A Structure-Based Mechanism for DNA Entry into the Cohesin Ring

Despite key roles in sister chromatid cohesion and chromosome organization, the mechanism by which cohesin rings are loaded onto DNA is still unknown. Here we combine biochemical approaches and cryoelectron microscopy (cryo-EM) to visualize a cohesin loading intermediate in which DNA is locked betwe...

Full description

Saved in:
Bibliographic Details
Published in:Molecular cell Vol. 79; no. 6; p. 917
Main Authors: Higashi, Torahiko L, Eickhoff, Patrik, Sousa, Joana S, Locke, Julia, Nans, Andrea, Flynn, Helen R, Snijders, Ambrosius P, Papageorgiou, George, O'Reilly, Nicola, Chen, Zhuo A, O'Reilly, Francis J, Rappsilber, Juri, Costa, Alessandro, Uhlmann, Frank
Format: Journal Article
Language:English
Published: United States 17.09.2020
Subjects:
ISSN:1097-4164, 1097-4164
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Despite key roles in sister chromatid cohesion and chromosome organization, the mechanism by which cohesin rings are loaded onto DNA is still unknown. Here we combine biochemical approaches and cryoelectron microscopy (cryo-EM) to visualize a cohesin loading intermediate in which DNA is locked between two gates that lead into the cohesin ring. Building on this structural framework, we design experiments to establish the order of events during cohesin loading. In an initial step, DNA traverses an N-terminal kleisin gate that is first opened upon ATP binding and then closed as the cohesin loader locks the DNA against the ATPase gate. ATP hydrolysis will lead to ATPase gate opening to complete DNA entry. Whether DNA loading is successful or results in loop extrusion might be dictated by a conserved kleisin N-terminal tail that guides the DNA through the kleisin gate. Our results establish the molecular basis for cohesin loading onto DNA.
AbstractList Despite key roles in sister chromatid cohesion and chromosome organization, the mechanism by which cohesin rings are loaded onto DNA is still unknown. Here we combine biochemical approaches and cryoelectron microscopy (cryo-EM) to visualize a cohesin loading intermediate in which DNA is locked between two gates that lead into the cohesin ring. Building on this structural framework, we design experiments to establish the order of events during cohesin loading. In an initial step, DNA traverses an N-terminal kleisin gate that is first opened upon ATP binding and then closed as the cohesin loader locks the DNA against the ATPase gate. ATP hydrolysis will lead to ATPase gate opening to complete DNA entry. Whether DNA loading is successful or results in loop extrusion might be dictated by a conserved kleisin N-terminal tail that guides the DNA through the kleisin gate. Our results establish the molecular basis for cohesin loading onto DNA.Despite key roles in sister chromatid cohesion and chromosome organization, the mechanism by which cohesin rings are loaded onto DNA is still unknown. Here we combine biochemical approaches and cryoelectron microscopy (cryo-EM) to visualize a cohesin loading intermediate in which DNA is locked between two gates that lead into the cohesin ring. Building on this structural framework, we design experiments to establish the order of events during cohesin loading. In an initial step, DNA traverses an N-terminal kleisin gate that is first opened upon ATP binding and then closed as the cohesin loader locks the DNA against the ATPase gate. ATP hydrolysis will lead to ATPase gate opening to complete DNA entry. Whether DNA loading is successful or results in loop extrusion might be dictated by a conserved kleisin N-terminal tail that guides the DNA through the kleisin gate. Our results establish the molecular basis for cohesin loading onto DNA.
Despite key roles in sister chromatid cohesion and chromosome organization, the mechanism by which cohesin rings are loaded onto DNA is still unknown. Here we combine biochemical approaches and cryoelectron microscopy (cryo-EM) to visualize a cohesin loading intermediate in which DNA is locked between two gates that lead into the cohesin ring. Building on this structural framework, we design experiments to establish the order of events during cohesin loading. In an initial step, DNA traverses an N-terminal kleisin gate that is first opened upon ATP binding and then closed as the cohesin loader locks the DNA against the ATPase gate. ATP hydrolysis will lead to ATPase gate opening to complete DNA entry. Whether DNA loading is successful or results in loop extrusion might be dictated by a conserved kleisin N-terminal tail that guides the DNA through the kleisin gate. Our results establish the molecular basis for cohesin loading onto DNA.
