Reshaping endoplasmic reticulum quality control through the unfolded protein response

Endoplasmic reticulum quality control (ERQC) pathways comprising chaperones, folding enzymes, and degradation factors ensure the fidelity of ER protein folding and trafficking to downstream secretory environments. However, multiple factors, including tissue-specific secretory proteomes, environmenta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell Jg. 82; H. 8; S. 1477
Hauptverfasser: Wiseman, R Luke, Mesgarzadeh, Jaleh S, Hendershot, Linda M
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 21.04.2022
Schlagworte:
ISSN:1097-4164, 1097-4164
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Endoplasmic reticulum quality control (ERQC) pathways comprising chaperones, folding enzymes, and degradation factors ensure the fidelity of ER protein folding and trafficking to downstream secretory environments. However, multiple factors, including tissue-specific secretory proteomes, environmental and genetic insults, and organismal aging, challenge ERQC. Thus, a key question is: how do cells adapt ERQC to match the diverse, ever-changing demands encountered during normal physiology and in disease? The answer lies in the unfolded protein response (UPR), a signaling mechanism activated by ER stress. In mammals, the UPR comprises three signaling pathways regulated downstream of the ER membrane proteins IRE1, ATF6, and PERK. Upon activation, these UPR pathways remodel ERQC to alleviate cellular stress and restore ER function. Here, we describe how UPR signaling pathways adapt ERQC, highlighting their importance for maintaining ER function across tissues and the potential for targeting the UPR to mitigate pathologies associated with protein misfolding diseases.
AbstractList Endoplasmic reticulum quality control (ERQC) pathways comprising chaperones, folding enzymes, and degradation factors ensure the fidelity of ER protein folding and trafficking to downstream secretory environments. However, multiple factors, including tissue-specific secretory proteomes, environmental and genetic insults, and organismal aging, challenge ERQC. Thus, a key question is: how do cells adapt ERQC to match the diverse, ever-changing demands encountered during normal physiology and in disease? The answer lies in the unfolded protein response (UPR), a signaling mechanism activated by ER stress. In mammals, the UPR comprises three signaling pathways regulated downstream of the ER membrane proteins IRE1, ATF6, and PERK. Upon activation, these UPR pathways remodel ERQC to alleviate cellular stress and restore ER function. Here, we describe how UPR signaling pathways adapt ERQC, highlighting their importance for maintaining ER function across tissues and the potential for targeting the UPR to mitigate pathologies associated with protein misfolding diseases.
Endoplasmic reticulum quality control (ERQC) pathways comprising chaperones, folding enzymes, and degradation factors ensure the fidelity of ER protein folding and trafficking to downstream secretory environments. However, multiple factors, including tissue-specific secretory proteomes, environmental and genetic insults, and organismal aging, challenge ERQC. Thus, a key question is: how do cells adapt ERQC to match the diverse, ever-changing demands encountered during normal physiology and in disease? The answer lies in the unfolded protein response (UPR), a signaling mechanism activated by ER stress. In mammals, the UPR comprises three signaling pathways regulated downstream of the ER membrane proteins IRE1, ATF6, and PERK. Upon activation, these UPR pathways remodel ERQC to alleviate cellular stress and restore ER function. Here, we describe how UPR signaling pathways adapt ERQC, highlighting their importance for maintaining ER function across tissues and the potential for targeting the UPR to mitigate pathologies associated with protein misfolding diseases.Endoplasmic reticulum quality control (ERQC) pathways comprising chaperones, folding enzymes, and degradation factors ensure the fidelity of ER protein folding and trafficking to downstream secretory environments. However, multiple factors, including tissue-specific secretory proteomes, environmental and genetic insults, and organismal aging, challenge ERQC. Thus, a key question is: how do cells adapt ERQC to match the diverse, ever-changing demands encountered during normal physiology and in disease? The answer lies in the unfolded protein response (UPR), a signaling mechanism activated by ER stress. In mammals, the UPR comprises three signaling pathways regulated downstream of the ER membrane proteins IRE1, ATF6, and PERK. Upon activation, these UPR pathways remodel ERQC to alleviate cellular stress and restore ER function. Here, we describe how UPR signaling pathways adapt ERQC, highlighting their importance for maintaining ER function across tissues and the potential for targeting the UPR to mitigate pathologies associated with protein misfolding diseases.
