Error-free DNA damage tolerance and sister chromatid proximity during DNA replication rely on the Polα/Primase/Ctf4 Complex

Chromosomal replication is entwined with DNA damage tolerance (DDT) and chromatin structure establishment via elusive mechanisms. Here we examined how specific replication conditions affecting replisome architecture and repriming impact on DDT. We show that Saccharomyces cerevisiae Polα/Primase/Ctf4...

Full description

Saved in:
Bibliographic Details
Published in:Molecular cell Vol. 57; no. 5; p. 812
Main Authors: Fumasoni, Marco, Zwicky, Katharina, Vanoli, Fabio, Lopes, Massimo, Branzei, Dana
Format: Journal Article
Language:English
Published: United States 05.03.2015
Subjects:
ISSN:1097-4164, 1097-4164
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Chromosomal replication is entwined with DNA damage tolerance (DDT) and chromatin structure establishment via elusive mechanisms. Here we examined how specific replication conditions affecting replisome architecture and repriming impact on DDT. We show that Saccharomyces cerevisiae Polα/Primase/Ctf4 mutants, proficient in bulk DNA replication, are defective in recombination-mediated damage-bypass by template switching (TS) and have reduced sister chromatid cohesion. The decrease in error-free DDT is accompanied by increased usage of mutagenic DDT, fork reversal, and higher rates of genome rearrangements mediated by faulty strand annealing. Notably, the DDT defects of Polα/Primase/Ctf4 mutants are not the consequence of increased sister chromatid distance, but are instead caused by altered single-stranded DNA metabolism and abnormal replication fork topology. We propose that error-free TS is driven by timely replicative helicase-coupled re-priming. Defects in this event impact on replication fork architecture and sister chromatid proximity, and represent a frequent source of chromosome lesions upon replication dysfunctions.
AbstractList Chromosomal replication is entwined with DNA damage tolerance (DDT) and chromatin structure establishment via elusive mechanisms. Here we examined how specific replication conditions affecting replisome architecture and repriming impact on DDT. We show that Saccharomyces cerevisiae Polα/Primase/Ctf4 mutants, proficient in bulk DNA replication, are defective in recombination-mediated damage-bypass by template switching (TS) and have reduced sister chromatid cohesion. The decrease in error-free DDT is accompanied by increased usage of mutagenic DDT, fork reversal, and higher rates of genome rearrangements mediated by faulty strand annealing. Notably, the DDT defects of Polα/Primase/Ctf4 mutants are not the consequence of increased sister chromatid distance, but are instead caused by altered single-stranded DNA metabolism and abnormal replication fork topology. We propose that error-free TS is driven by timely replicative helicase-coupled re-priming. Defects in this event impact on replication fork architecture and sister chromatid proximity, and represent a frequent source of chromosome lesions upon replication dysfunctions.Chromosomal replication is entwined with DNA damage tolerance (DDT) and chromatin structure establishment via elusive mechanisms. Here we examined how specific replication conditions affecting replisome architecture and repriming impact on DDT. We show that Saccharomyces cerevisiae Polα/Primase/Ctf4 mutants, proficient in bulk DNA replication, are defective in recombination-mediated damage-bypass by template switching (TS) and have reduced sister chromatid cohesion. The decrease in error-free DDT is accompanied by increased usage of mutagenic DDT, fork reversal, and higher rates of genome rearrangements mediated by faulty strand annealing. Notably, the DDT defects of Polα/Primase/Ctf4 mutants are not the consequence of increased sister chromatid distance, but are instead caused by altered single-stranded DNA metabolism and abnormal replication fork topology. We propose that error-free TS is driven by timely replicative helicase-coupled re-priming. Defects in this event impact on replication fork architecture and sister chromatid proximity, and represent a frequent source of chromosome lesions upon replication dysfunctions.
Chromosomal replication is entwined with DNA damage tolerance (DDT) and chromatin structure establishment via elusive mechanisms. Here we examined how specific replication conditions affecting replisome architecture and repriming impact on DDT. We show that Saccharomyces cerevisiae Polα/Primase/Ctf4 mutants, proficient in bulk DNA replication, are defective in recombination-mediated damage-bypass by template switching (TS) and have reduced sister chromatid cohesion. The decrease in error-free DDT is accompanied by increased usage of mutagenic DDT, fork reversal, and higher rates of genome rearrangements mediated by faulty strand annealing. Notably, the DDT defects of Polα/Primase/Ctf4 mutants are not the consequence of increased sister chromatid distance, but are instead caused by altered single-stranded DNA metabolism and abnormal replication fork topology. We propose that error-free TS is driven by timely replicative helicase-coupled re-priming. Defects in this event impact on replication fork architecture and sister chromatid proximity, and represent a frequent source of chromosome lesions upon replication dysfunctions.