Author Sousa, Joana S
Snijders, Ambrosius P
Rappsilber, Juri
Chen, Zhuo A
O'Reilly, Nicola
O'Reilly, Francis J
Nans, Andrea
Higashi, Torahiko L
Eickhoff, Patrik
Flynn, Helen R
Costa, Alessandro
Uhlmann, Frank
Papageorgiou, George
Locke, Julia
Author_xml – sequence: 1
  givenname: Torahiko L
  surname: Higashi
  fullname: Higashi, Torahiko L
  organization: Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
– sequence: 2
  givenname: Patrik
  surname: Eickhoff
  fullname: Eickhoff, Patrik
  organization: Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
– sequence: 3
  givenname: Joana S
  surname: Sousa
  fullname: Sousa, Joana S
  organization: Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
– sequence: 4
  givenname: Julia
  surname: Locke
  fullname: Locke, Julia
  organization: Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK
– sequence: 5
  givenname: Andrea
  surname: Nans
  fullname: Nans, Andrea
  organization: Structural Biology STP, The Francis Crick Institute, London NW1 1AT, UK
– sequence: 6
  givenname: Helen R
  surname: Flynn
  fullname: Flynn, Helen R
  organization: Proteomics STP, The Francis Crick Institute, London NW1 1AT, UK
– sequence: 7
  givenname: Ambrosius P
  surname: Snijders
  fullname: Snijders, Ambrosius P
  organization: Proteomics STP, The Francis Crick Institute, London NW1 1AT, UK
– sequence: 8
  givenname: George
  surname: Papageorgiou
  fullname: Papageorgiou, George
  organization: Peptide Chemistry STP, The Francis Crick Institute, London NW1 1AT, UK
– sequence: 9
  givenname: Nicola
  surname: O'Reilly
  fullname: O'Reilly, Nicola
  organization: Peptide Chemistry STP, The Francis Crick Institute, London NW1 1AT, UK
– sequence: 10
  givenname: Zhuo A
  surname: Chen
  fullname: Chen, Zhuo A
  organization: Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
– sequence: 11
  givenname: Francis J
  surname: O'Reilly
  fullname: O'Reilly, Francis J
  organization: Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
– sequence: 12
  givenname: Juri
  surname: Rappsilber
  fullname: Rappsilber, Juri
  organization: Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
– sequence: 13
  givenname: Alessandro
  surname: Costa
  fullname: Costa, Alessandro
  email: alessandro.costa@crick.ac.uk
  organization: Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK. Electronic address: alessandro.costa@crick.ac.uk
– sequence: 14
  givenname: Frank
  surname: Uhlmann
  fullname: Uhlmann, Frank
  email: frank.uhlmann@crick.ac.uk
  organization: Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK. Electronic address: frank.uhlmann@crick.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32755595$$D View this record in MEDLINE/PubMed
BookMark eNpNj8lOwzAURS1URAf4A4S8ZJPw7NhJvEKlLYNUQGJYR479QlMlTrGTRf-eShSJ1b2LoyOdKRm5ziEhlwxiBiy92cZt1xhsYg4cYshiYMkJmTBQWSRYKkb__phMQ9gCMCFzdUbGCc-klEpOyO2cvvd-MP3gMbrTAS19RrPRrg4trTpPly9zunK939Pa9R3tN0gX3QZD7ehb7b7OyWmlm4AXx52Rz_vVx-IxWr8-PC3m68gIlfZRxkpjLcgcRKVUIstKGomgrOBaYyIMY0nCNWKKlQXMS2QcWanAStDGSj4j17_ene--Bwx90dbhUN9oh90QCi6SQ6ySeXZAr47oULZoi52vW-33xV80_wHPx1u-
CitedBy_id crossref_primary_10_1073_pnas_2208004119
crossref_primary_10_3389_fnins_2022_846272
crossref_primary_10_3390_ijms22062810
crossref_primary_10_7554_eLife_88656_4
crossref_primary_10_1042_EBC20220168
crossref_primary_10_1242_jcs_247577
crossref_primary_10_7554_eLife_80310
crossref_primary_10_1016_j_cell_2025_02_032
crossref_primary_10_1016_j_molcel_2024_01_009
crossref_primary_10_1016_j_bpj_2022_10_017
crossref_primary_10_7554_eLife_94180_3
crossref_primary_10_1016_j_molcel_2021_10_011
crossref_primary_10_1126_science_abm4012
crossref_primary_10_1038_s41594_022_00780_0
