Application of a Natural Language Processing Algorithm to Asthma Ascertainment. An Automated Chart Review

Difficulty of asthma ascertainment and its associated methodologic heterogeneity have created significant barriers to asthma care and research. We evaluated the validity of an existing natural language processing (NLP) algorithm for asthma criteria to enable an automated chart review using electroni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of respiratory and critical care medicine Jg. 196; H. 4; S. 430 - 437
Hauptverfasser: Wi, Chung-Il, Sohn, Sunghwan, Rolfes, Mary C., Seabright, Alicia, Ryu, Euijung, Voge, Gretchen, Bachman, Kay A., Park, Miguel A., Kita, Hirohito, Croghan, Ivana T., Liu, Hongfang, Juhn, Young J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States American Thoracic Society 15.08.2017
Schlagworte:
ISSN:1073-449X, 1535-4970, 1535-4970
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Difficulty of asthma ascertainment and its associated methodologic heterogeneity have created significant barriers to asthma care and research. We evaluated the validity of an existing natural language processing (NLP) algorithm for asthma criteria to enable an automated chart review using electronic medical records (EMRs). The study was designed as a retrospective birth cohort study using a random sample of 500 subjects from the 1997-2007 Mayo Birth Cohort who were born at Mayo Clinic and enrolled in primary pediatric care at Mayo Clinic Rochester. Performance of NLP-based asthma ascertainment using predetermined asthma criteria was assessed by determining both criterion validity (chart review of EMRs by abstractor as a gold standard) and construct validity (association with known risk factors for asthma, such as allergic rhinitis). After excluding three subjects whose respiratory symptoms could be attributed to other conditions (e.g., tracheomalacia), among the remaining eligible 497 subjects, 51% were male, 77% white persons, and the median age at last follow-up date was 11.5 years. The asthma prevalence was 31% in the study cohort. Sensitivity, specificity, positive predictive value, and negative predictive value for NLP algorithm in predicting asthma status were 97%, 95%, 90%, and 98%, respectively. The risk factors for asthma (e.g., allergic rhinitis) that were identified either by NLP or the abstractor were the same. Asthma ascertainment through NLP should be considered in the era of EMRs because it can enable large-scale clinical studies in a more time-efficient manner and improve the recognition and care of childhood asthma in practice.
AbstractList Difficulty of asthma ascertainment and its associated methodologic heterogeneity have created significant barriers to asthma care and research. We evaluated the validity of an existing natural language processing (NLP) algorithm for asthma criteria to enable an automated chart review using electronic medical records (EMRs). The study was designed as a retrospective birth cohort study using a random sample of 500 subjects from the 1997-2007 Mayo Birth Cohort who were born at Mayo Clinic and enrolled in primary pediatric care at Mayo Clinic Rochester. Performance of NLP-based asthma ascertainment using predetermined asthma criteria was assessed by determining both criterion validity (chart review of EMRs by abstractor as a gold standard) and construct validity (association with known risk factors for asthma, such as allergic rhinitis). After excluding three subjects whose respiratory symptoms could be attributed to other conditions (e.g., tracheomalacia), among the remaining eligible 497 subjects, 51% were male, 77% white persons, and the median age at last follow-up date was 11.5 years. The asthma prevalence was 31% in the study cohort. Sensitivity, specificity, positive predictive value, and negative predictive value for NLP algorithm in predicting asthma status were 97%, 95%, 90%, and 98%, respectively. The risk factors for asthma (e.g., allergic rhinitis) that were identified either by NLP or the abstractor were the same. Asthma ascertainment through NLP should be considered in the era of EMRs because it can enable large-scale clinical studies in a more time-efficient manner and improve the recognition and care of childhood asthma in practice.
Rationale: Difficulty of asthma ascertainment and its associated methodologic heterogeneity have created significant barriers to asthma care and research. Objectives: We evaluated the validity of an existing natural language processing (NLP) algorithm for asthma criteria to enable an automated chart review using electronic medical records (EMRs). Methods: The study was designed as a retrospective birth cohort study using a random sample of 500 subjects from the 1997–2007 Mayo Birth Cohort who were born at Mayo Clinic and enrolled in primary pediatric care at Mayo Clinic Rochester. Performance of NLP-based asthma ascertainment using predetermined asthma criteria was assessed by determining both criterion validity (chart review of EMRs by abstractor as a gold standard) and construct validity (association with known risk factors for asthma, such as allergic rhinitis). Measurements and Main Results: After excluding three subjects whose respiratory symptoms could be attributed to other conditions (e.g., tracheomalacia), among the remaining eligible 497 subjects, 51% were male, 77% white persons, and the median age at last follow-up date was 11.5 years. The asthma prevalence was 31% in the study cohort. Sensitivity, specificity, positive predictive value, and negative predictive value for NLP algorithm in predicting asthma status were 97%, 95%, 90%, and 98%, respectively. The risk factors for asthma (e.g., allergic rhinitis) that were identified either by NLP or the abstractor were the same. Conclusions: Asthma ascertainment through NLP should be considered in the era of EMRs because it can enable large-scale clinical studies in a more time-efficient manner and improve the recognition and care of childhood asthma in practice.
Difficulty of asthma ascertainment and its associated methodologic heterogeneity have created significant barriers to asthma care and research.RATIONALEDifficulty of asthma ascertainment and its associated methodologic heterogeneity have created significant barriers to asthma care and research.We evaluated the validity of an existing natural language processing (NLP) algorithm for asthma criteria to enable an automated chart review using electronic medical records (EMRs).OBJECTIVESWe evaluated the validity of an existing natural language processing (NLP) algorithm for asthma criteria to enable an automated chart review using electronic medical records (EMRs).The study was designed as a retrospective birth cohort study using a random sample of 500 subjects from the 1997-2007 Mayo Birth Cohort who were born at Mayo Clinic and enrolled in primary pediatric care at Mayo Clinic Rochester. Performance of NLP-based asthma ascertainment using predetermined asthma criteria was assessed by determining both criterion validity (chart review of EMRs by abstractor as a gold standard) and construct validity (association with known risk factors for asthma, such as allergic rhinitis).METHODSThe study was designed as a retrospective birth cohort study using a random sample of 500 subjects from the 1997-2007 Mayo Birth Cohort who were born at Mayo Clinic and enrolled in primary pediatric care at Mayo Clinic Rochester. Performance of NLP-based asthma ascertainment using predetermined asthma criteria was assessed by determining both criterion validity (chart review of EMRs by abstractor as a gold standard) and construct validity (association with known risk factors for asthma, such as allergic rhinitis).After excluding three subjects whose respiratory symptoms could be attributed to other conditions (e.g., tracheomalacia), among the remaining eligible 497 subjects, 51% were male, 77% white persons, and the median age at last follow-up date was 11.5 years. The asthma prevalence was 31% in the study cohort. Sensitivity, specificity, positive predictive value, and negative predictive value for NLP algorithm in predicting asthma status were 97%, 95%, 90%, and 98%, respectively. The risk factors for asthma (e.g., allergic rhinitis) that were identified either by NLP or the abstractor were the same.MEASUREMENTS AND MAIN RESULTSAfter excluding three subjects whose respiratory symptoms could be attributed to other conditions (e.g., tracheomalacia), among the remaining eligible 497 subjects, 51% were male, 77% white persons, and the median age at last follow-up date was 11.5 years. The asthma prevalence was 31% in the study cohort. Sensitivity, specificity, positive predictive value, and negative predictive value for NLP algorithm in predicting asthma status were 97%, 95%, 90%, and 98%, respectively. The risk factors for asthma (e.g., allergic rhinitis) that were identified either by NLP or the abstractor were the same.Asthma ascertainment through NLP should be considered in the era of EMRs because it can enable large-scale clinical studies in a more time-efficient manner and improve the recognition and care of childhood asthma in practice.CONCLUSIONSAsthma ascertainment through NLP should be considered in the era of EMRs because it can enable large-scale clinical studies in a more time-efficient manner and improve the recognition and care of childhood asthma in practice.
Because literature on determination of asthma status by NLP does not currently exist, it is difficult to compare our study findings with others. [...]these studies focused on text searching capabilities of NLP (i.e., record level) but did not apply the text processing and classification components of NLP at a patient level. [...]our presented work is the first report for applying an NLP approach to text extraction, processing, and classification of patients for asthma status based on a predetermined criteria. [...]our study results need to be replicated in a different study setting to ascertain the accuracy of the NLP algorithm. [...]the NLP approach for asthma ascertainment is a useful tool for asthma research and care in the era of the EMR and big data because it enables largescale clinical studies and population management.
Author Rolfes, Mary C.
Voge, Gretchen
Park, Miguel A.
Bachman, Kay A.
Wi, Chung-Il
Sohn, Sunghwan
Ryu, Euijung
Kita, Hirohito
Juhn, Young J.
Croghan, Ivana T.
Liu, Hongfang
Seabright, Alicia
Author_xml – sequence: 1
  givenname: Chung-Il
  surname: Wi
  fullname: Wi, Chung-Il
  organization: Department of Pediatric and Adolescent Medicine, Asthma Epidemiology Research Unit
– sequence: 2
  givenname: Sunghwan
  surname: Sohn
  fullname: Sohn, Sunghwan
  organization: Division of Biomedical Statistics and Informatics, and
– sequence: 3
  givenname: Mary C.
  surname: Rolfes
  fullname: Rolfes, Mary C.
  organization: Asthma Epidemiology Research Unit, Mayo Medical School, Rochester, Minnesota
– sequence: 4
  givenname: Alicia
  surname: Seabright
  fullname: Seabright, Alicia
  organization: Asthma Epidemiology Research Unit
– sequence: 5
  givenname: Euijung
  surname: Ryu
  fullname: Ryu, Euijung
  organization: Division of Biomedical Statistics and Informatics, and
– sequence: 6
  givenname: Gretchen
  surname: Voge
  fullname: Voge, Gretchen
  organization: Department of Pediatric and Adolescent Medicine, Asthma Epidemiology Research Unit, Division of Neonatology, Children’s Hospitals and Clinics of Minnesota, Minneapolis, Minnesota; and
– sequence: 7
  givenname: Kay A.
  surname: Bachman
  fullname: Bachman, Kay A.
  organization: Division of Allergic Diseases, Mayo Clinic, Mayo Clinic, Rochester, Minnesota
– sequence: 8
  givenname: Miguel A.
  surname: Park
  fullname: Park, Miguel A.
  organization: Division of Allergic Diseases, Mayo Clinic, Mayo Clinic, Rochester, Minnesota
– sequence: 9
  givenname: Hirohito
  surname: Kita
  fullname: Kita, Hirohito
  organization: Division of Allergic Diseases, Mayo Clinic, Mayo Clinic, Rochester, Minnesota
– sequence: 10
  givenname: Ivana T.
  surname: Croghan
  fullname: Croghan, Ivana T.
  organization: Department of Medicine Research, Mayo Clinic, Rochester, Minnesota
– sequence: 11
  givenname: Hongfang
  surname: Liu
  fullname: Liu, Hongfang
  organization: Division of Biomedical Statistics and Informatics, and
– sequence: 12
  givenname: Young J.
  surname: Juhn
  fullname: Juhn, Young J.
  organization: Department of Pediatric and Adolescent Medicine, Asthma Epidemiology Research Unit
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28375665$$D View this record in MEDLINE/PubMed
BookMark eNp9kV9rFDEUxYNUbLv6BXyQgC--zJr_M_MiDEutwmJFFHwLd7KZ2ZSZZE0yFb99U7cW7YNP98I953APv3N04oO3CL2kZE2pEm-jMfOaEaooqRgh6mrzBJ1RyWUl2pqclJ3UvBKi_X6KzlO6JoSyhpJn6JQ1vJZKyTPkusNhcgayCx6HAQP-BHmJMOEt-HGB0eLPMRibkvMj7qYxRJf3M84Bd6ksUIaxMYPzs_V5jTuPuyWHGbLd4c0eYsZf7I2zP5-jpwNMyb64nyv07f3F182Hant1-XHTbSsjWpUrKftdz6AnjRmoYJwz2UIpZXnbW6sGxawEPggi2TAAKOitandDuSojmprwFXp3zD0s_Wx3pnxV6uhDdDPEXzqA0_9evNvrMdxoKZVQNS8Bb-4DYvix2JT17ErHaQJvw5I0bRohFCNtW6SvH0mvwxJ9qadpyxmpGS-JK_Tq748eXvlDoQjYUWBiSCna4UFCib5Dre9Q6yNqfURdTM0jk3H5N8fSyk3_s94Ccouwhw
CitedBy_id crossref_primary_10_1097_ICO_0000000000002755
crossref_primary_10_1371_journal_pone_0247872
crossref_primary_10_1080_17476348_2024_2380067
crossref_primary_10_1093_jamia_ocac052
crossref_primary_10_1016_j_jaci_2025_07_031
crossref_primary_10_1093_jamia_ocx138
crossref_primary_10_1093_nar_gkab1080
crossref_primary_10_1016_j_jaip_2022_01_047
crossref_primary_10_1371_journal_pone_0255261
crossref_primary_10_1109_ACCESS_2019_2923583
crossref_primary_10_1080_02770903_2020_1759624
crossref_primary_10_3389_fped_2018_00258
crossref_primary_10_1146_annurev_biodatasci_020722_114525
crossref_primary_10_1016_j_anai_2024_07_005
crossref_primary_10_2196_38155
crossref_primary_10_3389_fmed_2025_1523902
crossref_primary_10_1111_pai_13419
crossref_primary_10_1136_bmjresp_2019_000524
crossref_primary_10_57120_yalvac_1536202
crossref_primary_10_3389_fped_2019_00113
crossref_primary_10_1016_j_anai_2022_03_025
crossref_primary_10_1136_bmjopen_2018_025746
crossref_primary_10_1007_s42058_025_00185_0
crossref_primary_10_1016_j_jcrc_2018_05_002
crossref_primary_10_2147_JAA_S448064
crossref_primary_10_1016_j_jbi_2017_11_011
crossref_primary_10_1164_rccm_201704_0840ED
crossref_primary_10_1186_s12911_021_01663_y
crossref_primary_10_1177_21501319231173813
crossref_primary_10_1186_s12911_021_01633_4
crossref_primary_10_1016_j_acap_2021_06_009
crossref_primary_10_2196_16970
crossref_primary_10_1016_j_chest_2021_01_045
crossref_primary_10_1007_s10930_023_10174_w
crossref_primary_10_1016_j_prrv_2017_06_002
crossref_primary_10_1136_bmjopen_2021_051926
crossref_primary_10_3389_fped_2019_00246
crossref_primary_10_1016_j_cgh_2019_10_013
crossref_primary_10_1164_rccm_201801_0002UP
crossref_primary_10_1183_23120541_00005_2020
crossref_primary_10_1016_j_prevetmed_2023_105850
crossref_primary_10_1177_26320843211061287
crossref_primary_10_1155_2022_3915491
crossref_primary_10_1016_j_jaci_2019_12_897
crossref_primary_10_2196_26777
crossref_primary_10_3389_fgene_2022_1086379
crossref_primary_10_1080_02770903_2022_2059763
crossref_primary_10_1093_nar_gky1030
crossref_primary_10_1093_nar_gky1074
crossref_primary_10_1016_j_jaip_2021_11_004
crossref_primary_10_2196_29120
crossref_primary_10_1186_s12890_018_0593_9
crossref_primary_10_1016_j_artmed_2023_102701
crossref_primary_10_1016_j_jss_2025_04_021
crossref_primary_10_1136_bmjopen_2017_020054
crossref_primary_10_1097_MLR_0000000000000848
crossref_primary_10_2196_69132
crossref_primary_10_1016_j_jaip_2023_04_014
crossref_primary_10_1016_j_jacig_2025_100409
crossref_primary_10_1080_02770903_2019_1575394
crossref_primary_10_1016_j_hlc_2023_06_725
crossref_primary_10_1186_s12874_023_02011_6
crossref_primary_10_2196_23934
Cites_doi 10.1001/jama.2013.13805
10.1016/S0140-6736(11)60874-X
10.1016/j.jaci.2009.11.018
10.1186/1472-6947-6-30
10.1002/acr.20184
10.1016/0895-4356(92)90117-6
10.1016/S0140-6736(06)69283-0
10.1016/j.jaci.2010.07.012
10.1016/S0091-6749(97)70072-1
10.1164/ajrccm/146.4.888
10.2500/aap.2015.36.3864
10.1056/NEJM199412083312301
10.1111/j.1365-2222.2008.02939.x
10.1136/bmjopen-2015-010393
10.1016/j.anai.2013.07.022
10.1378/chest.111.2.303
10.2196/medinform.6328
10.1016/j.socscimed.2004.11.034
10.3109/02770903.2014.952438
10.1016/j.jaci.2015.12.771
10.1016/j.annepidem.2005.06.054
10.1001/jama.1993.03500150059027
10.1136/bmj.f6471
10.1111/all.12134
10.1056/NEJMoa0804897
10.1164/rccm.200906-0896OC
10.1016/S0091-6749(99)70525-7
10.1002/art.27584
10.1164/rccm.200711-1754OC
10.1016/j.jacl.2016.08.001
10.1016/j.jaci.2008.07.029
10.1016/j.jaci.2005.05.043
10.1016/j.jaci.2010.11.015
10.1016/S0197-2456(98)00044-0
10.2500/aap.2017.38.4021
10.1016/S1081-1206(10)60937-4
10.1016/j.mayocp.2016.01.010
10.1136/amiajnl-2013-002463
10.1016/j.jaci.2011.11.020
10.1038/jid.2012.98
10.1056/NEJMoa0808907
10.2500/aap.2012.33.3529
10.1136/jamia.1994.95236145
ContentType Journal Article
Copyright Copyright American Thoracic Society Aug 15, 2017
Copyright © 2017 by the American Thoracic Society 2017
Copyright_xml – notice: Copyright American Thoracic Society Aug 15, 2017
– notice: Copyright © 2017 by the American Thoracic Society 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AO
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
AN0
BENPR
CCPQU
FYUFA
GHDGH
K9.
KB0
M0S
M1P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1164/rccm.201610-2006OC
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
British Nursing Database
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest One Academic Eastern Edition
British Nursing Index with Full Text
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
ProQuest One Academic Middle East (New)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7RV
  name: Nursing & Allied Health Database
  url: https://search.proquest.com/nahs
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1535-4970
EndPage 437
ExternalDocumentID PMC5564673
28375665
10_1164_rccm_201610_2006OC
Genre Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL126667
– fundername: NIA NIH HHS
  grantid: R01 AG034676
– fundername: NCATS NIH HHS
  grantid: UL1 TR000135
– fundername: NIAID NIH HHS
  grantid: R21 AI116839
GroupedDBID ---
-~X
.55
0R~
23M
2WC
34G
39C
53G
5GY
5RE
7RV
7X7
88E
8AO
8C1
8FI
8FJ
8FW
8R4
8R5
AAWTL
AAYXX
ABJNI
ABOCM
ABPMR
ABUWG
ACGFO
ACGFS
ADBBV
AENEX
AFCHL
AFFHD
AFKRA
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AN0
BAWUL
BENPR
BKEYQ
BNQBC
BPHCQ
BVXVI
C45
CCPQU
CITATION
CS3
DIK
E3Z
EBS
EJD
EMOBN
EX3
F5P
FRP
FYUFA
GX1
H13
HMCUK
HZ~
IH2
J5H
KQ8
L7B
M1P
M5~
NAPCQ
O9-
OBH
OFXIZ
OGEVE
OK1
OVD
OVIDX
P2P
PCD
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
Q2X
RWL
SJN
TAE
TEORI
THO
TR2
UKHRP
W8F
WH7
WOQ
WOW
X7M
XRW
YJK
~02
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c496t-55bdb2ab08cf14233259a153e39bee6f62e5a3f4052ffaa6abe69df39b6c48703
IEDL.DBID 7RV
ISICitedReferencesCount 67
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000407532700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1073-449X
1535-4970
IngestDate Tue Nov 04 01:55:14 EST 2025
Fri Sep 05 11:19:19 EDT 2025
Sat Nov 29 14:45:49 EST 2025
Mon Jul 21 05:59:51 EDT 2025
Sat Nov 29 03:20:43 EST 2025
Tue Nov 18 20:54:57 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords retrospective study
electronic medical records
informatics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-55bdb2ab08cf14233259a153e39bee6f62e5a3f4052ffaa6abe69df39b6c48703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5564673
PMID 28375665
PQID 1932072367
PQPubID 40575
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5564673
proquest_miscellaneous_1884462099
proquest_journals_1932072367
pubmed_primary_28375665
crossref_primary_10_1164_rccm_201610_2006OC
crossref_citationtrail_10_1164_rccm_201610_2006OC
PublicationCentury 2000
PublicationDate 2017-08-15
2017-Aug-15
20170815
PublicationDateYYYYMMDD 2017-08-15
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle American journal of respiratory and critical care medicine
PublicationTitleAlternate Am J Respir Crit Care Med
PublicationYear 2017
Publisher American Thoracic Society
Publisher_xml – name: American Thoracic Society
References Himes BE (bib22) 2008
bib36
bib37
bib34
bib35
bib32
bib30
bib31
bib29
bib27
Liu H (bib46) 2013; 2013
bib28
Lethbridge-Cejku M (bib3) 2005
bib40
Centers for Disease Control and Prevention (CDC) (bib2) 2011; 60
Ertle AR (bib25) 1996
bib47
bib48
Schiller JS (bib5) 2012
bib45
bib43
bib44
bib41
bib9
bib7
bib8
bib6
bib38
bib39
bib1
Yawn BP (bib33) 1998; 47
bib50
bib51
bib14
bib15
bib12
bib13
bib10
bib11
bib52
bib49
bib26
bib23
bib24
bib21
bib20
bib18
bib19
bib16
bib17
16159617 - J Allergy Clin Immunol. 2005 Sep;116(3):510-6
20236695 - J Allergy Clin Immunol. 2010 Apr;125(4):838-843.e2
9893185 - J Allergy Clin Immunol. 1999 Jan;103(1 Pt 1):54-9
19892860 - Am J Respir Crit Care Med. 2010 Feb 15;181(4):315-23
22475754 - J Invest Dermatol. 2012 Aug;132(8):2005-9
18266879 - Clin Exp Allergy. 2008 Apr;38(4):634-42
17069101 - Ann Allergy Asthma Immunol. 2006 Oct;97(4):469-76
24303255 - AMIA Jt Summits Transl Sci Proc. 2013 Mar 18;2013:149-53
23621120 - Allergy. 2013 Jun;68(6):764-70
8464126 - JAMA. 1993 Apr 21;269(15):1947-52
19164186 - N Engl J Med. 2009 Jan 22;360(4):329-38
9834771 - J Fam Pract. 1998 Nov;47(5):361-5
24833775 - J Am Med Inform Assoc. 2014 Sep-Oct;21(5):876-84
8947727 - Proc AMIA Annu Fall Symp. 1996;:552-6
1432015 - J Clin Epidemiol. 1992 Sep;45(9):1013-20
21195471 - J Allergy Clin Immunol. 2011 Feb;127(2):382-389.e1-13
10027502 - Control Clin Trials. 1999 Feb;20(1):91-120
18790525 - J Allergy Clin Immunol. 2008 Oct;122(4):719-23
28234052 - Allergy Asthma Proc. 2017 Mar 1;38(2):152-156
20159242 - J Allergy Clin Immunol. 2010 Feb;125(2):328-335.e11
20872595 - Arthritis Rheum. 2010 Sep;62(9):2569-81
18480428 - Am J Respir Crit Care Med. 2008 Aug 1;178(3):218-224
27678441 - J Clin Lipidol. 2016 Sep-Oct;10(5):1230-9
27836816 - JMIR Med Inform. 2016 Nov 11;4(4):e37
20816180 - J Allergy Clin Immunol. 2010 Sep;126(3):439-46; quiz 447-8
21544044 - MMWR Morb Mortal Wkly Rep. 2011 May 6;60(17):547-52
22206778 - J Allergy Clin Immunol. 2012 Apr;129(4):957-63
23842577 - JAMA. 2013 Aug 14;310(6):591-608
16872495 - BMC Med Inform Decis Mak. 2006 Jul 26;6:30
20235204 - Arthritis Care Res (Hoboken). 2010 Aug;62(8):1120-7
16935684 - Lancet. 2006 Aug 26;368(9537):733-43
27354069 - BMJ Open. 2016 Jun 28;6(6):e010393
9041973 - Chest. 1997 Feb;111(2):303-10
7969322 - N Engl J Med. 1994 Dec 8;331(23):1537-41
24125142 - Ann Allergy Asthma Immunol. 2013 Nov;111(5):364-9
16242961 - Ann Epidemiol. 2006 May;16(5):341-6
7719796 - J Am Med Inform Assoc. 1994 Mar-Apr;1(2):142-60
19164187 - N Engl J Med. 2009 Jan 22;360(4):339-53
15814171 - Soc Sci Med. 2005 Jun;60(11):2453-64
25116227 - Vital Health Stat 10. 2005 Jul;(225):1-161
28475356 - Am J Respir Crit Care Med. 2017 Aug 15;196 (4):401-402
21907864 - Lancet. 2011 Sep 10;378(9795):1006-14
26944837 - Mayo Clin Proc. 2016 Apr;91(4):411-21
1416415 - Am Rev Respir Dis. 1992 Oct;146(4):888-94
25116400 - Vital Health Stat 10. 2012 Dec;(256):1-218
9111490 - J Allergy Clin Immunol. 1997 Apr;99(4):466-74
24304677 - BMJ. 2013 Dec 04;347:f6471
22584196 - Allergy Asthma Proc. 2012 May-Jun;33(3):289-96
26314818 - Allergy Asthma Proc. 2015 Sep-Oct;36(5):372-8
18999057 - AMIA Annu Symp Proc. 2008 Nov 06;:308-12
25158051 - J Asthma. 2015 Mar;52(2):183-90
References_xml – ident: bib7
  doi: 10.1001/jama.2013.13805
– ident: bib9
  doi: 10.1016/S0140-6736(11)60874-X
– ident: bib8
  doi: 10.1016/j.jaci.2009.11.018
– ident: bib23
  doi: 10.1186/1472-6947-6-30
– ident: bib50
  doi: 10.1002/acr.20184
– ident: bib37
  doi: 10.1016/0895-4356(92)90117-6
– ident: bib6
  doi: 10.1016/S0140-6736(06)69283-0
– ident: bib10
  doi: 10.1016/j.jaci.2010.07.012
– ident: bib41
  doi: 10.1016/S0091-6749(97)70072-1
– ident: bib35
  doi: 10.1164/ajrccm/146.4.888
– ident: bib21
  doi: 10.2500/aap.2015.36.3864
– ident: bib39
  doi: 10.1056/NEJM199412083312301
– ident: bib47
  doi: 10.1111/j.1365-2222.2008.02939.x
– ident: bib28
  doi: 10.1136/bmjopen-2015-010393
– ident: bib26
  doi: 10.1016/j.anai.2013.07.022
– ident: bib40
  doi: 10.1378/chest.111.2.303
– ident: bib30
  doi: 10.2196/medinform.6328
– ident: bib43
  doi: 10.1016/j.socscimed.2004.11.034
– start-page: 1
  issue: 225
  year: 2005
  ident: bib3
  publication-title: Vital Health Stat 10
– ident: bib20
  doi: 10.3109/02770903.2014.952438
– ident: bib32
  doi: 10.1016/j.jaci.2015.12.771
– ident: bib48
  doi: 10.1016/j.annepidem.2005.06.054
– ident: bib38
  doi: 10.1001/jama.1993.03500150059027
– ident: bib1
  doi: 10.1136/bmj.f6471
– ident: bib16
  doi: 10.1111/all.12134
– ident: bib12
  doi: 10.1056/NEJMoa0804897
– ident: bib14
  doi: 10.1164/rccm.200906-0896OC
– ident: bib45
  doi: 10.1016/S0091-6749(99)70525-7
– ident: bib51
  doi: 10.1002/art.27584
– start-page: 308
  year: 2008
  ident: bib22
  publication-title: AMIA Annu Symp Proc
– ident: bib13
  doi: 10.1164/rccm.200711-1754OC
– volume: 2013
  start-page: 149
  year: 2013
  ident: bib46
  publication-title: AMIA Summits Transl Sci Proc
– start-page: 1
  issue: 256
  year: 2012
  ident: bib5
  publication-title: Vital Health Stat 10
– start-page: 552
  year: 1996
  ident: bib25
  publication-title: Proc AMIA Annu Fall Symp
– ident: bib29
  doi: 10.1016/j.jacl.2016.08.001
– ident: bib17
  doi: 10.1016/j.jaci.2008.07.029
– volume: 60
  start-page: 547
  year: 2011
  ident: bib2
  publication-title: MMWR Morb Mortal Wkly Rep
– ident: bib44
  doi: 10.1016/j.jaci.2005.05.043
– ident: bib15
  doi: 10.1016/j.jaci.2010.11.015
– ident: bib49
  doi: 10.1016/S0197-2456(98)00044-0
– ident: bib34
  doi: 10.2500/aap.2017.38.4021
– ident: bib36
  doi: 10.1016/S1081-1206(10)60937-4
– ident: bib52
  doi: 10.1016/j.mayocp.2016.01.010
– ident: bib27
  doi: 10.1136/amiajnl-2013-002463
– ident: bib18
  doi: 10.1016/j.jaci.2011.11.020
– ident: bib31
  doi: 10.1038/jid.2012.98
– ident: bib11
  doi: 10.1056/NEJMoa0808907
– ident: bib19
  doi: 10.2500/aap.2012.33.3529
– volume: 47
  start-page: 361
  year: 1998
  ident: bib33
  publication-title: J Fam Pract
– ident: bib24
  doi: 10.1136/jamia.1994.95236145
– reference: 20872595 - Arthritis Rheum. 2010 Sep;62(9):2569-81
– reference: 21907864 - Lancet. 2011 Sep 10;378(9795):1006-14
– reference: 18480428 - Am J Respir Crit Care Med. 2008 Aug 1;178(3):218-224
– reference: 20159242 - J Allergy Clin Immunol. 2010 Feb;125(2):328-335.e11
– reference: 16159617 - J Allergy Clin Immunol. 2005 Sep;116(3):510-6
– reference: 25116400 - Vital Health Stat 10. 2012 Dec;(256):1-218
– reference: 23621120 - Allergy. 2013 Jun;68(6):764-70
– reference: 22206778 - J Allergy Clin Immunol. 2012 Apr;129(4):957-63
– reference: 1416415 - Am Rev Respir Dis. 1992 Oct;146(4):888-94
– reference: 15814171 - Soc Sci Med. 2005 Jun;60(11):2453-64
– reference: 24304677 - BMJ. 2013 Dec 04;347:f6471
– reference: 20236695 - J Allergy Clin Immunol. 2010 Apr;125(4):838-843.e2
– reference: 26314818 - Allergy Asthma Proc. 2015 Sep-Oct;36(5):372-8
– reference: 24303255 - AMIA Jt Summits Transl Sci Proc. 2013 Mar 18;2013:149-53
– reference: 26944837 - Mayo Clin Proc. 2016 Apr;91(4):411-21
– reference: 9834771 - J Fam Pract. 1998 Nov;47(5):361-5
– reference: 16242961 - Ann Epidemiol. 2006 May;16(5):341-6
– reference: 25116227 - Vital Health Stat 10. 2005 Jul;(225):1-161
– reference: 7969322 - N Engl J Med. 1994 Dec 8;331(23):1537-41
– reference: 19892860 - Am J Respir Crit Care Med. 2010 Feb 15;181(4):315-23
– reference: 25158051 - J Asthma. 2015 Mar;52(2):183-90
– reference: 19164187 - N Engl J Med. 2009 Jan 22;360(4):339-53
– reference: 18999057 - AMIA Annu Symp Proc. 2008 Nov 06;:308-12
– reference: 27678441 - J Clin Lipidol. 2016 Sep-Oct;10(5):1230-9
– reference: 16872495 - BMC Med Inform Decis Mak. 2006 Jul 26;6:30
– reference: 9111490 - J Allergy Clin Immunol. 1997 Apr;99(4):466-74
– reference: 23842577 - JAMA. 2013 Aug 14;310(6):591-608
– reference: 16935684 - Lancet. 2006 Aug 26;368(9537):733-43
– reference: 8464126 - JAMA. 1993 Apr 21;269(15):1947-52
– reference: 18790525 - J Allergy Clin Immunol. 2008 Oct;122(4):719-23
– reference: 8947727 - Proc AMIA Annu Fall Symp. 1996;:552-6
– reference: 10027502 - Control Clin Trials. 1999 Feb;20(1):91-120
– reference: 24833775 - J Am Med Inform Assoc. 2014 Sep-Oct;21(5):876-84
– reference: 24125142 - Ann Allergy Asthma Immunol. 2013 Nov;111(5):364-9
– reference: 1432015 - J Clin Epidemiol. 1992 Sep;45(9):1013-20
– reference: 9041973 - Chest. 1997 Feb;111(2):303-10
– reference: 20816180 - J Allergy Clin Immunol. 2010 Sep;126(3):439-46; quiz 447-8
– reference: 18266879 - Clin Exp Allergy. 2008 Apr;38(4):634-42
– reference: 17069101 - Ann Allergy Asthma Immunol. 2006 Oct;97(4):469-76
– reference: 22584196 - Allergy Asthma Proc. 2012 May-Jun;33(3):289-96
– reference: 9893185 - J Allergy Clin Immunol. 1999 Jan;103(1 Pt 1):54-9
– reference: 28475356 - Am J Respir Crit Care Med. 2017 Aug 15;196 (4):401-402
– reference: 21544044 - MMWR Morb Mortal Wkly Rep. 2011 May 6;60(17):547-52
– reference: 7719796 - J Am Med Inform Assoc. 1994 Mar-Apr;1(2):142-60
– reference: 28234052 - Allergy Asthma Proc. 2017 Mar 1;38(2):152-156
– reference: 21195471 - J Allergy Clin Immunol. 2011 Feb;127(2):382-389.e1-13
– reference: 19164186 - N Engl J Med. 2009 Jan 22;360(4):329-38
– reference: 22475754 - J Invest Dermatol. 2012 Aug;132(8):2005-9
– reference: 20235204 - Arthritis Care Res (Hoboken). 2010 Aug;62(8):1120-7
– reference: 27354069 - BMJ Open. 2016 Jun 28;6(6):e010393
– reference: 27836816 - JMIR Med Inform. 2016 Nov 11;4(4):e37
SSID ssj0012810
Score 2.4889867
Snippet Difficulty of asthma ascertainment and its associated methodologic heterogeneity have created significant barriers to asthma care and research. We evaluated...
Because literature on determination of asthma status by NLP does not currently exist, it is difficult to compare our study findings with others. [...]these...
Difficulty of asthma ascertainment and its associated methodologic heterogeneity have created significant barriers to asthma care and...
Rationale: Difficulty of asthma ascertainment and its associated methodologic heterogeneity have created significant barriers to asthma care and research....
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 430
SubjectTerms Adolescent
Algorithms
Allergies
Asthma
Asthma - epidemiology
Automation
Child
Child, Preschool
Cohort Studies
Electronic health records
Electronic Health Records - statistics & numerical data
Epidemiology
Female
Health risk assessment
Humans
Male
Medical records
Minnesota - epidemiology
Natural Language Processing
Original
Pediatrics
Prevalence
Primary care
Reproducibility of Results
Retrospective Studies
Rheumatoid arthritis
Risk Factors
Sensitivity and Specificity
Validation studies
Validity
Title Application of a Natural Language Processing Algorithm to Asthma Ascertainment. An Automated Chart Review
URI https://www.ncbi.nlm.nih.gov/pubmed/28375665
https://www.proquest.com/docview/1932072367
https://www.proquest.com/docview/1884462099
https://pubmed.ncbi.nlm.nih.gov/PMC5564673
Volume 196
WOSCitedRecordID wos000407532700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1535-4970
  dateEnd: 20190915
  omitProxy: false
  ssIdentifier: ssj0012810
  issn: 1073-449X
  databaseCode: 7X7
  dateStart: 20030201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1535-4970
  dateEnd: 20190915
  omitProxy: false
  ssIdentifier: ssj0012810
  issn: 1073-449X
  databaseCode: 7RV
  dateStart: 20030201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1535-4970
  dateEnd: 20190915
  omitProxy: false
  ssIdentifier: ssj0012810
  issn: 1073-449X
  databaseCode: BENPR
  dateStart: 20030201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1535-4970
  dateEnd: 20190915
  omitProxy: false
  ssIdentifier: ssj0012810
  issn: 1073-449X
  databaseCode: 8C1
  dateStart: 20030201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1Bi1Av5bsESmUkbihqnMR2wgWFVSsOsFQVoL1FjmPTldqk3c3y-zuTeLMsSL1wcSLZkS3NxPPG43kD8C4WTuq85qG26K6mRooQ7bwKlZBOaS2l41VfbEJNp9lslp_5A7elv1a53hP7jbpuDZ2RHxPQiBTxjX28vgmpahRFV30Jjfuwy8l2oz6r859jFCHOPBuBSsI0zWfrpBmZHi-MoTx0xDsRKYr8Ntk2TP-gzb8vTf5hhU4f_e_6H8O-x5-sGBTmCdyzzVN4-NVH2J_BvNhEtFnrmGZT3VNzsC_-ZJP53AK0eay4_IVzdBdXrGtZscQXjQ-zuWbwgRUNK1Zdi8DY1oyC-x0b4hHP4cfpyffJ59CXYwhNmssuFKKqq1hXUWYcRxSWoOekccO0SV5ZK52MrdCJQwQYO4di1pWVee2wVxp0i6LkBew0bWNfAnMurzWvdGQSlVqbZAan4CauODHi8zoAvpZFaTxXOZXMuCx7n0WmJcmvHORXDvIL4P34zfXA1HHn6MO1mEr_1y7LjYwCeDt24_9GQRTd2HaFY7IMPWhKOA7gYNCIcTpiEkJ4LAJQW7oyDiAu7-2eZn7Rc3oLIdFkJa_uXtZr2IsJVhAlrziEnW6xsm_ggfndzZeLo175qZ2pvs2wzSb8CHY_nUzPzm8BBkcSxA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgmgvvEsNBRYJTsiqX7trIyFkFapWTQOHIuVm1uvdNlJrl8QB8af4jcz4FQJSbz1wSqTdxK9vZ77xzHwL8CrgVqik8F1lMFyNtOAu-nnpSi6sVEoI6-fNZhNyPI4nk-TzGvzqe2GorLK3iY2hLipN78h3iWh4kvTG3l9-c2nXKMqu9ltotLA4Mj9_YMg2f3f4AZ_v6yDY_3iyd-B2uwq4OkpE7XKeF3mgci_W1kcyEWIAoHDdmzDJjRFWBIar0CKRCazFs1W5EUlhcVRoZPdeiP97A26iHZdUQiYnQ4BHSalW_UCGbhQlk75JR0S7M62p7x35lUfAFJ_2Vh3hP-z27yLNP7ze_t3_7X7dgzsdv2ZpuyDuw5opH8Dt466C4CFM02XGnlWWKTZWjfQIG3VvblnXO4E-naXnp3hN9dkFqyuWzvGLwg-9LKN4y9KSpYu6QuJvCkbFCzVr8y2P4Mu1XOgWrJdVabaBWZsUys-Vp0MZGRPGGg_h6yD3SfHfLxzw-2ef6U6LnbYEOc-amExEGeEla_GStXhx4M3wm8tWieTK2Ts9LLLOKs2zJSYceDkMoz2hJJEqTbXAOXEcRYIaqh143CJwOBwpJSH95w7IFWwOE0irfHWknJ41muWcC3TJ4ZOrT-sFbBycHI-y0eH46ClsBkShSH6Y78B6PVuYZ3BLf6-n89nzZuEx-HrdyP0N4LVstQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgiouvAsLBYwEJxRtEsd2goRQ1LKiall6AGlvwXFsulJJym4WxF_j1zGT17Ig9dYDp0SykzjJl3lkZr4BeB4KJ3VSBJ626K5GRgoP9bzylJBOaS2lC_Km2YSaTuPZLDnZgl99LQylVfYysRHURWXoH_mYDA1fEd_Y2HVpEScHkzfn3zzqIEWR1r6dRguRI_vzB7pvy9eHB_iuX4Th5O3H_Xde12HAM1Eia0-IvMhDnfuxcQEaFhydAY0ywPIkt1Y6GVqhuUOjJnQOV65zK5PC4ag0aOn7HM97Ba4qzhW1jVCzwdmjAFXLhKC4F0XJrC_YkdF4YQzVwKOt5RNI5Yf9TaX4j6X7d8LmHxpwcvN_fna34EZnd7O0_VBuw5Yt78DO-y6z4C7M03Ukn1WOaTbVDSUJO-7-6LKupgJ1PUvPvuA91adfWV2xdIk7GjdmnV7xiqUlS1d1hQ6BLRglNdSsjcPcg0-XcqO7sF1WpX0AzLmk0EGufcNVZC2PDV4iMGEeUCeAoBhB0OMgMx1HO7UKOcsaX01GGWEna7GTtdgZwcvhmPOWoeTC2Xs9RLJOWi2zNT5G8GwYRjlDwSNd2mqFc-I4iiQVWo_gfovG4XLEoIRugRiB2sDpMIE4zDdHyvlpw2UuhERVzR9evKynsIOAzY4Pp0eP4HpIlhWxEos92K4XK_sYrpnv9Xy5eNJ8gww-XzZwfwMWLnVp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+a+Natural+Language+Processing+Algorithm+to+Asthma+Ascertainment.+An+Automated+Chart+Review&rft.jtitle=American+journal+of+respiratory+and+critical+care+medicine&rft.au=Wi%2C+Chung-Il&rft.au=Sohn%2C+Sunghwan&rft.au=Rolfes%2C+Mary+C&rft.au=Seabright%2C+Alicia&rft.date=2017-08-15&rft.eissn=1535-4970&rft.volume=196&rft.issue=4&rft.spage=430&rft_id=info:doi/10.1164%2Frccm.201610-2006OC&rft_id=info%3Apmid%2F28375665&rft.externalDocID=28375665
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1073-449X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1073-449X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1073-449X&client=summon