Author Vanoli, Fabio
Branzei, Dana
Fumasoni, Marco
Lopes, Massimo
Zwicky, Katharina
Author_xml – sequence: 1
  givenname: Marco
  surname: Fumasoni
  fullname: Fumasoni, Marco
  organization: IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
– sequence: 2
  givenname: Katharina
  surname: Zwicky
  fullname: Zwicky, Katharina
  organization: Institute of Molecular Cancer Research, University of Zurich, CH-8057, Zurich, Switzerland
– sequence: 3
  givenname: Fabio
  surname: Vanoli
  fullname: Vanoli, Fabio
  organization: IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
– sequence: 4
  givenname: Massimo
  surname: Lopes
  fullname: Lopes, Massimo
  organization: Institute of Molecular Cancer Research, University of Zurich, CH-8057, Zurich, Switzerland
– sequence: 5
  givenname: Dana
  surname: Branzei
  fullname: Branzei, Dana
  email: dana.branzei@ifom.eu
  organization: IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy. Electronic address: dana.branzei@ifom.eu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25661486$$D View this record in MEDLINE/PubMed
BookMark eNpNkN9KwzAYxYNM3Ka-gUguvWmXpGnaXo45_8DQXeh1SZMvW0fazKSDDXwpX8RnsuoEr86B73c-DmeMBq1rAaErSmJKqJhs4sZZBTZmhPKYspgk-QkaUVJkEaeCD_75IRqHsCE9mObFGRqyVAjKczFC73PvnY-MB8C3T1OsZSNXgDtnwctWAZatxqEOHXis1t41sqs13nq3r5u6O2C983W7-ol62Npa9XfX9t4ecK_dGvDS2c-PydLXjQwwmXWG45lrthb2F-jUSBvg8qjn6PVu_jJ7iBbP94-z6SJSvBBdlCW0IqlRxmRJlaacEA0UCJMUDEm5FlolmchZzo2pEiELkekcVCZ4bogyFTtHN79_-95vOwhd2dShn87KFtwulLRfoyhYnrAevT6iu6oBXW6_a_tD-bcY-wL8MHMn
CitedBy_id crossref_primary_10_1016_j_jmb_2023_168275
crossref_primary_10_1002_ijc_31788
crossref_primary_10_3390_genes8020064
crossref_primary_10_1146_annurev_biochem_062917_011921
crossref_primary_10_1371_journal_pgen_1008494
crossref_primary_10_1080_10409238_2019_1651817
crossref_primary_10_1016_j_molcel_2021_09_005
crossref_primary_10_1098_rsob_170217
crossref_primary_10_1093_nar_gkab101
crossref_primary_10_1371_journal_pgen_1005659
crossref_primary_10_3390_genes9120603
crossref_primary_10_1038_ncomms13157
crossref_primary_10_1002_1873_3468_12556
crossref_primary_10_1073_pnas_1612633114
crossref_primary_10_1101_gad_348581_121
crossref_primary_10_1016_j_tcb_2016_04_002
crossref_primary_10_1080_10985549_2023_2224199
crossref_primary_10_1080_10409238_2023_2182273
crossref_primary_10_1534_genetics_119_302580
crossref_primary_10_1038_nrm3935
crossref_primary_10_3390_genes7080048
crossref_primary_10_1016_j_molcel_2017_08_010
crossref_primary_10_1093_nar_gkae061
crossref_primary_10_1371_journal_pgen_1011405
crossref_primary_10_1534_g3_116_033571
crossref_primary_10_1371_journal_pgen_1008755
crossref_primary_10_1016_j_dnarep_2016_05_017
crossref_primary_10_1038_s44320_025_00127_z
crossref_primary_10_1007_s00412_016_0573_x
crossref_primary_10_1002_sstr_202200361
crossref_primary_10_3390_jof8060621
crossref_primary_10_3389_fonc_2021_822500
crossref_primary_10_1371_journal_pone_0203871
crossref_primary_10_1007_s00253_018_9567_3
crossref_primary_10_1016_j_molcel_2017_04_020
crossref_primary_10_3390_genes9120581
crossref_primary_10_1016_j_molcel_2018_04_022
crossref_primary_10_1007_s00294_017_0723_6
crossref_primary_10_3390_genes12071096
crossref_primary_10_1016_j_dnarep_2023_103548
crossref_primary_10_1038_nsmb_3163
crossref_primary_10_1146_annurev_genet_021920_092410
crossref_primary_10_1016_j_ceb_2016_03_015
crossref_primary_10_1016_j_dnarep_2025_103871
crossref_primary_10_1007_s00294_018_0824_x
crossref_primary_10_1042_BSR20222591
crossref_primary_10_1016_j_cell_2025_08_028
crossref_primary_10_1093_nar_gkad624
crossref_primary_10_1093_nar_gkae317
crossref_primary_10_1101_gad_265629_115
crossref_primary_10_1038_srep25513
crossref_primary_10_1093_nar_gky519
crossref_primary_10_1093_nar_gkw858
crossref_primary_10_3390_cells10123455
crossref_primary_10_1126_sciadv_1501033
crossref_primary_10_1038_s41467_020_19503_4
crossref_primary_10_1016_j_devcel_2020_01_024
crossref_primary_10_1038_s41467_018_06131_2
crossref_primary_10_1016_j_molcel_2021_01_012
crossref_primary_10_1002_jcc_25571
crossref_primary_10_1016_j_gde_2021_06_009
crossref_primary_10_1093_nar_gkab176
crossref_primary_10_15252_embj_201798732
crossref_primary_10_1093_nar_gkac746
crossref_primary_10_1093_plcell_koab047
crossref_primary_10_1016_j_molcel_2020_03_013
crossref_primary_10_1038_s44319_023_00044_y
crossref_primary_10_1093_nar_gkw024
crossref_primary_10_1002_yea_3848
crossref_primary_10_3389_fimmu_2019_00438
crossref_primary_10_3390_genes10010010
crossref_primary_10_1186_s13046_022_02321_5
crossref_primary_10_1016_j_semcdb_2022_02_013
crossref_primary_10_1016_j_molcel_2019_09_015
crossref_primary_10_1016_j_molcel_2019_01_001
crossref_primary_10_1093_nar_gky618
crossref_primary_10_1038_s41568_022_00518_6
crossref_primary_10_1534_genetics_118_301439
crossref_primary_10_1016_j_molcel_2019_10_029
crossref_primary_10_1038_s41467_022_30215_9
crossref_primary_10_1080_10409238_2017_1304355
crossref_primary_10_1101_gad_349207_121
crossref_primary_10_3389_fonc_2020_00670
crossref_primary_10_1016_j_dnarep_2021_103163
crossref_primary_10_1146_annurev_biochem_061516_044709
crossref_primary_10_1093_nar_gkaf198
crossref_primary_10_1128_AEM_01988_18
crossref_primary_10_3390_genes12101550
crossref_primary_10_1038_s41467_020_19570_7
crossref_primary_10_3389_fmolb_2021_712971
crossref_primary_10_1146_annurev_genet_080320_031523
crossref_primary_10_1016_j_dnarep_2024_103742
crossref_primary_10_15252_embj_201899021
crossref_primary_10_1016_j_dnarep_2019_04_005
crossref_primary_10_1371_journal_pgen_1009875
crossref_primary_10_1016_j_dnarep_2016_05_008
crossref_primary_10_3389_fcell_2021_702584
crossref_primary_10_1038_s41467_018_05586_7
crossref_primary_10_1007_s00018_017_2474_4
crossref_primary_10_1016_j_celrep_2019_10_123
crossref_primary_10_1016_j_dnarep_2020_102947
crossref_primary_10_1080_10409238_2020_1841089
crossref_primary_10_1371_journal_pone_0235103
crossref_primary_10_1016_j_molcel_2019_10_008
crossref_primary_10_1101_gad_349408_122
crossref_primary_10_1016_j_molcel_2021_09_013
crossref_primary_10_1016_j_molcel_2017_07_001
crossref_primary_10_7554_eLife_51963
ContentType Journal Article
Copyright Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.molcel.2014.12.038
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
ExternalDocumentID 25661486
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Telethon
  grantid: GGP12160
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
62-
7-5
AAEDT
AAEDW
AAHBH
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
AAYWO
ABDGV
ABJNI
ABMAC
ACGFO
ACGFS
ACNCT
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEFWE
AENEX
AEUPX
AEXQZ
AFFNX
AFPUW
AFTJW
AGCQF
AGHFR
AGKMS
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ASPBG
AVWKF
AZFZN
