Probabilistic logic programming for hybrid relational domains
We introduce a probabilistic language and an efficient inference algorithm based on distributional clauses for static and dynamic inference in hybrid relational domains. Static inference is based on sampling, where the samples represent (partial) worlds (with discrete and continuous variables). Furt...
Saved in:
| Published in: | Machine learning Vol. 103; no. 3; pp. 407 - 449 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.06.2016
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0885-6125, 1573-0565, 1573-0565 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We introduce a probabilistic language and an efficient inference algorithm based on distributional clauses for static and dynamic inference in hybrid relational domains. Static inference is based on sampling, where the samples represent (partial) worlds (with discrete and continuous variables). Furthermore, we use backward reasoning to determine which facts should be included in the partial worlds. For filtering in dynamic models we combine the static inference algorithm with particle filters and guarantee that the previous partial samples can be safely forgotten, a condition that does not hold in most logical filtering frameworks. Experiments show that the proposed framework can outperform classic sampling methods for static and dynamic inference and that it is promising for robotics and vision applications. In addition, it provides the correct results in domains in which most probabilistic programming languages fail. |
|---|---|
| AbstractList | Issue Title: Special Issue on Inductive Logic Programming; Guest Editors: Jesse Davis and Jan Ramon We introduce a probabilistic language and an efficient inference algorithm based on distributional clauses for static and dynamic inference in hybrid relational domains. Static inference is based on sampling, where the samples represent (partial) worlds (with discrete and continuous variables). Furthermore, we use backward reasoning to determine which facts should be included in the partial worlds. For filtering in dynamic models we combine the static inference algorithm with particle filters and guarantee that the previous partial samples can be safely forgotten, a condition that does not hold in most logical filtering frameworks. Experiments show that the proposed framework can outperform classic sampling methods for static and dynamic inference and that it is promising for robotics and vision applications. In addition, it provides the correct results in domains in which most probabilistic programming languages fail. We introduce a probabilistic language and an efficient inference algorithm based on distributional clauses for static and dynamic inference in hybrid relational domains. Static inference is based on sampling, where the samples represent (partial) worlds (with discrete and continuous variables). Furthermore, we use backward reasoning to determine which facts should be included in the partial worlds. For filtering in dynamic models we combine the static inference algorithm with particle filters and guarantee that the previous partial samples can be safely forgotten, a condition that does not hold in most logical filtering frameworks. Experiments show that the proposed framework can outperform classic sampling methods for static and dynamic inference and that it is promising for robotics and vision applications. In addition, it provides the correct results in domains in which most probabilistic programming languages fail. |
| Author | De Raedt, Luc Nitti, Davide De Laet, Tinne |
| Author_xml | – sequence: 1 givenname: Davide orcidid: 0000-0002-0031-6094 surname: Nitti fullname: Nitti, Davide email: davide.nitti@cs.kuleuven.be organization: Department of Computer Science, KU Leuven – sequence: 2 givenname: Tinne surname: De Laet fullname: De Laet, Tinne organization: Faculty of Engineering Science, KU Leuven – sequence: 3 givenname: Luc surname: De Raedt fullname: De Raedt, Luc organization: Department of Computer Science, KU Leuven |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-84471$$DView record from Swedish Publication Index (Örebro universitet) |
| BookMark | eNp9kM1LwzAchoNMcJv-Ad4KXjwYTdLmowcPY37CQA_qNaRpWjPaZiYtsv_ezA2RgR7yy-V5k9_7TMCoc50B4BSjS4wQvwoY5XkGEWaQUiqgOABjTHkKEWV0BMZICAoZJvQITEJYIoQIE2wMrp-9K1RhGxt6q5PG1XGuvKu9alvb1UnlfPK-LrwtE28a1VvXqSYpXatsF47BYaWaYE529xS83t2-zB_g4un-cT5bQJ3lrIdpxlLBONOYlwXOKcpJUZaCV5qVWWV4mQsdp-FEUYMwMaJKS0ERU7pAlUnTKbjYvhs-zWoo5MrbVvm1dMrKG_s2k87X8QxSZBnHET_f4rHIx2BCL1sbtGka1Rk3BIkFoRlNGdmgZ3vo0g0-VowUz6M8xgmNFN5S2rsQvKl-NsBIbvzLrX8Z_cuNfylihu9ltO2__fVe2ebfJNm1jb90tfG_dvoz9AVg_JvU |
| CitedBy_id | crossref_primary_10_1017_S1471068421000144 crossref_primary_10_1145_3742440 crossref_primary_10_1016_j_artint_2021_103452 crossref_primary_10_3389_frobt_2025_1586033 crossref_primary_10_1017_S1471068418000273 crossref_primary_10_1145_3132700 crossref_primary_10_1145_3632905 crossref_primary_10_1016_j_artint_2024_104227 crossref_primary_10_3389_frobt_2020_00100 crossref_primary_10_1007_s12652_020_01989_x crossref_primary_10_1007_s10994_024_06538_7 crossref_primary_10_1007_s10514_017_9637_x crossref_primary_10_1109_TCDS_2019_2915763 crossref_primary_10_3233_IA_170106 |