crossref_primary_10_1007_s00412_023_00797_4
crossref_primary_10_7554_eLife_67530
crossref_primary_10_1016_j_cub_2022_05_019
crossref_primary_10_1098_rsob_210275
crossref_primary_10_1134_S0006297924040023
crossref_primary_10_7554_eLife_62243
crossref_primary_10_1016_j_celrep_2025_115856
crossref_primary_10_1038_s41467_021_27107_9
crossref_primary_10_7554_eLife_73348
crossref_primary_10_1038_s41467_023_39696_8
crossref_primary_10_15252_embj_2021107807
crossref_primary_10_1038_s41594_023_00956_2
crossref_primary_10_1038_s41586_023_07003_6
crossref_primary_10_1002_1873_3468_14949
crossref_primary_10_1016_j_isci_2025_112322
crossref_primary_10_3390_ijms24055017
crossref_primary_10_1016_j_jbc_2023_105296
crossref_primary_10_1016_j_molcel_2023_07_006
crossref_primary_10_1038_s42003_024_06557_z
crossref_primary_10_1186_s13072_021_00411_w
crossref_primary_10_1016_j_tcb_2023_03_006
crossref_primary_10_2142_biophys_65_129
crossref_primary_10_1038_s41388_024_03221_y
crossref_primary_10_1038_s41556_022_00992_y
crossref_primary_10_1093_nar_gkab234
crossref_primary_10_1038_s41594_022_00773_z
crossref_primary_10_7554_eLife_94180
crossref_primary_10_3389_fimmu_2022_840002
crossref_primary_10_1042_BST20220898
crossref_primary_10_7554_eLife_71585
crossref_primary_10_3389_fmolb_2022_1010894
crossref_primary_10_7554_eLife_79386
crossref_primary_10_1093_femsre_fuac045
crossref_primary_10_1038_s41467_022_35444_6
crossref_primary_10_1042_BST20200241
crossref_primary_10_1016_j_molcel_2022_04_006
crossref_primary_10_1038_s41594_021_00626_1
crossref_primary_10_1128_JVI_00364_21
crossref_primary_10_1016_j_jmb_2021_166910
crossref_primary_10_1093_nar_gkab1268
crossref_primary_10_1016_j_molcel_2025_06_014
crossref_primary_10_1002_mco2_326
crossref_primary_10_1002_bies_202400120
crossref_primary_10_7554_eLife_88656
crossref_primary_10_1038_s41467_023_41596_w
crossref_primary_10_1073_pnas_2120006119
crossref_primary_10_1093_jmcb_mjae047
crossref_primary_10_1038_s41580_021_00349_7
crossref_primary_10_1093_g3journal_jkaf111
crossref_primary_10_1093_nar_gkac692
crossref_primary_10_1016_j_cell_2025_08_028
crossref_primary_10_3390_ijms221910736
crossref_primary_10_26508_lsa_202302556
crossref_primary_10_1073_pnas_2514190122
crossref_primary_10_1016_j_cbpa_2020_07_008
crossref_primary_10_1038_s41594_023_01064_x
crossref_primary_10_1016_j_ceb_2025_102464
crossref_primary_10_1038_s44318_024_00202_5
crossref_primary_10_1371_journal_pcbi_1012493
crossref_primary_10_15252_embj_2022111913
crossref_primary_10_1042_BST20240650
crossref_primary_10_1016_j_ceb_2021_12_003
crossref_primary_10_1016_j_sbi_2023_102598
crossref_primary_10_1016_j_molcel_2023_09_019
crossref_primary_10_1111_imr_12955
crossref_primary_10_1134_S0006297924040011
crossref_primary_10_1016_j_gde_2025_102310
crossref_primary_10_1016_j_cell_2022_12_044
crossref_primary_10_7554_eLife_67268
crossref_primary_10_3390_biology10060466
crossref_primary_10_1016_j_cell_2021_09_016
crossref_primary_10_1093_nar_gkac268
crossref_primary_10_1146_annurev_biochem_032620_110506
crossref_primary_10_1186_s13059_023_02982_1
crossref_primary_10_1093_nar_gkad034
crossref_primary_10_1007_s10142_023_01146_5
crossref_primary_10_1016_j_molcel_2025_02_005
crossref_primary_10_2183_pjab_99_005
ContentType Journal Article
Copyright Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.molcel.2020.07.013
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
ExternalDocumentID 32755595
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_PC_17136
– fundername: Medical Research Council
  grantid: FC001065
– fundername: Medical Research Council
  grantid: FC001198
– fundername: Wellcome Trust
  grantid: FC001065
– fundername: Wellcome Trust
