An efficient numerical algorithm for exact inference in meta analysis

The performance of commonly used asymptotic inference procedures for the random-effects model used in meta analysis relies on the number of studies. When the number of studies is moderate or small, the exact inference procedure is more reliable than the asymptotic counterparts. However, the related...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of statistical computation and simulation Ročník 88; číslo 4; s. 646 - 656
Hlavní autoři: Wang, Yan, Tian, Lu
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Taylor & Francis 04.03.2018
Taylor & Francis Ltd
Témata:
ISSN:0094-9655, 1563-5163
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The performance of commonly used asymptotic inference procedures for the random-effects model used in meta analysis relies on the number of studies. When the number of studies is moderate or small, the exact inference procedure is more reliable than the asymptotic counterparts. However, the related numerical computation may be demanding and an obstacle of routine use of the exact method. In this paper, we proposed a novel numerical algorithm for constructing the exact 95% confidence interval of the location parameter in the random-effects model. The algorithm is much faster than the naive method and may greatly facilitate the use of the more appropriate exact inference procedure in meta analysis. Numerical studies and real data examples are used to illustrate the advantage of the proposed method.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0094-9655
1563-5163
DOI:10.1080/00949655.2017.1402331