| Cites_doi | 10.1093/biomet/83.1.81 10.1201/b11322 10.1080/10618600.1996.10474692 10.1115/1.3662552 10.1145/16856.16859 10.1109/IROS.2009.5354602 10.1023/A:1008935410038 10.1007/978-3-540-85928-4_17 10.7551/mitpress/7432.001.0001 10.1214/10-STS325 10.1016/0743-1066(91)90027-M 10.1080/01621459.1999.10474153 10.3182/20090706-3-FR-2004.00129 10.1214/10-BA525 10.1007/s10994-010-5213-8 10.1007/978-3-540-78246-9_32 10.1109/ICRA.2014.6906966 10.1109/IROS.2013.6696747 10.1016/j.inffus.2008.05.005 10.1007/978-3-540-78652-8 10.1109/78.978383 10.1007/s10852-012-9213-5 10.1007/978-3-540-89982-2_22 10.1109/JPROC.2012.2200552 10.1007/978-3-662-44845-8_45 10.1017/S1471068411000238 10.1109/CDC.2005.1582177 10.1007/978-1-4757-3437-9_20 10.1007/978-1-4757-4145-2 10.1007/978-3-642-83189-8 10.1016/j.artint.2010.04.015 10.1111/1467-9868.00280 10.1613/jair.1675 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2016 |
| Copyright_xml | – notice: The Author(s) 2016 |
| DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTPV AOWAS D91 |
| DOI | 10.1007/s10994-016-5558-8 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic SwePub SwePub Articles SWEPUB Örebro universitet |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Statistics |
| EISSN | 1573-0565 |
| EndPage | 449 |
| ExternalDocumentID | oai_DiVA_org_oru_84471 4065084151 10_1007_s10994_016_5558_8 |
| Genre | Feature |
| GrantInformation_xml | – fundername: Agentschap voor Innovatie door Wetenschap en Technologie grantid: 111406 funderid: http://dx.doi.org/10.13039/501100003132 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M0N M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WIP WK8 XJT YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z8Z Z91 Z92 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U PUEGO ADTPV AOWAS D91 |
| ID | FETCH-LOGICAL-c496t-34638676c17db195092bdd87fc6d4fe7d98ce7de72a5e012e8f3d8506acb0fe33 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000376645600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-6125 1573-0565 |
| IngestDate | Tue Nov 04 16:52:41 EST 2025 Fri Sep 05 12:40:26 EDT 2025 Tue Nov 04 22:19:52 EST 2025 Sat Nov 29 01:43:26 EST 2025 Tue Nov 18 21:14:01 EST 2025 Fri Feb 21 02:28:44 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Likelihood weighting Statistical relational learning Logic programming Probabilistic programming Discrete and continuous distributions Particle filter |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c496t-34638676c17db195092bdd87fc6d4fe7d98ce7de72a5e012e8f3d8506acb0fe33 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-0031-6094 |
| OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10994-016-5558-8.pdf |
| PQID | 1790566725 |
| PQPubID | 54194 |
| PageCount | 43 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_oru_84471 proquest_miscellaneous_1825453621 proquest_journals_1790566725 crossref_primary_10_1007_s10994_016_5558_8 crossref_citationtrail_10_1007_s10994_016_5558_8 springer_journals_10_1007_s10994_016_5558_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-06-01 |
| PublicationDateYYYYMMDD | 2016-06-01 |
| PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Machine learning |
| PublicationTitleAbbrev | Mach Learn |
| PublicationYear | 2016 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Choi, J., Guzman-Rivera, A., & Amir, E. (2011). Lifted relational Kalman filtering. In Proceedings of the 22nd international joint conference on artificial intelligence (IJCAI 2011), pp. 2092–2099. Beetz, M., Jain, D., Mosenlechner, L., Tenorth, M., Kunze, L., & Blodow, N., et al. (2012) Cognition-enabled autonomous robot control for the realization of home chore task intelligence. Proceedings of the IEEE, 100(8), 2454–2471. PfefferADasSLawlessDNgBFactored reasoning for monitoring dynamic team and goal formationInformation Fusion20091019910610.1016/j.inffus.2008.05.005 Thon, I., Landwehr, N., & De Raedt, L. (2011). Stochastic relational processes: Efficient inference and applications. Machine Learning, 82(2), 239–272. Owen, A. B. (2013). Monte Carlo theory, methods and examples. http://statweb.stanford.edu/~owen/mc Goodman, N., Mansinghka, V. K., Roy, D. M., Bonawitz, K., & Tenenbaum, J. B. (2008). Church: A language for generative models. In Proceedings of the 24th conference on uncertainty in artificial intelligence (UAI 2008) (pp. 220–229). Edinburgh: AUAI Press. KollerDFriedmanNProbabilistic graphical models: Principles and techniques—adaptive computation and machine learning2009Cambridge, MAMIT Press DoucetAGodsillSAndrieuCOn sequential Monte Carlo sampling methods for Bayesian filteringStatistics and Computing200010319720810.1023/A:1008935410038 KadaneJPrinciples of uncertainty2011AbingdonTaylor & Francis10.1201/b113221250.62009 Kantas, N., Doucet, A., Singh, S. S., & Maciejowski, J. M. (2009). An overview of sequential monte carlo methods for parameter estimation in general state-space models. In 15th IFAC symposium on system identification, Vol. 15, (pp. 774–785). Andrieu, C., Doucet, A., & Tadic, V. B. (2005). On-line parameter estimation in general state-space models. In Proceedings of the 44th IEEE conference on decision and control, 2005 and 2005 European control conference (CDC-ECC ’05), pp. 332–337. Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., & De Raedt, L. (2008). On the efficient execution of ProbLog programs. In Proceedings of the 24th conference on logic programming (ICLP 2008). Lecture notes in computer science (Vol. 5366, pp. 175–189). Berlin: Springer. Meyer-Delius, D., Plagemann, C., Wichert, G., Feiten, W., Lawitzky, G., & Burgard, W. (2008). A probabilistic relational model for characterizing situations in dynamic multi-agent systems. In Data analysis, machine learning and applications. Berlin: Springer. KerstingKDe RaedtLRaikoTLogical hidden Markov modelsJournal of Artificial Intelligence Research20062542545622720691182.68353 Perov, Y., Paige, B., & Wood, F. The Indian GPA problem. Retrieved February 23, 2016, from http://www.robots.ox.ac.uk/~fwood/anglican/examples/viewer/?worksheet=indian-gpa. Nitti, D., De Laet, T., & De Raedt, L. (2013). A particle filter for hybrid relational domains. In Proceedings of the international conference on intelligent robots and systems (IROS 2013), pp. 2764–2771. Nitti, D., De Laet, T., & De Raedt, L. (2014c). Relational object tracking and learning. In Proceedings of the International conference on robotics and automation (ICRA 2014). Papai, T., Kautz, H., & Stefankovic, D. (2012). Slice normalized dynamic Markov logic networks. In Advances in neural information processing systems (NIPS 2012) (pp. 1907–1915). de Salvo Braz, R., Arora, N., Sudderth, E., & Russell, S. (2008). Open-universe state estimation with DBLOG. In NIPS workshop on probabilistic programming: Universal languages, systems and applications. PittMKShephardNFiltering via simulation: Auxiliary particle filtersJournal of the American statistical association199994446590599170232810.1080/01621459.1999.104741531072.62639 Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D., & Kolobov, A. (2005). BLOG: Probabilistic models with unknown objects. In Proceedings of the 19th international joint conference on artificial intelligence (IJCAI 2005), pp. 1352–1359. CarvalhoCMLopesHFPolsonNGTaddyMAParticle learning for general mixturesBayesian Analysis201054709740274015410.1214/10-BA5251330.62348 Hajishirzi, H., & Amir, E. (2008). Sampling first order logical particles. In Proceedings of the 24th conference on uncertainty in artificial intelligence (UAI 2008) (pp. 248–255). Edinburgh: AUAI Press. GetoorLTaskarBAn introduction to statistical relational learning2007Cambridge, MAMIT Press1141.68054 Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambridge, MA: MIT Press. ISBN: 0262201623. GilksWRBerzuiniCFollowing a moving targetmonte carlo inference for dynamic bayesian modelsJournal of the Royal Statistical Society: Series B (Statistical Methodology)2001631127146181199510.1111/1467-9868.002800976.62021 Manfredotti, C. E., Fleet, D. J., Hamilton, H. J., & Zilles, S. (2010). Relational particle filtering. NIPS Workshop on Monte Carlo methods for modern applications, December 2010. AptKFrom logic programming to Prolog1997Upper Saddle RiverPrentice-Hall international series in computer science. Prentice Hall RussellSNorvigPArtificial intelligence: A modern approach20093Englewood Cliffs, NJPrentice Hall0835.68093 HiguchiTDoucetAFreitasNGordonNSelf-organizing time series modelSequential Monte Carlo methods in practice, statistics for engineering and information science2001New YorkSpringer42944410.1007/978-1-4757-3437-9_20 Milch, B., Marthi, B., Sontag, D., Russell, S., Ong, D. L., & Kolobov, A. (2005). Approximate inference for infinite contingent Bayesian networks. In R. G. Cowell, Z. Ghahramani (Eds.), Proceedings of the 10th international workshop on artificial intelligence and statistics (AISTATS 2005) (pp. 238–245). Society for Artificial Intelligence and Statistics. Whiteley, N., & Johansen, A. M. (2010). Recent developments in auxiliary particle filtering. Barber, C., & Chiappa, (Eds.), Inference and learning in dynamic models (pp. 38, 39–47). Cambridge: Cambridge University Press. De Raedt, L., Frasconi, P., Kersting, K., & Muggleton, S. (Eds.). (2008). Probabilistic inductive logic programming, theory and applications. Lecture notes in computer science, Vol. 4911. Berlin: Springer. Przymusinski, T. C. (1988). Perfect model semantics. In Proceedings of the 5th international conference on logic programming and symposium (ICLP/SLP 1988), pp. 1081–1096. CarvalhoCMJohannesMSLopesHFPolsonNGParticle learning and smoothingStatistical Science201025188106274181610.1214/10-STS3251328.62541 Nitti, D., De Laet, T., & De Raedt, L. (2014b). Distributional clauses particle filter. In Machine learning and knowledge discovery in databases, lecture notes in computer science (Vol. 8726, pp. 504–507). Berlin: Springer. LemieuxCMonte Carlo and Quasi-Monte Carlo sampling2009BerlinSpringer1269.65001 