  grantid: FC001198
– fundername: Cancer Research UK
  grantid: FC001198
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
62-
7-5
AAEDT
AAEDW
AAHBH
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
AAYWO
ABDGV
ABJNI
ABMAC
ACGFO
ACGFS
ACNCT
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEFWE
AENEX
AEUPX
AEXQZ
AFFNX
AFPUW
AFTJW
AGCQF
AGKMS
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ASPBG
AVWKF
AZFZN
BAWUL
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EFKBS
EIF
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NPM
O-L
O9-
OK1
P2P
ROL
RPZ
SDG
SES
SSZ
TR2
7X8
ID FETCH-LOGICAL-c496t-71bcdd05804f9935bf5c5e09d42aae34c11332aee6efd0e8be12e1b90d50acd52
IEDL.DBID 7X8
ISICitedReferencesCount 77
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000573534400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1097-4164
IngestDate Sun Sep 28 09:55:13 EDT 2025
Mon Jul 21 06:06:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords ABC-ATPase
cohesin
SMC complexes
chromosome segregation
sister chromatid cohesion
S. pombe
DNA-protein crosslink mass spectrometry
Mis4/Scc2/NIPBL
DNA loop extrusion
cryo-electron microscopy
Language English
License Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-71bcdd05804f9935bf5c5e09d42aae34c11332aee6efd0e8be12e1b90d50acd52
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7507959
PMID 32755595
PQID 2430979587
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2430979587
pubmed_primary_32755595
PublicationCentury 2000
PublicationDate 2020-09-17
PublicationDateYYYYMMDD 2020-09-17
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2020
SSID ssj0014589
Score 2.6214359
Snippet Despite key roles in sister chromatid cohesion and chromosome organization, the mechanism by which cohesin rings are loaded onto DNA is still unknown. Here we...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 917
SubjectTerms Adenosine Triphosphatases - genetics
Cell Cycle Proteins - genetics
Cell Cycle Proteins - ultrastructure
Chromatids - genetics
Chromatids - ultrastructure
Chromosomal Proteins, Non-Histone - genetics
Chromosomal Proteins, Non-Histone - ultrastructure
Chromosome Segregation - genetics
Cohesins
Cryoelectron Microscopy
DNA - genetics
DNA - ultrastructure
Nucleic Acid Conformation
Protein Conformation
Saccharomyces cerevisiae - ultrastructure
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - ultrastructure
Sister Chromatid Exchange - genetics
Title A Structure-Based Mechanism for DNA Entry into the Cohesin Ring
URI https://www.ncbi.nlm.nih.gov/pubmed/32755595
https://www.proquest.com/docview/2430979587
Volume 79
WOSCitedRecordID wos000573534400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JasMwEBVt00Iv3Zd0Q4VeRWVbsqRTSNuEXhJCF8gtyFog0NhpnBT69x05DjkVCr34ZjDjGb03muUhdJdKo1WiKbESwo0xr0kWSU2M8gAoIoogpiqxCdHvy-FQDeoLt7Juq1ydidVBbQsT7sjvY5ZQJRSXojX9JEE1KlRXawmNTdRIgMoErxbDdRWB8UoCLxRZCRAPthqdq_q7JsWHcaH4ENNqfWcQOPiNZFZg093_72ceoL2aZuL20i8O0YbLj9DOUnjy-xi12vi1Why7mDnyAEBmcc-FGeBxOcFAY_FTv407QXMEj_N5gYEl4jDIUY5z_AJgd4Leu523x2dSSykQw1Q6JyLKjLWUS8o8MBKeeW64o8qyWGuXMBNBrhpr51LnLXUyc1HsokxRy6k2lsenaCsvcneOsDFKMwB2LyF187HMslQr7g1wPyY8t010u7LMCFw11B907opFOVrbponOluYdTZc7NUZJLDgkN_ziD29fot3w10LXRiSuUMNDoLprtG2-5uNydlP5ADz7g94PqwW65A
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Structure-Based+Mechanism+for+DNA+Entry+into+the+Cohesin+Ring&rft.jtitle=Molecular+cell&rft.au=Higashi%2C+Torahiko+L&rft.au=Eickhoff%2C+Patrik&rft.au=Sousa%2C+Joana+S&rft.au=Locke%2C+Julia&rft.date=2020-09-17&rft.issn=1097-4164&rft.eissn=1097-4164&rft.volume=79&rft.issue=6&rft.spage=917&rft_id=info:doi/10.1016%2Fj.molcel.2020.07.013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4164&client=summon