Author Wiseman, R Luke
Hendershot, Linda M
Mesgarzadeh, Jaleh S
Author_xml – sequence: 1
  givenname: R Luke
  surname: Wiseman
  fullname: Wiseman, R Luke
  email: wiseman@scripps.edu
  organization: Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA. Electronic address: wiseman@scripps.edu
– sequence: 2
  givenname: Jaleh S
  surname: Mesgarzadeh
  fullname: Mesgarzadeh, Jaleh S
  organization: Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
– sequence: 3
  givenname: Linda M
  surname: Hendershot
  fullname: Hendershot, Linda M
  email: linda.hendershot@stjude.org
  organization: Department of Tumor Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA. Electronic address: linda.hendershot@stjude.org
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35452616$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLxDAcxIOsuA_9BiI9emlN0jzaoyy-YEEQ91zS9N9tlzTpNslhv70FV_A0c_jNMMwaLayzgNA9wRnBRDwds8EZDSajmNIM5xmm_AqtCC5lyohgi39-idbeHzEmjBflDVrmnHEqiFih_Rf4To29PSRgGzca5YdeJxOEXkcTh-QUlenDOdHOhsmZJHSTi4duVkiibZ1poEnGyQXo7Rzzo7MebtF1q4yHu4tu0P715Xv7nu4-3z62z7tUs1KEVKqCAq81l4Jp3JZcUd2WiuSY1UKAxHWbN63M20YUosGqlpKURcGUULKuSUE36PG3dx5wiuBDNfR-_sQoCy76igrOaJkXAs_owwWN9QBNNU79oKZz9XcF_QGUomYE
CitedBy_id crossref_primary_10_1016_j_imlet_2024_106855
crossref_primary_10_1016_j_metabol_2023_155530
crossref_primary_10_1016_j_neuroscience_2025_08_052
crossref_primary_10_1186_s12916_024_03593_8
crossref_primary_10_1016_j_freeradbiomed_2025_05_002
crossref_primary_10_1016_j_neuint_2024_105695
crossref_primary_10_1016_j_chembiol_2025_05_004
crossref_primary_10_3390_cancers17121972
crossref_primary_10_1016_j_tibs_2024_06_006
crossref_primary_10_3390_ijms232113605
crossref_primary_10_1038_s41420_023_01496_w
crossref_primary_10_1038_s41467_025_61666_5
crossref_primary_10_3389_fphar_2025_1595845
crossref_primary_10_3390_ijms231911826
crossref_primary_10_1016_j_biopha_2024_117025
crossref_primary_10_1038_s41467_024_49519_z
crossref_primary_10_1186_s43094_025_00788_5
crossref_primary_10_3389_fphar_2024_1413853
crossref_primary_10_3390_cells11101661
crossref_primary_10_3390_ijms26157506
crossref_primary_10_26508_lsa_202402627
crossref_primary_10_1042_BCJ20240444
crossref_primary_10_3748_wjg_v31_i13_104671
crossref_primary_10_3389_fpls_2025_1574020
crossref_primary_10_1007_s11033_023_08558_3
crossref_primary_10_1089_hum_2024_191
crossref_primary_10_1177_20503121241289828
crossref_primary_10_1111_odi_15320
crossref_primary_10_1016_j_tcb_2024_10_003
crossref_primary_10_1016_j_ydbio_2023_12_007
crossref_primary_10_1186_s12967_023_04328_8
crossref_primary_10_1007_s12550_025_00586_1
crossref_primary_10_1038_s41401_023_01172_w
crossref_primary_10_1007_s13577_025_01238_3
crossref_primary_10_1038_s44318_024_00232_z
crossref_primary_10_1097_FJC_0000000000001663
crossref_primary_10_1097_MD_0000000000041075
crossref_primary_10_3390_cells14060419
crossref_primary_10_4103_NRR_NRR_D_23_00995
crossref_primary_10_2147_JIR_S549048
crossref_primary_10_3389_fimmu_2022_1090989
crossref_primary_10_1016_j_abb_2022_109427
crossref_primary_10_3389_fphar_2025_1531277
crossref_primary_10_1016_j_jbc_2025_110504
crossref_primary_10_3389_fendo_2023_1117414
crossref_primary_10_1523_JNEUROSCI_1406_24_2025
crossref_primary_10_3390_ijms241512171
crossref_primary_10_1002_mco2_70365
crossref_primary_10_1016_j_tiv_2025_106133
crossref_primary_10_1007_s12192_023_01357_6
crossref_primary_10_1002_ctm2_70082
crossref_primary_10_1007_s12011_023_03995_4
crossref_primary_10_1002_ptr_8517
crossref_primary_10_1016_j_placenta_2025_05_020
crossref_primary_10_3390_ijms25136984
crossref_primary_10_1016_j_nexres_2025_100460
crossref_primary_10_1016_j_cellsig_2022_110489
crossref_primary_10_1002_ijch_202300162
crossref_primary_10_1186_s12967_025_06076_3
crossref_primary_10_34133_research_0547
crossref_primary_10_1136_egastro_2024_100129
crossref_primary_10_1016_j_ecoenv_2025_118737
crossref_primary_10_1016_j_isci_2024_109100
crossref_primary_10_3389_fimmu_2024_1466286
crossref_primary_10_1016_j_heliyon_2024_e39011
crossref_primary_10_7554_eLife_96675_4
crossref_primary_10_1016_j_jbc_2024_108075
crossref_primary_10_1016_j_canlet_2024_216846
crossref_primary_10_3389_fphar_2024_1397116
crossref_primary_10_3390_ijms23169398
crossref_primary_10_1016_j_jmb_2025_169052
crossref_primary_10_3389_fphys_2025_1623185
crossref_primary_10_1002_advs_202302029
crossref_primary_10_1007_s12035_025_04831_7
crossref_primary_10_3390_biomedicines11051259
crossref_primary_10_1111_acel_14447
crossref_primary_10_1111_tra_12927
crossref_primary_10_1016_j_tibs_2025_05_004
crossref_primary_10_1111_tra_12928
crossref_primary_10_1016_j_matbio_2025_07_002
crossref_primary_10_1016_j_metabol_2025_156258
crossref_primary_10_3389_fonc_2025_1550075
crossref_primary_10_1016_j_jbc_2025_110562
crossref_primary_10_1007_s11427_024_2717_6
crossref_primary_10_1016_j_ijbiomac_2024_137566
crossref_primary_10_1038_s41467_025_62073_6
crossref_primary_10_1007_s12035_023_03905_8
crossref_primary_10_1016_j_ejmech_2023_115792
crossref_primary_10_3389_fonc_2024_1446552
crossref_primary_10_1016_j_jpha_2024_01_001
crossref_primary_10_1016_j_pestbp_2024_106180
crossref_primary_10_1111_gtc_13117
crossref_primary_10_1016_j_pep_2023_106355
crossref_primary_10_1038_s41598_024_84461_6
crossref_primary_10_1096_fj_202302266R
crossref_primary_10_1210_clinem_dgae643
crossref_primary_10_3390_biom14080919
crossref_primary_10_1016_j_ijbiomac_2025_145459
crossref_primary_10_1371_journal_pone_0290371
crossref_primary_10_1038_s41419_024_07040_7
crossref_primary_10_1016_j_fct_2023_113793
crossref_primary_10_1016_j_yexcr_2024_114148
crossref_primary_10_1186_s13046_023_02807_w
crossref_primary_10_1016_j_redox_2025_103712
crossref_primary_10_1007_s00223_023_01096_x
crossref_primary_10_1016_j_ejphar_2023_175968
crossref_primary_10_3390_cells12060936
crossref_primary_10_3390_ijms242417321
crossref_primary_10_1016_j_canlet_2025_217888
crossref_primary_10_1177_25152564251363050
crossref_primary_10_1007_s11033_023_08994_1
crossref_primary_10_3389_fendo_2025_1579457
crossref_primary_10_1002_bies_202400230
crossref_primary_10_1002_arch_70007
crossref_primary_10_1016_j_neuropharm_2025_110463
crossref_primary_10_1016_j_tranon_2024_102141
crossref_primary_10_1038_s41420_024_02039_7
crossref_primary_10_1051_bioconf_202516303002
crossref_primary_10_1016_j_fct_2023_114033
crossref_primary_10_1016_j_bbagen_2023_130397
crossref_primary_10_1007_s00018_025_05745_2
crossref_primary_10_3389_fmolb_2024_1352970
crossref_primary_10_3390_antiox13091026
crossref_primary_10_3389_fnins_2024_1437854
crossref_primary_10_1038_s41467_023_40823_8
crossref_primary_10_1111_febs_16774
crossref_primary_10_12677_bp_2025_152019
crossref_primary_10_1038_s41598_024_72941_8
crossref_primary_10_1016_j_arcmed_2025_103297
crossref_primary_10_1016_j_molcel_2022_02_018
crossref_primary_10_3389_fmicb_2025_1648467
crossref_primary_10_3892_ijmm_2025_5538
crossref_primary_10_3390_f14102104
crossref_primary_10_3389_fcvm_2025_1577186
crossref_primary_10_3390_cells13020116
crossref_primary_10_1016_j_biopha_2023_115867
crossref_primary_10_1016_j_envint_2025_109478
crossref_primary_10_1186_s12964_025_02170_7
crossref_primary_10_3389_fgene_2023_1097571
crossref_primary_10_62347_RGRQ7608
crossref_primary_10_3389_fimmu_2025_1535362
crossref_primary_10_1371_journal_pgen_1010710
crossref_primary_10_1016_j_ijbiomac_2024_135351
crossref_primary_10_1016_j_bcp_2025_116799
crossref_primary_10_1038_s41388_025_03435_8
crossref_primary_10_1093_biolre_ioaf071
crossref_primary_10_3389_fcell_2023_1156152
crossref_primary_10_1016_j_jbc_2024_105719
crossref_primary_10_1186_s12967_025_06262_3
crossref_primary_10_1038_s41598_023_48769_z
crossref_primary_10_1073_pnas_2310711121
crossref_primary_10_1002_glia_24346
crossref_primary_10_3390_v17091200
crossref_primary_10_1016_j_micres_2024_127891
crossref_primary_10_1007_s11011_025_01580_3
crossref_primary_10_1038_s41413_025_00457_6
crossref_primary_10_1016_j_cellsig_2025_112075
crossref_primary_10_3389_fncel_2022_1016391
crossref_primary_10_1016_j_lfs_2023_121982
crossref_primary_10_3892_mmr_2024_13195
crossref_primary_10_1016_j_ceca_2024_102961
crossref_primary_10_1002_ddr_70027
crossref_primary_10_1016_j_cellsig_2023_110935
crossref_primary_10_1007_s10534_024_00588_z
crossref_primary_10_1016_j_cjca_2023_04_002
crossref_primary_10_3390_ijms241311221
crossref_primary_10_1002_ddr_22028
crossref_primary_10_3389_fcell_2023_1150158
crossref_primary_10_1515_hsz_2025_0108
crossref_primary_10_1016_j_taap_2024_116883
crossref_primary_10_1016_j_cej_2024_153425
crossref_primary_10_1016_j_biocel_2024_106571
crossref_primary_10_1161_JAHA_122_028201
crossref_primary_10_1016_j_ijbiomac_2025_144695
crossref_primary_10_1016_j_cstres_2024_11_005
crossref_primary_10_1016_j_ceca_2023_102733
crossref_primary_10_3390_jox15050137
crossref_primary_10_1016_j_tice_2025_102802
crossref_primary_10_1038_s41467_024_47520_0
crossref_primary_10_1002_advs_202411662
crossref_primary_10_1007_s12013_024_01607_z
crossref_primary_10_1242_jcs_263503
crossref_primary_10_1002_mco2_542
crossref_primary_10_1016_j_ecoenv_2024_117243
crossref_primary_10_1002_advs_202303872
crossref_primary_10_3390_toxics13010041
crossref_primary_10_3389_fcimb_2024_1347615
crossref_primary_10_3389_fmolb_2024_1356500
crossref_primary_10_3724_abbs_2024163
crossref_primary_10_32604_biocell_2024_050493
crossref_primary_10_1186_s13062_024_00557_z
crossref_primary_10_3390_ijms26073367
crossref_primary_10_1016_j_ijbiomac_2025_139776
crossref_primary_10_1016_j_biopha_2024_116812
crossref_primary_10_3389_fphar_2025_1615294
crossref_primary_10_26508_lsa_202402702
crossref_primary_10_3389_fphar_2023_1265178
crossref_primary_10_1016_j_ymben_2025_03_006
crossref_primary_10_1186_s13046_023_02656_7
crossref_primary_10_1016_j_chembiol_2022_12_004
crossref_primary_10_1186_s10020_024_00808_9
crossref_primary_10_26508_lsa_202402941
crossref_primary_10_1016_j_fct_2024_114633
crossref_primary_10_1038_s41419_023_05873_2
crossref_primary_10_1007_s10930_025_10264_x
crossref_primary_10_3390_jimaging9090192
crossref_primary_10_1007_s12011_024_04427_7
crossref_primary_10_3389_fcell_2024_1466997
crossref_primary_10_3389_fphys_2024_1347888
crossref_primary_10_1016_j_isci_2025_112096
crossref_primary_10_1016_j_heliyon_2024_e25267
crossref_primary_10_1161_HYPERTENSIONAHA_123_21365
crossref_primary_10_1016_j_canlet_2023_216591
crossref_primary_10_7759_cureus_91155
crossref_primary_10_1007_s12032_025_02654_z
crossref_primary_10_1186_s40104_024_01112_6
crossref_primary_10_1007_s10534_025_00695_5
crossref_primary_10_2147_IJN_S478435
crossref_primary_10_1080_15384101_2025_2557239
crossref_primary_10_3389_fphar_2025_1511701
crossref_primary_10_1186_s12885_022_09884_8
crossref_primary_10_1016_j_scitotenv_2023_169260
crossref_primary_10_1128_msphere_00941_24
crossref_primary_10_1091_mbc_E24_12_0542
crossref_primary_10_4103_1673_5374_393105
crossref_primary_10_1016_j_bej_2024_109279
crossref_primary_10_1111_bph_17385
crossref_primary_10_7554_eLife_96675
crossref_primary_10_1016_j_ejphar_2025_177774
crossref_primary_10_15252_embr_202357228
crossref_primary_10_1080_21505594_2025_2508815
crossref_primary_10_1038_s41420_024_02110_3
crossref_primary_10_1016_j_canlet_2024_217075
crossref_primary_10_1016_j_bbadis_2024_167490
crossref_primary_10_1016_j_bbrc_2024_150946
crossref_primary_10_1002_mnfr_202400361
crossref_primary_10_1016_j_jep_2024_117859
ContentType Journal Article
Copyright Copyright © 2022 Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2022 Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.molcel.2022.03.025
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
ExternalDocumentID 35452616
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM054068
– fundername: NIDDK NIH HHS
  grantid: R01 DK107604
– fundername: NIDDK NIH HHS
  grantid: R01 DK123038
GroupedDBID ---
--K
-DZ
-~X
0R~
0SF
123
1~5
2WC
4.4
457
4G.