Wood, F., van de Meent, J. W., & Mansinghka, V. (2014). A new approach to probabilistic programming inference. In Proceedings of the 17th international conference on artificial intelligence and statistics (AISTATS 2014), pp. 1024–1032. Gutmann, B., Thon, I., Kimmig, A., Bruynooghe, M., & De Raedt, L. (2011). The magic of logical inference in probabilistic programming. Theory and Practice of Logic Programming, 11, 663–680. CasellaGRobertCPRao-Blackwellisation of sampling schemesBiometrika19968318194139915710.1093/biomet/83.1.810866.62024 BancilhonFRamakrishnanRAn amateur’s introduction to recursive query processing strategiesSIGMOD Record198615165110.1145/16856.16859 NilssonUMałiszyńskiJLogic, programming and prolog19952New YorkWiley ShiraziAAmirEFirst-order logical filteringArtificial Intelligence20111751193219275235010.1016/j.artint.2010.04.0151216.68276 LloydJFoundations of logic programming1987New YorkSpringer10.1007/978-3-642-83189-80668.68004 Doucet, A., de Freitas, N., Murphy, K., & Russell, S. (2000). Rao-blackwellised particle filtering for dynamic bayesian networks. In Proceedings of the 16th conference on uncertainty in artificial intelligence (UAI ’00) (pp. 176–183). Burlington: Morgan Kaufmann. LloydJShepherdsonJPartial evaluation in logic programmingThe Journal of Logic Programming19911134217242112545310.1016/0743-1066(91)90027-M0741.68030 KalmanRA new approach to linear filtering and prediction problemsJournal of Basic Engineering196082354510.1115/1.3662552 Nitti, D., Chliveros, G., De Raedt, L., Pateraki, M., Hourdakis, M., & Trahanias, P. (2014a). Application of dynamic distributional clauses for multi-hypothesis initialization in model-based object tracking. In 9th International conference on computer vision theory and applications (VISAPP 2014), Vol. 2. CattelaniLManfredottiCMessinaEA particle filtering approach for tracking an unknown number of objects with dynamic relationsJournal of Mathematical Modelling and Algorithms in Operations Research2012131321317110910.1007/s10852-012-9213-51279.62197 Milch, B. C. (2006). Probabilistic models with unknown objects. Ph.D. thesis, University of California, Berkeley. Tenorth, M., & Beetz, M. (2009). KnowRob—Knowledge processing for autonomous personal robots. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2009), pp. 4261–4266. Lopes, H. F., Carvalho, C. M., Johannes, M., & Polson, N. G. (2010). Particle learning for sequential bayesian computation. In J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, M. West (Eds.), Bayesian statistics 9 (Vol. 9, pp. 317–360). Oxford: Oxford University Press. Fung, R. M., & Chang, K. (1989). Weighing and integrating evidence for stochastic simulation in Bayesian networks. In Proceedings of the 5th conference on uncertainty in artificial intelligence (UAI 1989). Natarajan, S., Bui, H. H., Tadepalli, P., Kersting, K., & Keen Wong, W. (2008). Logical hierarchical hidden markov models for modeling user activities. In Proceedings of the 18th international conference in inductive logic programming (ILP 2008). Lecture notes in computer science (Vol. 5194, pp. 192–209). KitagawaGMonte Carlo filter and smoother for non-gaussian nonlinear state space modelsJournal of Computational a J Lloyd (5558_CR30) 1991; 11 U Nilsson (5558_CR40) 1995 CM Carvalho (5558_CR5) 2010; 25 5558_CR17 5558_CR19 5558_CR18 5558_CR57 5558_CR12 5558_CR56 5558_CR59 5558_CR14 5558_CR58 5558_CR53 5558_CR11 5558_CR10 J Lloyd (5558_CR29) 1987 G Kitagawa (5558_CR26) 1996; 5 R Kalman (5558_CR22) 1960; 82 5558_CR50 T Higuchi (5558_CR20) 2001 A Pfeffer (5558_CR48) 2009; 10 L Getoor (5558_CR15) 2007 F Bancilhon (5558_CR3) 1986; 15 K Kersting (5558_CR24) 2006; 25 A Doucet (5558_CR13) 2000; 10 5558_CR23 5558_CR25 S Russell (5558_CR52) 2009 5558_CR60 J Kadane (5558_CR21) 2011 5558_CR61 G Casella (5558_CR7) 1996; 83 MK Pitt (5558_CR49) 1999; 94 L Cattelani (5558_CR8) 2012; 13 5558_CR39 5558_CR38 C Lemieux (5558_CR28) 2009 5558_CR35 5558_CR34 5558_CR37 5558_CR4 5558_CR36 5558_CR9 5558_CR31 5558_CR33 5558_CR32 5558_CR1 WR Gilks (5558_CR16) 2001; 63 G Storvik (5558_CR55) 2002; 50 C Robert (5558_CR51) 2004 CM Carvalho (5558_CR6) 2010; 5 5558_CR46 5558_CR45 5558_CR47 5558_CR42 K Apt (5558_CR2) 1997 5558_CR41 5558_CR44 5558_CR43 A Shirazi (5558_CR54) 2011; 175 D Koller (5558_CR27) 2009 |
| References_xml | – reference: Ng, B., Peshkin, L., & Pfeffer, A. (2002). Factored particles for scalable monitoring. In Proceedings of the 18th conference on uncertainty in artificial intelligence (UAI2002) (pp. 370–377). Burlington: Morgan Kaufmann. – reference: Przymusinski, T. C. (1988). Perfect model semantics. In Proceedings of the 5th international conference on logic programming and symposium (ICLP/SLP 1988), pp. 1081–1096. – reference: PittMKShephardNFiltering via simulation: Auxiliary particle filtersJournal of the American statistical association199994446590599170232810.1080/01621459.1999.104741531072.62639 – reference: de Salvo Braz, R., Arora, N., Sudderth, E., & Russell, S. (2008). Open-universe state estimation with DBLOG. In NIPS workshop on probabilistic