident: ref54 doi: 10.1007/978-3-642-15552-9_47 – ident: ref21 doi: 10.1109/ICCV.2015.178 – start-page: 1 year: 2014 ident: ref13 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Proc Int Conf Learn Represent – ident: ref67 doi: 10.24963/ijcai.2019/110 – ident: ref79 doi: 10.1109/CVPR.2013.262 – ident: ref17 doi: 10.1109/CVPR.2015.7298651 – ident: ref58 doi: 10.1109/CVPR.2013.406 – volume: 8 start-page: 537 year: 1998 ident: ref49 article-title: Edge detection techniques-An overview publication-title: Int J Pattern Recognit Image Anal – ident: ref26 doi: 10.1109/CVPR.2016.28 – ident: ref47 doi: 10.1109/34.93808 – ident: ref11 doi: 10.1007/BF00133570 |
| SSID | ssj0000816957 |
| Score | 2.290908 |
| Snippet | In this paper, we introduce REDN: A Recursive Encoder-Decoder Network with Skip-Connections for edge detection in natural images. The proposed network is a... |
| SourceID | doaj pubmedcentral proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 90153 |
| SubjectTerms | Coders Convolution Datasets Decoding deep learning Detectors Edge detection encoder-decoder network Encoders-Decoders Fuses Image edge detection Iterative methods Machine learning Neural networks recursive network Task analysis |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYA9dAegBYqtgWUShwJJI4d26iXZXdRTyuEWomb5VcoEsqiZZffz4xjIiJVlbgkUWxHMx5P_I09niHkRFoqpDfoViVZzkofclsFmVfKlcoAJK0aH5NNiPlc3t6q6w1y2p-FCSFE57Nwho9xL98v3BqXys4VTG5CgYG-KUTdndXq11MwgYTiIgUWKgt1Pp5MgAcwAWlxBj9dQB7FYPKJMfpTUpUBvhx6R76Zbq523kfoLtlOsDIbd-PgM9kI7Rfy6U2wwT3y82Y2nV9k4-wGl9jRaz2btXiifZlPQ7xn884nPAMgm838XcimYRVdtdp98udq9nvyK0-5E3LHVL3KDW-YA1vHeZi_G2uCgYsF5a4YtQBJKLOe-oY2teEeMAHlTfCeWcp48MbZ6ivZahdtOEDnp8IYT5WMiUkqr6Q1ZeMaXlthK8VHhL52qnYpsDjmt3jQ0cAolO4koVESOkliRE77Ro9dXI3_V79EafVVMSh2fAHdrpOOaeFYXVMrKJDLlLCGO-BSegEMK6B0RPZQVP1HkpRG5PBV9jop8JOGfmCAvTi2-tEXg-rhfoppw2KNdUo8GCwldIEYjJkBncOS9v5vDOINRg0vK_rt3zR9Jx-R_W6t55BsrZbrcEQ-uOfV_dPyOI78F8moAkE priority: 102 providerName: IEEE |
| Title | REDN: A Recursive Encoder-Decoder Network for Edge Detection |
| URI | https://ieeexplore.ieee.org/document/9091790 https://www.proquest.com/docview/2454102539 https://www.proquest.com/docview/2413995885 https://pubmed.ncbi.nlm.nih.gov/PMC7295132 https://doaj.org/article/7c4662b72aad497ba5c4bd8d7b939b39 |
| Volume | 8 |
| WOSCitedRecordID | wos000538727700103&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA86POhB_MTpHBU8Wm3TpEnEy9wqXhwiCruFfFUFqTKnR_92X9I61otevLTQfJD88pL3Xvo-EDrmGjNulTer4iQmqXWxzhyPM2FSoUAkzUobkk2w8ZhPJuJ2IdWXtwmrwwPXwJ0xQ_Ica4aVskQwragh2nLLtMiEzoLrXsLEgjIVzmCe5oKyJsxQmoizwXAIMwKFECencASDHJK0WFGI2N-kWGlJm21byQXmc7WB1hupMRrUo91ES67aQmsLsQS30cVdMRqfR4Pozt-ge6P0qKi8w_o0Hrnwjsa1yXcEcmpU2EcXjdwsWGJVO-jhqrgfXsdNaoTYEJHPYkVLYkCVMRbYc6mVU_DQsHczggEYhgEjbEtc5opaYPmYls5aojGhziqjs13UqV4rt-dtmxKAFgse8o5kVnCt0tKUNNcM8KVdhH9QkqaJG-7TV7zIoD8kQtbQSg-tbKDtopN5o7c6bMbv1S89_POqPuZ1-ACUIBtKkH9RQhdt-8WbdyJAFGIC-u79LKZs9ue7BBwIiFbUtzqaF8PO8r9LVOVeP3yd1Pv9cg4QsBYRtMbZLqmen0KMbtBZKCj6-_8xsQO06sGqL356qDObfrhDtGI-Z8_v0z5aZhPeD-QPz5uvoh-cGL8BF_kIzg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3va9UwMIxNUD9s6hw-nVrBj-vWpkmTiF_e3ntj4iwyJuxbyK_qQPrk7T3_fu_SrKwggl_a0iTlcpfr_cjljpD30lIhvcGwKslyVvqQ2yrIvFKuVAZU0qr1sdiEaBp5fa2-bpGj4SxMCCEGn4VjfIx7-X7pNugqO1Eg3IQCA30HK2el01qDRwVLSCguUmqhslAn09kMZgFGIC2O4bcLukcxEj8xS38qqzLSMMfxkfcEztne_4H6hOwmxTKb9ivhKdkK3TPy-F66wX3y8XIxbz5k0-wSnewYt54tOjzTvsrnId6zpo8Kz0CVzRb-e8jmYR2Dtbrn5NvZ4mp2nqfqCbljql7nhrfMgbXjPEjw1ppg4GKBvStGLSgllFlPfUvb2nAPWgHlbfCeWcp48MbZ6oBsd8suvMDwp8IYT5WMpUkqr6Q1ZetaXlthK8UnhN4hVbuUWhwrXPzU0cQolO4poZESOlFiQo6GQb_6zBr_7n6K1Bq6Ylrs-ALQrhOXaeFYXVMrKIDLlLCGO5il9AImrADSCdlHUg0fSVSakMM72uvEwrca8MBA--I46t3QDMyHOyqmC8sN9inxaLCUgAIxWjMjOMct3c2PmMYbzBpeVvTl32F6Sx6eX3250Befms-vyCNERe_5OSTb69UmvCYP3O_1ze3qTeSCP1oPBYo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=REDN%3A+A+Recursive+Encoder-Decoder+Network+for+Edge+Detection&rft.jtitle=IEEE+access&rft.au=Le%2C+Truc&rft.au=Duan%2C+Ye&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=90153&rft.epage=90164&rft_id=info:doi/10.1109%2FACCESS.2020.2994160&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_2994160 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |