Stochastic proximal gradient methods for nonconvex problems in Hilbert spaces
For finite-dimensional problems, stochastic approximation methods have long been used to solve stochastic optimization problems. Their application to infinite-dimensional problems is less understood, particularly for nonconvex objectives. This paper presents convergence results for the stochastic pr...
Uloženo v:
| Vydáno v: | Computational optimization and applications Ročník 78; číslo 3; s. 705 - 740 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
Springer US
01.04.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 1573-2894, 0926-6003, 1573-2894 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!