programming: Universal languages, systems and applications. – reference: Murphy, K. P. (2002). Dynamic Bayesian networks: Representation, inference and learning. Ph.D. thesis, University of California, Berkeley. – reference: ShiraziAAmirEFirst-order logical filteringArtificial Intelligence20111751193219275235010.1016/j.artint.2010.04.0151216.68276 – reference: Nitti, D., De Laet, T., & De Raedt, L. (2014b). Distributional clauses particle filter. In Machine learning and knowledge discovery in databases, lecture notes in computer science (Vol. 8726, pp. 504–507). Berlin: Springer. – reference: LloydJShepherdsonJPartial evaluation in logic programmingThe Journal of Logic Programming19911134217242112545310.1016/0743-1066(91)90027-M0741.68030 – reference: Natarajan, S., Bui, H. H., Tadepalli, P., Kersting, K., & Keen Wong, W. (2008). Logical hierarchical hidden markov models for modeling user activities. In Proceedings of the 18th international conference in inductive logic programming (ILP 2008). Lecture notes in computer science (Vol. 5194, pp. 192–209). – reference: RobertCCasellaGMonte Carlo statistical methods. Springer texts in statistics2004New YorkSpringer10.1007/978-1-4757-4145-2 – reference: Doucet, A., de Freitas, N., Murphy, K., & Russell, S. (2000). Rao-blackwellised particle filtering for dynamic bayesian networks. In Proceedings of the 16th conference on uncertainty in artificial intelligence (UAI ’00) (pp. 176–183). Burlington: Morgan Kaufmann. – reference: Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D., & Kolobov, A. (2005). BLOG: Probabilistic models with unknown objects. In Proceedings of the 19th international joint conference on artificial intelligence (IJCAI 2005), pp. 1352–1359. – reference: PfefferADasSLawlessDNgBFactored reasoning for monitoring dynamic team and goal formationInformation Fusion20091019910610.1016/j.inffus.2008.05.005 – reference: Thon, I., Landwehr, N., & De Raedt, L. (2011). Stochastic relational processes: Efficient inference and applications. Machine Learning, 82(2), 239–272. – reference: Zettlemoyer, L. S., Pasula, H. M., & Kaelbling, L. P. (2007). Logical particle filtering. In Proceedings of the Dagstuhl seminar on probabilistic, logical, and relational learning. – reference: Hajishirzi, H., & Amir, E. (2008). Sampling first order logical particles. In Proceedings of the 24th conference on uncertainty in artificial intelligence (UAI 2008) (pp. 248–255). Edinburgh: AUAI Press. – reference: NilssonUMałiszyńskiJLogic, programming and prolog19952New YorkWiley – reference: CarvalhoCMLopesHFPolsonNGTaddyMAParticle learning for general mixturesBayesian Analysis201054709740274015410.1214/10-BA5251330.62348 – reference: KalmanRA new approach to linear filtering and prediction problemsJournal of Basic Engineering196082354510.1115/1.3662552 – reference: Sato, T. (1995). A statistical learning method for logic programs with distribution semantics. In Proceedings of the 12th international conference on logic programming (ICLP 1995) (pp. 715–729). Cambridge, MA: MIT Press. – reference: Kantas, N., Doucet, A., Singh, S. S., & Maciejowski, J. M. (2009). An overview of sequential monte carlo methods for parameter estimation in general state-space models. In 15th IFAC symposium on system identification, Vol. 15, (pp. 774–785). – reference: BancilhonFRamakrishnanRAn amateur’s introduction to recursive query processing strategiesSIGMOD Record198615165110.1145/16856.16859 – reference: Lopes, H. F., Carvalho, C. M., Johannes, M., & Polson, N. G. (2010). Particle learning for sequential bayesian computation. In J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, M. West (Eds.), Bayesian statistics 9 (Vol. 9, pp. 317–360). Oxford: Oxford University Press. – reference: Nitti, D., Chliveros, G., De Raedt, L., Pateraki, M., Hourdakis, M., & Trahanias, P. (2014a). Application of dynamic distributional clauses for multi-hypothesis initialization in model-based object tracking. In 9th International conference on computer vision theory and applications (VISAPP 2014), Vol. 2. – reference: Goodman, N., Mansinghka, V. K., Roy, D. M., Bonawitz, K., & Tenenbaum, J. B. (2008). Church: A language for generative models. In Proceedings of the 24th conference on uncertainty in artificial intelligence (UAI 2008) (pp. 220–229). Edinburgh: AUAI Press. – reference: Wood, F., van de Meent, J. W., & Mansinghka, V. (2014). A new approach to probabilistic programming inference. In Proceedings of the 17th international conference on artificial intelligence and statistics (AISTATS 2014), pp. 1024–1032. – reference: Nitti, D., De Laet, T., & De Raedt, L. (2013). A particle filter for hybrid relational domains. In Proceedings of the international conference on intelligent robots and systems (IROS 2013), pp. 2764–2771. – reference: Gutmann, B., Thon, I., Kimmig, A., Bruynooghe, M., & De Raedt, L. (2011). The magic of logical inference in probabilistic programming. Theory and Practice of Logic Programming, 11, 663–680. – reference: StorvikGParticle filters for state-space models with the presence of unknown static parametersIEEE Transactions on Signal Processing200250228128910.1109/78.978383 – reference: GilksWRBerzuiniCFollowing a moving targetmonte carlo inference for dynamic bayesian modelsJournal of the Royal Statistical Society: Series B (Statistical Methodology)2001631127146181199510.1111/1467-9868.002800976.62021 – reference: CarvalhoCMJohannesMSLopesHFPolsonNGParticle learning and smoothingStatistical Science201025188106274181610.1214/10-STS3251328.62541 – reference: Tenorth, M., & Beetz, M. (2009). KnowRob—Knowledge processing for autonomous personal robots. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2009), pp. 4261–4266. – reference: Whiteley, N., & Johansen, A. M. (2010). Recent developments in auxiliary particle filtering. Barber, C., & Chiappa, (Eds.), Inference and learning in dynamic models (pp. 38, 39–47). Cambridge: Cambridge University Press. – reference: Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambridge, MA: MIT Press. ISBN: 0262201623. – reference: Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., & De Raedt, L. (2008). On the efficient execution of ProbLog programs. In Proceedings of the 24th conference on logic programming (ICLP 2008). Lecture notes in computer science (Vol. 5366, pp. 175–189). Berlin: Springer. – reference: KerstingKDe RaedtLRaikoTLogical hidden Markov modelsJournal of Artificial Intelligence Research20062542545622720691182.68353 – reference: KitagawaGMonte Carlo filter and smoother for non-gaussian nonlinear state space modelsJournal of Computational and Graphical Statistics1996511251380850 – reference: Nitti, D., De Laet, T., & De Raedt, L. (2014c). Relational object tracking and learning. In Proceedings of the International conference on robotics and automation (ICRA 2014). – reference: RussellSNorvigPArtificial intelligence: A modern approach20093Englewood Cliffs, NJPrentice Hall0835.68093 – reference: DoucetAGodsillSAndrieuCOn sequential Monte Carlo sampling methods for Bayesian filteringStatistics and Computing200010319720810.1023/A:1008935410038 – reference: AptKFrom logic programming to Prolog1997Upper Saddle RiverPrentice-Hall international series in computer science. Prentice Hall – reference: Andrieu, C., Doucet, A., & Tadic, V. B. (2005). On-line parameter estimation in general state-space models. In Proceedings of the 44th IEEE conference on decision and control, 2005 and 2005 European control conference (CDC-ECC ’05), pp. 332–337. – reference: HiguchiTDoucetAFreitasNGordonNSelf-organizing time series modelSequential Monte Carlo methods in practice, statistics for engineering and information science2001New YorkSpringer42944410.1007/978-1-4757-3437-9_20 – reference: LloydJFoundations of logic programming1987New YorkSpringer10.1007/978-3-642-83189-80668.68004 – reference: Choi, J., Guzman-Rivera, A., & Amir, E. (2011). Lifted relational Kalman filtering. In Proceedings of the 22nd international joint conference on artificial intelligence (IJCAI 2011), pp. 2092–2099. – reference: De Raedt, L., Frasconi, P., Kersting, K., & Muggleton, S. (Eds.). (2008). Probabilistic inductive logic programming, theory and applications. Lecture notes in computer science, Vol. 4911. Berlin: Springer. – reference: Milch, B. C. (2006). Probabilistic models with unknown objects. Ph.D. thesis, University of California, Berkeley. – reference: KadaneJPrinciples of uncertainty2011AbingdonTaylor & Francis10.1201/b113221250.62009 – reference: GetoorLTaskarBAn introduction to statistical relational learning2007Cambridge, MAMIT Press1141.68054 – reference: Meyer-Delius, D., Plagemann, C., Wichert, G., Feiten, W., Lawitzky, G., & Burgard, W. (2008). A probabilistic relational model for characterizing situations in dynamic multi-agent systems. In Data analysis, machine learning and applications. Berlin: Springer. – reference: Owen, A. B. (2013). Monte Carlo theory, methods and examples. http://statweb.stanford.edu/~owen/mc/ – reference: CattelaniLManfredottiCMessinaEA particle filtering approach for tracking an unknown number of objects with dynamic relationsJournal of Mathematical Modelling and Algorithms in Operations Research2012131321317110910.1007/s10852-012-9213-51279.62197 – reference: Fung, R. M., & Chang, K. (1989). Weighing and integrating evidence for stochastic simulation in Bayesian networks. In Proceedings of the 5th conference on uncertainty in artificial intelligence (UAI 1989). – reference: LemieuxCMonte Carlo and Quasi-Monte Carlo sampling2009BerlinSpringer1269.65001 – reference: Milch, B., Marthi, B., Sontag, D., Russell, S., Ong, D. L., & Kolobov, A. (2005). Approximate inference for infinite contingent Bayesian networks. In R. G. Cowell, Z. Ghahramani (Eds.), Proceedings of the 10th international workshop on artificial intelligence and statistics (AISTATS 2005) (pp. 238–245). Society for Artificial Intelligence and Statistics. – reference: KollerDFriedmanNProbabilistic graphical models: Principles and techniques—adaptive computation and machine learning2009Cambridge, MAMIT Press – reference: Papai, T., Kautz, H., & Stefankovic, D. (2012). Slice