BAWUL
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EFKBS
EIF
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NPM
O-L
O9-
OK1
P2P
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
7X8
ID FETCH-LOGICAL-c496t-731b05fcff73b55400de1e02a1ef054d6dc3768284ffb36a967d8ec7648f0cfb2
IEDL.DBID 7X8
ISICitedReferencesCount 119
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000351714900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1097-4164
IngestDate Thu Oct 02 11:17:24 EDT 2025
Mon Jul 21 05:49:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-731b05fcff73b55400de1e02a1ef054d6dc3768284ffb36a967d8ec7648f0cfb2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1016/j.molcel.2014.12.038
PMID 25661486
PQID 1661992832
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1661992832
pubmed_primary_25661486
PublicationCentury 2000
PublicationDate 2015-03-05
PublicationDateYYYYMMDD 2015-03-05
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2015
SSID ssj0014589
Score 2.5019078
Snippet Chromosomal replication is entwined with DNA damage tolerance (DDT) and chromatin structure establishment via elusive mechanisms. Here we examined how specific...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 812
SubjectTerms Chromatids - genetics
DNA Damage
DNA Polymerase I - genetics
DNA Polymerase I - metabolism
DNA Primase - genetics
DNA Primase - metabolism
DNA Repair - genetics
DNA Replication - genetics
DNA, Single-Stranded - genetics
DNA, Single-Stranded - metabolism
DNA, Single-Stranded - ultrastructure
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
G2 Phase Cell Cycle Checkpoints - genetics
Microscopy, Electron
Models, Genetic
Multiprotein Complexes - genetics
Multiprotein Complexes - metabolism
Mutation
Recombination, Genetic
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Signal Transduction - genetics
Time Factors
Title Error-free DNA damage tolerance and sister chromatid proximity during DNA replication rely on the Polα/Primase/Ctf4 Complex
URI https://www.ncbi.nlm.nih.gov/pubmed/25661486
https://www.proquest.com/docview/1661992832
Volume 57
WOSCitedRecordID wos000351714900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZNk0AvTfNom_SBCr2KtVeybJ_CkmbppcseGtjboseIBBw7sbchC_1T_SP9TZ2Rvc0pEMjFNgiBkUajT_ON5mPsqw6gtUmdCNaXQnlLgSajhB0n1o9TkEXho9hEPpsVi0U5HwJu3ZBWufGJ0VH7xlGMfJTiRlKWJKxzenMrSDWK2NVBQmOLbUuEMrQw88UDi6CyKIFHJKtA4KE2V-diftd1Uzkg8iFVMSAoi8dBZtxspnvP_c037PUAM_mkt4t99gLqA7bbC0-uD9nv87ZtWhFaAP5tNuHeXKNf4aumAhLaAG5qzzuygJa7y7YhWOs5pbzQfag17y83xq4t_GfA8btac3wjqOTzpvr7ZzSnYhYdjM5WQXHyPRXcH7GL6fnPs-9i0GEQTpV6JXKZ2iQLLoRcWoQfSeIhhWRsUgiI-Lz2Dt0UHt1UCFZqU-rcF-ByrYqQuGDHb9nLuqnhPePOWIOQrCyUzZRW2IbHLeclSBekDOUx-7IZ1iXaOZEXpobmV7d8GNhj9q6fm-VNX5BjibCN6pnqkyf0_sBe4ZRnMY0s-8i2A65y-MR23N3qqms_RwPC52z-4x8Zw9LO
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Error-free+DNA+damage+tolerance+and+sister+chromatid+proximity+during+DNA+replication+rely+on+the+Pol%CE%B1%2FPrimase%2FCtf4+Complex&rft.jtitle=Molecular+cell&rft.au=Fumasoni%2C+Marco&rft.au=Zwicky%2C+Katharina&rft.au=Vanoli%2C+Fabio&rft.au=Lopes%2C+Massimo&rft.date=2015-03-05&rft.eissn=1097-4164&rft.volume=57&rft.issue=5&rft.spage=812&rft_id=info:doi/10.1016%2Fj.molcel.2014.12.038&rft_id=info%3Apmid%2F25661486&rft_id=info%3Apmid%2F25661486&rft.externalDocID=25661486
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4164&client=summon