5RE
62-
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
ABJNI
ABMAC
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGKMS
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NPM
O-L
O9-
OK1
P2P
RCE
ROL
RPZ
SDG
SES
SSZ
TR2
7X8
AAYWO
ABDGV
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
EFKBS
ID FETCH-LOGICAL-c496t-7a82e5bc5764c0f95a2cf9a1304b66e70bf3df73fd686d0ab7719884a6a7bb182
IEDL.DBID 7X8
ISICitedReferencesCount 268
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000804371300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1097-4164
IngestDate Sun Sep 28 02:45:37 EDT 2025
Wed Feb 19 02:24:24 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords ERAD
loss-of-function disease
amyloid
chaperone
ER-associated degradation
protein aggregation
IRE1
PERK
ATF6
protein misfolding disease
XBP1s
Language English
License Copyright © 2022 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-7a82e5bc5764c0f95a2cf9a1304b66e70bf3df73fd686d0ab7719884a6a7bb182
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9038009
PMID 35452616
PQID 2654293860
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2654293860
pubmed_primary_35452616
PublicationCentury 2000
PublicationDate 2022-04-21
PublicationDateYYYYMMDD 2022-04-21
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2022
SSID ssj0014589
Score 2.7123094
SecondaryResourceType review_article
Snippet Endoplasmic reticulum quality control (ERQC) pathways comprising chaperones, folding enzymes, and degradation factors ensure the fidelity of ER protein folding...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1477
SubjectTerms Animals
Endoplasmic Reticulum - metabolism
Endoplasmic Reticulum Stress - genetics
Mammals
Quality Control
Signal Transduction
Unfolded Protein Response
Title Reshaping endoplasmic reticulum quality control through the unfolded protein response
URI https://www.ncbi.nlm.nih.gov/pubmed/35452616
https://www.proquest.com/docview/2654293860
Volume 82
WOSCitedRecordID wos000804371300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qFbz4ftQXEbwGs0k22T2JiMWLpYiF3pY8oVB3q22F_nuTbEpPguBl9xRYZieTb_LNzAfAnY_4mBsjkcswRUwQhRRWDDlhCDaUSq5bsQnR7xejUTlIF26zVFa5iokxUJtGhzvyexKVlWjB8cP0EwXVqMCuJgmNTdChHsoErxajNYvA8iiBF0hW5IEHW7XOxfquj2aibSAfCIljTkn-O8iMh01v_7-feQD2EsyEj61fHIINWx-BnVZ4cnkMhm-B6QmtUtDWppl6CP0x1jB2NIbrQNj2Wi5hqmSHSc7Hvy1ceJ-cGGtgnPEwrv2yWGdrT8Cw9_z-9IKSwALSrORzJGRBbK60zzmYxq7MJdGulP5YY4pzK7By1DhBneEFN1gqIbKyKJjkUijlM5NTsFU3tT0HUBmPPJkUJuOKFT7nI9worY3LmMssk11wu7JX5R04sBKyts1iVq0t1gVnrdGraTtpo6JRAT3jF39YfQl2w78MTA_JrkDH-e1rr8G2_p6PZ1830TP8sz94_QGBOMUV
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reshaping+endoplasmic+reticulum+quality+control+through+the+unfolded+protein+response&rft.jtitle=Molecular+cell&rft.au=Wiseman%2C+R+Luke&rft.au=Mesgarzadeh%2C+Jaleh+S&rft.au=Hendershot%2C+Linda+M&rft.date=2022-04-21&rft.eissn=1097-4164&rft.volume=82&rft.issue=8&rft.spage=1477&rft_id=info:doi/10.1016%2Fj.molcel.2022.03.025&rft_id=info%3Apmid%2F35452616&rft_id=info%3Apmid%2F35452616&rft.externalDocID=35452616
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4164&client=summon