normalized dynamic Markov logic networks. In Advances in neural information processing systems (NIPS 2012) (pp. 1907–1915). – reference: Perov, Y., Paige, B., & Wood, F. The Indian GPA problem. Retrieved February 23, 2016, from http://www.robots.ox.ac.uk/~fwood/anglican/examples/viewer/?worksheet=indian-gpa. – reference: CasellaGRobertCPRao-Blackwellisation of sampling schemesBiometrika19968318194139915710.1093/biomet/83.1.810866.62024 – reference: Beetz, M., Jain, D., Mosenlechner, L., Tenorth, M., Kunze, L., & Blodow, N., et al. (2012) Cognition-enabled autonomous robot control for the realization of home chore task intelligence. Proceedings of the IEEE, 100(8), 2454–2471. – reference: Manfredotti, C. E., Fleet, D. J., Hamilton, H. J., & Zilles, S. (2010). Relational particle filtering. NIPS Workshop on Monte Carlo methods for modern applications, December 2010. – ident: 5558_CR47 – volume: 83 start-page: 81 issue: 1 year: 1996 ident: 5558_CR7 publication-title: Biometrika doi: 10.1093/biomet/83.1.81 – volume-title: Artificial intelligence: A modern approach year: 2009 ident: 5558_CR52 – volume-title: Principles of uncertainty year: 2011 ident: 5558_CR21 doi: 10.1201/b11322 – volume: 5 start-page: 1 issue: 1 year: 1996 ident: 5558_CR26 publication-title: Journal of Computational and Graphical Statistics doi: 10.1080/10618600.1996.10474692 – volume: 82 start-page: 35 year: 1960 ident: 5558_CR22 publication-title: Journal of Basic Engineering doi: 10.1115/1.3662552 – volume: 15 start-page: 16 year: 1986 ident: 5558_CR3 publication-title: SIGMOD Record doi: 10.1145/16856.16859 – ident: 5558_CR56 doi: 10.1109/IROS.2009.5354602 – volume: 10 start-page: 197 issue: 3 year: 2000 ident: 5558_CR13 publication-title: Statistics and Computing doi: 10.1023/A:1008935410038 – ident: 5558_CR11 – ident: 5558_CR38 doi: 10.1007/978-3-540-85928-4_17 – volume-title: An introduction to statistical relational learning year: 2007 ident: 5558_CR15 doi: 10.7551/mitpress/7432.001.0001 – ident: 5558_CR9 – volume: 25 start-page: 88 issue: 1 year: 2010 ident: 5558_CR5 publication-title: Statistical Science doi: 10.1214/10-STS325 – ident: 5558_CR34 – ident: 5558_CR19 – ident: 5558_CR53 – volume: 11 start-page: 217 issue: 34 year: 1991 ident: 5558_CR30 publication-title: The Journal of Logic Programming doi: 10.1016/0743-1066(91)90027-M – volume: 94 start-page: 590 issue: 446 year: 1999 ident: 5558_CR49 publication-title: Journal of the American statistical association doi: 10.1080/01621459.1999.10474153 – volume-title: Logic, programming and prolog year: 1995 ident: 5558_CR40 – ident: 5558_CR23 doi: 10.3182/20090706-3-FR-2004.00129 – volume: 5 start-page: 709 issue: 4 year: 2010 ident: 5558_CR6 publication-title: Bayesian Analysis doi: 10.1214/10-BA525 – ident: 5558_CR57 doi: 10.1007/s10994-010-5213-8 – ident: 5558_CR33 doi: 10.1007/978-3-540-78246-9_32 – ident: 5558_CR46 – volume-title: From logic programming to Prolog year: 1997 ident: 5558_CR2 – ident: 5558_CR44 doi: 10.1109/ICRA.2014.6906966 – ident: 5558_CR42 doi: 10.1109/IROS.2013.6696747 – ident: 5558_CR31 – volume: 10 start-page: 99 issue: 1 year: 2009 ident: 5558_CR48 publication-title: Information Fusion doi: 10.1016/j.inffus.2008.05.005 – ident: 5558_CR14 – ident: 5558_CR39 – ident: 5558_CR35 – ident: 5558_CR10 doi: 10.1007/978-3-540-78652-8 – volume-title: Probabilistic graphical models: Principles and techniques—adaptive computation and machine learning year: 2009 ident: 5558_CR27 – volume: 50 start-page: 281 issue: 2 year: 2002 ident: 5558_CR55 publication-title: IEEE Transactions on Signal Processing doi: 10.1109/78.978383 – volume: 13 start-page: 3 issue: 1 year: 2012 ident: 5558_CR8 publication-title: Journal of Mathematical Modelling and Algorithms in Operations Research doi: 10.1007/s10852-012-9213-5 – volume-title: Monte Carlo and Quasi-Monte Carlo sampling year: 2009 ident: 5558_CR28 – ident: 5558_CR25 doi: 10.1007/978-3-540-89982-2_22 – ident: 5558_CR41 – ident: 5558_CR45 – ident: 5558_CR59 – ident: 5558_CR4 doi: 10.1109/JPROC.2012.2200552 – ident: 5558_CR17 – ident: 5558_CR43 doi: 10.1007/978-3-662-44845-8_45 – ident: 5558_CR18 doi: 10.1017/S1471068411000238 – ident: 5558_CR32 – ident: 5558_CR36 – ident: 5558_CR1 doi: 10.1109/CDC.2005.1582177 – ident: 5558_CR60 – ident: 5558_CR61 – start-page: 429 volume-title: Sequential Monte Carlo methods in practice, statistics for engineering and information science year: 2001 ident: 5558_CR20 doi: 10.1007/978-1-4757-3437-9_20 – ident: 5558_CR58 – ident: 5558_CR12 – volume-title: Monte Carlo statistical methods. Springer texts in statistics year: 2004 ident: 5558_CR51 doi: 10.1007/978-1-4757-4145-2 – volume-title: Foundations of logic programming year: 1987 ident: 5558_CR29 doi: 10.1007/978-3-642-83189-8 – volume: 175 start-page: 193 issue: 1 year: 2011 ident: 5558_CR54 publication-title: Artificial Intelligence doi: 10.1016/j.artint.2010.04.015 – volume: 63 start-page: 127 issue: 1 year: 2001 ident: 5558_CR16 publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/1467-9868.00280 – ident: 5558_CR37 – ident: 5558_CR50 – volume: 25 start-page: 425 year: 2006 ident: 5558_CR24 publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.1675 |
| SSID | ssj0002686 |
| Score | 2.4028673 |
| Snippet | We introduce a probabilistic language and an efficient inference algorithm based on distributional clauses for static and dynamic inference in hybrid... Issue Title: Special Issue on Inductive Logic Programming; Guest Editors: Jesse Davis and Jan Ramon We introduce a probabilistic language and an efficient... |
| SourceID | swepub proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 407 |
| SubjectTerms | Algorithms Artificial Intelligence Computer programming Computer Science Control Discrete andcontinuous distributions Dynamics Filtering Filtration Inference Learning Likelihood weighting Logic programming Mechatronics Natural Language Processing (NLP) Particle filter Probabilistic methods Probabilistic programming Probability theory Robotics Simulation and Modeling Statistical relational learning Statistics |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4QwEJ74OnjxbVxfwUQvmsbdAm05GeMjHtR4UOONQFvUREF3XRP_vTOlsGqiFw9wAEonzJPO9BuAbaXDGEN7zpLQGhYV0qJK5YIZdF3GCJtx7UBcz-Xlpbq7S678gtvAl1U2NtEZalNpWiPfd0hSQkgeH7y8MuoaRdlV30JjHCYxsulRSdcFv2otMReu0yMqUszIkzdZzXrrnAPF7QlGiFdMffdLo2CzzY_-wBJ1_ud09r-Uz8GMjzyDw1pU5mHMlgsw23R1CLySL8A0xZ81fPMiEJp-7kB46ULgDGXga7qekeAAY97g4YO2fQV9X1eHk5jqOXssB0twc3pyfXTGfMcFpqNEvLEwQnUUUuieNDk1iE14boyShRYmKqw0idJ4tpJnsUXXZlURGsK8y3TeLWwYLsNEWZV2BQLJuzgQzYPNVGTzJCniuEhiGyqe4RjbgW7zvVPt4cipK8ZTOgJSJhalVIJGLEpVB3bbIS81FsdfD6833Ei9Wg7SESs6sNXeRoWiLElW2mqIz9A_c4x-vdeBvYb5X17x-4Q7tXy0tBFy9_Hj7WFa9e_xGKYqwlBg9W_C1mCak1S6hZ51mHjrD-0GTOl35Hx_08n3J4vVAL0 priority: 102 providerName: ProQuest |
| Title | Probabilistic logic programming for hybrid relational domains |
| URI | https://link.springer.com/article/10.1007/s10994-016-5558-8 https://www.proquest.com/docview/1790566725 https://www.proquest.com/docview/1825453621 https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-84471 |
| Volume | 103 |
| WOSCitedRecordID | wos000376645600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-0565 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: K7- dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1573-0565 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: P5Z dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-0565 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1573-0565 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: M2P dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 1573-0565 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7U9eDFt7g-lgp6UQK7afPo0SeCuiw-FvFS2iTVBe3KPgT_vZNs211FBT00lyaTkMzkSzuTbwB2pfIZHu0pCX2jSZAKgyaVcKIRurTmJqbKkbheimZT3t-Hrfwed7-Idi9ckm6nnrjs5mhsG5xYjioip6GCaCdtvobrm3a5_VLu0jui9TBi4btwZX4n4jMYjU-YpVP0C4GoA52zhX8NdxHm8zOmdzhSiiWYMtkyLBT5G7zcnFfAUuUnjmHXkjV7bhf08oCtF-zLwwOt9_Ru73R5vTxoDuXq7kvcyfqrcHd2ent8TvJ0CkQFIR8QP0Bb44KrhtCJzf4a0kRrKVLFdZAaoUOpsDSCxswgbhmZ-toS2sUqqafG99dgJutmZh08QevYEG3fxDIwSRimjKUhM76kMbYxVagX8xqpnGvcprx4jsYsyXZ6IhtfZqcnklXYL5u8jog2fqu8VSxWlNtcP3JcY5wLyqqwU75Ga7EukDgz3SHWsR_EDEG7UYWDYt0mRPzc4d5ID8qxWVruk077MOr2HvEZRjJAnN_4k9RNmKNWQdxPnS2YGfSGZhtm1dug0-_VoHJ02mxd12D6QhAsr2gLyxZ7qDmF_wA_fvZO |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB0hilQupdBWbEuLK5VLkdVdJ7GdQ1WhUgRiu-JAETc3sR1AKgndZVvxp_iNzDgf2yLBjQOH5JDYsRPPvJnY4zcAH7SNEnTtBU8j73hcKI8qlUvu0HQ5J30mbCBxHarRSB8fpwdzcN3uhaGwyhYTA1C7ytIc-afAJCWlEsmXi9-cskbR6mqbQqMWi31_9Rd_2Saf97ZxfDeE2Pl2-HWXN1kFuI1TecmjGEVOKmkHyuWUBDUVuXNaFVa6uPDKpdri2SuRJR7h2-sicsTrltm8X3iaAEXIfxITsxiFCoqDDvmFDJklUXETTp5Du4pab9ULJLwDyYlhi-v_7eDMue3WY29xlwZ7t7P02L7Uc3jWeNZsq1aFZZjz5QostVkrWANiK7BI_nVNT_0CKFtAHkiG6QILhoA1MWvn-IEY-vTs9Iq2tbFxEzeIjbjqPDsrJy_hx4O80SuYL6vSrwJToo8VEf58pmOfp2mRJEWa-EiLDOv4HvTb8TW2oVunrB-_zIwomkTCUIgdiYTRPfjYVbmouUbuK7zWjr5pYGdiZkPfg_fdbQQMWgXKSl9NsQzNCSTotwx6sNkK2z-PuLvBjVoeu74RM_n22dGWqcYneEyNjtHVeX1_x9bh6e7h96EZ7o3238CiII0Ik1prMH85nvq3sGD_oBSM3wXdYvDzoUX0BukAXtQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBaFeWiggthQwEr2ArO468SMHhCqWFVWr1R4AVVxMYjtQiSZltwvqX-PXMeM8FpDorQcOySGxYyf55mF7_A3AM-MSia694FkSPE9LHVCkCsU9mi7vVciFiySux3o6NScn2WwNfnZ7YSisstOJUVH72tEc-X5kklJKC7lftmERs_Hk1fk3ThmkaKW1S6fRQOQoXP7A4dvi5eEY__WeEJM3716_5W2GAe7STF3wJEX4Ka3cSPuCEqJmovDe6NIpn5ZB-8w4PActchlQlQdTJp443nJXDMtAk6Go_m9oHGNSOOFMfuytgFAxyyQKseTkRXQrqs22vUjIO1Kc2La4-dMmrhzdfm32Lx7TaPsmW__zV7sNm63HzQ4aEbkDa6Hahq0umwVrlds2bJDf3dBW3wXKIlBE8mG6wKKBYG0s2xl-LIa-PvtySdvd2LyNJ8RGfH2Wn1aLe_D-Wt7oPqxXdRUeANNiiBVRLYbcpKHIslLKMpMhMSLHOmEAw-5fW9fSsFM2kK92RSBN8LAUekfwsGYAz_sq5w0HyVWFdzsk2FYdLewKBgN42t9GRUKrQ3kV6iWWobkCif7MaAAvOuD99oh_N7jXYLPvGzGWj08_HNh6_hmPpTUpukA7V3fsCdxCZNrjw-nRQ9gQJBxxrmsX1i_my_AIbrrvCIL54yhmDD5dN0J_AcDyZ8A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+logic+programming+for+hybrid+relational+domains&rft.jtitle=Machine+learning&rft.au=Nitti%2C+Davide&rft.au=De+Laet%2C+Tinne&rft.au=De+Raedt%2C+Luc&rft.date=2016-06-01&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=103&rft.issue=3&rft.spage=407&rft.epage=449&rft_id=info:doi/10.1007%2Fs10994-016-5558-8&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |