Probabilistic logic programming for hybrid relational domains

We introduce a probabilistic language and an efficient inference algorithm based on distributional clauses for static and dynamic inference in hybrid relational domains. Static inference is based on sampling, where the samples represent (partial) worlds (with discrete and continuous variables). Furt...

Full description

Saved in:
Bibliographic Details
Published in:Machine learning Vol. 103; no. 3; pp. 407 - 449
Main Authors: Nitti, Davide, De Laet, Tinne, De Raedt, Luc
Format: Journal Article
Language:English
Published: New York Springer US 01.06.2016
Springer Nature B.V
Subjects:
ISSN:0885-6125, 1573-0565, 1573-0565
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We introduce a probabilistic language and an efficient inference algorithm based on distributional clauses for static and dynamic inference in hybrid relational domains. Static inference is based on sampling, where the samples represent (partial) worlds (with discrete and continuous variables). Furthermore, we use backward reasoning to determine which facts should be included in the partial worlds. For filtering in dynamic models we combine the static inference algorithm with particle filters and guarantee that the previous partial samples can be safely forgotten, a condition that does not hold in most logical filtering frameworks. Experiments show that the proposed framework can outperform classic sampling methods for static and dynamic inference and that it is promising for robotics and vision applications. In addition, it provides the correct results in domains in which most probabilistic programming languages fail.
AbstractList Issue Title: Special Issue on Inductive Logic Programming; Guest Editors: Jesse Davis and Jan Ramon We introduce a probabilistic language and an efficient inference algorithm based on distributional clauses for static and dynamic inference in hybrid relational domains. Static inference is based on sampling, where the samples represent (partial) worlds (with discrete and continuous variables). Furthermore, we use backward reasoning to determine which facts should be included in the partial worlds. For filtering in dynamic models we combine the static inference algorithm with particle filters and guarantee that the previous partial samples can be safely forgotten, a condition that does not hold in most logical filtering frameworks. Experiments show that the proposed framework can outperform classic sampling methods for static and dynamic inference and that it is promising for robotics and vision applications. In addition, it provides the correct results in domains in which most probabilistic programming languages fail.
We introduce a probabilistic language and an efficient inference algorithm based on distributional clauses for static and dynamic inference in hybrid relational domains. Static inference is based on sampling, where the samples represent (partial) worlds (with discrete and continuous variables). Furthermore, we use backward reasoning to determine which facts should be included in the partial worlds. For filtering in dynamic models we combine the static inference algorithm with particle filters and guarantee that the previous partial samples can be safely forgotten, a condition that does not hold in most logical filtering frameworks. Experiments show that the proposed framework can outperform classic sampling methods for static and dynamic inference and that it is promising for robotics and vision applications. In addition, it provides the correct results in domains in which most probabilistic programming languages fail.
Author De Raedt, Luc
Nitti, Davide
De Laet, Tinne
Author_xml – sequence: 1
  givenname: Davide
  orcidid: 0000-0002-0031-6094
  surname: Nitti
  fullname: Nitti, Davide
  email: davide.nitti@cs.kuleuven.be
  organization: Department of Computer Science, KU Leuven
– sequence: 2
  givenname: Tinne
  surname: De Laet
  fullname: De Laet, Tinne
  organization: Faculty of Engineering Science, KU Leuven
– sequence: 3
  givenname: Luc
  surname: De Raedt
  fullname: De Raedt, Luc
  organization: Department of Computer Science, KU Leuven
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-84471$$DView record from Swedish Publication Index (Örebro universitet)
BookMark eNp9kM1LwzAchoNMcJv-Ad4KXjwYTdLmowcPY37CQA_qNaRpWjPaZiYtsv_ezA2RgR7yy-V5k9_7TMCoc50B4BSjS4wQvwoY5XkGEWaQUiqgOABjTHkKEWV0BMZICAoZJvQITEJYIoQIE2wMrp-9K1RhGxt6q5PG1XGuvKu9alvb1UnlfPK-LrwtE28a1VvXqSYpXatsF47BYaWaYE529xS83t2-zB_g4un-cT5bQJ3lrIdpxlLBONOYlwXOKcpJUZaCV5qVWWV4mQsdp-FEUYMwMaJKS0ERU7pAlUnTKbjYvhs-zWoo5MrbVvm1dMrKG_s2k87X8QxSZBnHET_f4rHIx2BCL1sbtGka1Rk3BIkFoRlNGdmgZ3vo0g0-VowUz6M8xgmNFN5S2rsQvKl-NsBIbvzLrX8Z_cuNfylihu9ltO2__fVe2ebfJNm1jb90tfG_dvoz9AVg_JvU
CitedBy_id crossref_primary_10_1017_S1471068421000144
crossref_primary_10_1145_3742440
crossref_primary_10_1016_j_artint_2021_103452
crossref_primary_10_3389_frobt_2025_1586033
crossref_primary_10_1017_S1471068418000273
crossref_primary_10_1145_3132700
crossref_primary_10_1145_3632905
crossref_primary_10_1016_j_artint_2024_104227
crossref_primary_10_3389_frobt_2020_00100
crossref_primary_10_1007_s12652_020_01989_x
crossref_primary_10_1007_s10994_024_06538_7
crossref_primary_10_1007_s10514_017_9637_x
crossref_primary_10_1109_TCDS_2019_2915763
crossref_primary_10_3233_IA_170106
Cites_doi 10.1093/biomet/83.1.81
10.1201/b11322
10.1080/10618600.1996.10474692
10.1115/1.3662552
10.1145/16856.16859
10.1109/IROS.2009.5354602
10.1023/A:1008935410038
10.1007/978-3-540-85928-4_17
10.7551/mitpress/7432.001.0001
10.1214/10-STS325
10.1016/0743-1066(91)90027-M
10.1080/01621459.1999.10474153
10.3182/20090706-3-FR-2004.00129
10.1214/10-BA525
10.1007/s10994-010-5213-8
10.1007/978-3-540-78246-9_32
10.1109/ICRA.2014.6906966
10.1109/IROS.2013.6696747
10.1016/j.inffus.2008.05.005
10.1007/978-3-540-78652-8
10.1109/78.978383
10.1007/s10852-012-9213-5
10.1007/978-3-540-89982-2_22
10.1109/JPROC.2012.2200552
10.1007/978-3-662-44845-8_45
10.1017/S1471068411000238
10.1109/CDC.2005.1582177
10.1007/978-1-4757-3437-9_20
10.1007/978-1-4757-4145-2
10.1007/978-3-642-83189-8
10.1016/j.artint.2010.04.015
10.1111/1467-9868.00280
10.1613/jair.1675
ContentType Journal Article
Copyright The Author(s) 2016
Copyright_xml – notice: The Author(s) 2016
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTPV
AOWAS
D91
DOI 10.1007/s10994-016-5558-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
SwePub
SwePub Articles
SWEPUB Örebro universitet
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
Computer and Information Systems Abstracts


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Statistics
EISSN 1573-0565
EndPage 449
ExternalDocumentID oai_DiVA_org_oru_84471
4065084151
10_1007_s10994_016_5558_8
Genre Feature
GrantInformation_xml – fundername: Agentschap voor Innovatie door Wetenschap en Technologie
  grantid: 111406
  funderid: http://dx.doi.org/10.13039/501100003132
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
ADTPV
AOWAS
D91
ID FETCH-LOGICAL-c496t-34638676c17db195092bdd87fc6d4fe7d98ce7de72a5e012e8f3d8506acb0fe33
IEDL.DBID RSV
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000376645600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6125
1573-0565
IngestDate Tue Nov 04 16:52:41 EST 2025
Fri Sep 05 12:40:26 EDT 2025
Tue Nov 04 22:19:52 EST 2025
Sat Nov 29 01:43:26 EST 2025
Tue Nov 18 21:14:01 EST 2025
Fri Feb 21 02:28:44 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Likelihood weighting
Statistical relational learning
Logic programming
Probabilistic programming
Discrete and continuous distributions
Particle filter
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-34638676c17db195092bdd87fc6d4fe7d98ce7de72a5e012e8f3d8506acb0fe33
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0031-6094
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10994-016-5558-8.pdf
PQID 1790566725
PQPubID 54194
PageCount 43
ParticipantIDs swepub_primary_oai_DiVA_org_oru_84471
proquest_miscellaneous_1825453621
proquest_journals_1790566725
crossref_primary_10_1007_s10994_016_5558_8
crossref_citationtrail_10_1007_s10994_016_5558_8
springer_journals_10_1007_s10994_016_5558_8
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Choi, J., Guzman-Rivera, A., & Amir, E. (2011). Lifted relational Kalman filtering. In Proceedings of the 22nd international joint conference on artificial intelligence (IJCAI 2011), pp. 2092–2099.
Beetz, M., Jain, D., Mosenlechner, L., Tenorth, M., Kunze, L., & Blodow, N., et al. (2012) Cognition-enabled autonomous robot control for the realization of home chore task intelligence. Proceedings of the IEEE, 100(8), 2454–2471.
PfefferADasSLawlessDNgBFactored reasoning for monitoring dynamic team and goal formationInformation Fusion20091019910610.1016/j.inffus.2008.05.005
Thon, I., Landwehr, N., & De Raedt, L. (2011). Stochastic relational processes: Efficient inference and applications. Machine Learning, 82(2), 239–272.
Owen, A. B. (2013). Monte Carlo theory, methods and examples. http://statweb.stanford.edu/~owen/mc
Goodman, N., Mansinghka, V. K., Roy, D. M., Bonawitz, K., & Tenenbaum, J. B. (2008). Church: A language for generative models. In Proceedings of the 24th conference on uncertainty in artificial intelligence (UAI 2008) (pp. 220–229). Edinburgh: AUAI Press.
KollerDFriedmanNProbabilistic graphical models: Principles and techniques—adaptive computation and machine learning2009Cambridge, MAMIT Press
DoucetAGodsillSAndrieuCOn sequential Monte Carlo sampling methods for Bayesian filteringStatistics and Computing200010319720810.1023/A:1008935410038
KadaneJPrinciples of uncertainty2011AbingdonTaylor & Francis10.1201/b113221250.62009
Kantas, N., Doucet, A., Singh, S. S., & Maciejowski, J. M. (2009). An overview of sequential monte carlo methods for parameter estimation in general state-space models. In 15th IFAC symposium on system identification, Vol. 15, (pp. 774–785).
Andrieu, C., Doucet, A., & Tadic, V. B. (2005). On-line parameter estimation in general state-space models. In Proceedings of the 44th IEEE conference on decision and control, 2005 and 2005 European control conference (CDC-ECC ’05), pp. 332–337.
Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., & De Raedt, L. (2008). On the efficient execution of ProbLog programs. In Proceedings of the 24th conference on logic programming (ICLP 2008). Lecture notes in computer science (Vol. 5366, pp. 175–189). Berlin: Springer.
Meyer-Delius, D., Plagemann, C., Wichert, G., Feiten, W., Lawitzky, G., & Burgard, W. (2008). A probabilistic relational model for characterizing situations in dynamic multi-agent systems. In Data analysis, machine learning and applications. Berlin: Springer.
KerstingKDe RaedtLRaikoTLogical hidden Markov modelsJournal of Artificial Intelligence Research20062542545622720691182.68353
Perov, Y., Paige, B., & Wood, F. The Indian GPA problem. Retrieved February 23, 2016, from http://www.robots.ox.ac.uk/~fwood/anglican/examples/viewer/?worksheet=indian-gpa.
Nitti, D., De Laet, T., & De Raedt, L. (2013). A particle filter for hybrid relational domains. In Proceedings of the international conference on intelligent robots and systems (IROS 2013), pp. 2764–2771.
Nitti, D., De Laet, T., & De Raedt, L. (2014c). Relational object tracking and learning. In Proceedings of the International conference on robotics and automation (ICRA 2014).
Papai, T., Kautz, H., & Stefankovic, D. (2012). Slice normalized dynamic Markov logic networks. In Advances in neural information processing systems (NIPS 2012) (pp. 1907–1915).
de Salvo Braz, R., Arora, N., Sudderth, E., & Russell, S. (2008). Open-universe state estimation with DBLOG. In NIPS workshop on probabilistic programming: Universal languages, systems and applications.
PittMKShephardNFiltering via simulation: Auxiliary particle filtersJournal of the American statistical association199994446590599170232810.1080/01621459.1999.104741531072.62639
Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D., & Kolobov, A. (2005). BLOG: Probabilistic models with unknown objects. In Proceedings of the 19th international joint conference on artificial intelligence (IJCAI 2005), pp. 1352–1359.
CarvalhoCMLopesHFPolsonNGTaddyMAParticle learning for general mixturesBayesian Analysis201054709740274015410.1214/10-BA5251330.62348
Hajishirzi, H., & Amir, E. (2008). Sampling first order logical particles. In Proceedings of the 24th conference on uncertainty in artificial intelligence (UAI 2008) (pp. 248–255). Edinburgh: AUAI Press.
GetoorLTaskarBAn introduction to statistical relational learning2007Cambridge, MAMIT Press1141.68054
Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambridge, MA: MIT Press. ISBN: 0262201623.
GilksWRBerzuiniCFollowing a moving targetmonte carlo inference for dynamic bayesian modelsJournal of the Royal Statistical Society: Series B (Statistical Methodology)2001631127146181199510.1111/1467-9868.002800976.62021
Manfredotti, C. E., Fleet, D. J., Hamilton, H. J., & Zilles, S. (2010). Relational particle filtering. NIPS Workshop on Monte Carlo methods for modern applications, December 2010.
AptKFrom logic programming to Prolog1997Upper Saddle RiverPrentice-Hall international series in computer science. Prentice Hall
RussellSNorvigPArtificial intelligence: A modern approach20093Englewood Cliffs, NJPrentice Hall0835.68093
HiguchiTDoucetAFreitasNGordonNSelf-organizing time series modelSequential Monte Carlo methods in practice, statistics for engineering and information science2001New YorkSpringer42944410.1007/978-1-4757-3437-9_20
Milch, B., Marthi, B., Sontag, D., Russell, S., Ong, D. L., & Kolobov, A. (2005). Approximate inference for infinite contingent Bayesian networks. In R. G. Cowell, Z. Ghahramani (Eds.), Proceedings of the 10th international workshop on artificial intelligence and statistics (AISTATS 2005) (pp. 238–245). Society for Artificial Intelligence and Statistics.
Whiteley, N., & Johansen, A. M. (2010). Recent developments in auxiliary particle filtering. Barber, C., & Chiappa, (Eds.), Inference and learning in dynamic models (pp. 38, 39–47). Cambridge: Cambridge University Press.
De Raedt, L., Frasconi, P., Kersting, K., & Muggleton, S. (Eds.). (2008). Probabilistic inductive logic programming, theory and applications. Lecture notes in computer science, Vol. 4911. Berlin: Springer.
Przymusinski, T. C. (1988). Perfect model semantics. In Proceedings of the 5th international conference on logic programming and symposium (ICLP/SLP 1988), pp. 1081–1096.
CarvalhoCMJohannesMSLopesHFPolsonNGParticle learning and smoothingStatistical Science201025188106274181610.1214/10-STS3251328.62541
Nitti, D., De Laet, T., & De Raedt, L. (2014b). Distributional clauses particle filter. In Machine learning and knowledge discovery in databases, lecture notes in computer science (Vol. 8726, pp. 504–507). Berlin: Springer.
LemieuxCMonte Carlo and Quasi-Monte Carlo sampling2009BerlinSpringer1269.65001
Wood, F., van de Meent, J. W., & Mansinghka, V. (2014). A new approach to probabilistic programming inference. In Proceedings of the 17th international conference on artificial intelligence and statistics (AISTATS 2014), pp. 1024–1032.
Gutmann, B., Thon, I., Kimmig, A., Bruynooghe, M., & De Raedt, L. (2011). The magic of logical inference in probabilistic programming. Theory and Practice of Logic Programming, 11, 663–680.
CasellaGRobertCPRao-Blackwellisation of sampling schemesBiometrika19968318194139915710.1093/biomet/83.1.810866.62024
BancilhonFRamakrishnanRAn amateur’s introduction to recursive query processing strategiesSIGMOD Record198615165110.1145/16856.16859
NilssonUMałiszyńskiJLogic, programming and prolog19952New YorkWiley
ShiraziAAmirEFirst-order logical filteringArtificial Intelligence20111751193219275235010.1016/j.artint.2010.04.0151216.68276
LloydJFoundations of logic programming1987New YorkSpringer10.1007/978-3-642-83189-80668.68004
Doucet, A., de Freitas, N., Murphy, K., & Russell, S. (2000). Rao-blackwellised particle filtering for dynamic bayesian networks. In Proceedings of the 16th conference on uncertainty in artificial intelligence (UAI ’00) (pp. 176–183). Burlington: Morgan Kaufmann.
LloydJShepherdsonJPartial evaluation in logic programmingThe Journal of Logic Programming19911134217242112545310.1016/0743-1066(91)90027-M0741.68030
KalmanRA new approach to linear filtering and prediction problemsJournal of Basic Engineering196082354510.1115/1.3662552
Nitti, D., Chliveros, G., De Raedt, L., Pateraki, M., Hourdakis, M., & Trahanias, P. (2014a). Application of dynamic distributional clauses for multi-hypothesis initialization in model-based object tracking. In 9th International conference on computer vision theory and applications (VISAPP 2014), Vol. 2.
CattelaniLManfredottiCMessinaEA particle filtering approach for tracking an unknown number of objects with dynamic relationsJournal of Mathematical Modelling and Algorithms in Operations Research2012131321317110910.1007/s10852-012-9213-51279.62197
Milch, B. C. (2006). Probabilistic models with unknown objects. Ph.D. thesis, University of California, Berkeley.
Tenorth, M., & Beetz, M. (2009). KnowRob—Knowledge processing for autonomous personal robots. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2009), pp. 4261–4266.
Lopes, H. F., Carvalho, C. M., Johannes, M., & Polson, N. G. (2010). Particle learning for sequential bayesian computation. In J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, M. West (Eds.), Bayesian statistics 9 (Vol. 9, pp. 317–360). Oxford: Oxford University Press.
Fung, R. M., & Chang, K. (1989). Weighing and integrating evidence for stochastic simulation in Bayesian networks. In Proceedings of the 5th conference on uncertainty in artificial intelligence (UAI 1989).
Natarajan, S., Bui, H. H., Tadepalli, P., Kersting, K., & Keen Wong, W. (2008). Logical hierarchical hidden markov models for modeling user activities. In Proceedings of the 18th international conference in inductive logic programming (ILP 2008). Lecture notes in computer science (Vol. 5194, pp. 192–209).
KitagawaGMonte Carlo filter and smoother for non-gaussian nonlinear state space modelsJournal of Computational a
J Lloyd (5558_CR30) 1991; 11
U Nilsson (5558_CR40) 1995
CM Carvalho (5558_CR5) 2010; 25
5558_CR17
5558_CR19
5558_CR18
5558_CR57
5558_CR12
5558_CR56
5558_CR59
5558_CR14
5558_CR58
5558_CR53
5558_CR11
5558_CR10
J Lloyd (5558_CR29) 1987
G Kitagawa (5558_CR26) 1996; 5
R Kalman (5558_CR22) 1960; 82
5558_CR50
T Higuchi (5558_CR20) 2001
A Pfeffer (5558_CR48) 2009; 10
L Getoor (5558_CR15) 2007
F Bancilhon (5558_CR3) 1986; 15
K Kersting (5558_CR24) 2006; 25
A Doucet (5558_CR13) 2000; 10
5558_CR23
5558_CR25
S Russell (5558_CR52) 2009
5558_CR60
J Kadane (5558_CR21) 2011
5558_CR61
G Casella (5558_CR7) 1996; 83
MK Pitt (5558_CR49) 1999; 94
L Cattelani (5558_CR8) 2012; 13
5558_CR39
5558_CR38
C Lemieux (5558_CR28) 2009
5558_CR35
5558_CR34
5558_CR37
5558_CR4
5558_CR36
5558_CR9
5558_CR31
5558_CR33
5558_CR32
5558_CR1
WR Gilks (5558_CR16) 2001; 63
G Storvik (5558_CR55) 2002; 50
C Robert (5558_CR51) 2004
CM Carvalho (5558_CR6) 2010; 5
5558_CR46
5558_CR45
5558_CR47
5558_CR42
K Apt (5558_CR2) 1997
5558_CR41
5558_CR44
5558_CR43
A Shirazi (5558_CR54) 2011; 175
D Koller (5558_CR27) 2009
References_xml – reference: Ng, B., Peshkin, L., & Pfeffer, A. (2002). Factored particles for scalable monitoring. In Proceedings of the 18th conference on uncertainty in artificial intelligence (UAI2002) (pp. 370–377). Burlington: Morgan Kaufmann.
– reference: Przymusinski, T. C. (1988). Perfect model semantics. In Proceedings of the 5th international conference on logic programming and symposium (ICLP/SLP 1988), pp. 1081–1096.
– reference: PittMKShephardNFiltering via simulation: Auxiliary particle filtersJournal of the American statistical association199994446590599170232810.1080/01621459.1999.104741531072.62639
– reference: de Salvo Braz, R., Arora, N., Sudderth, E., & Russell, S. (2008). Open-universe state estimation with DBLOG. In NIPS workshop on probabilistic programming: Universal languages, systems and applications.
– reference: Murphy, K. P. (2002). Dynamic Bayesian networks: Representation, inference and learning. Ph.D. thesis, University of California, Berkeley.
– reference: ShiraziAAmirEFirst-order logical filteringArtificial Intelligence20111751193219275235010.1016/j.artint.2010.04.0151216.68276
– reference: Nitti, D., De Laet, T., & De Raedt, L. (2014b). Distributional clauses particle filter. In Machine learning and knowledge discovery in databases, lecture notes in computer science (Vol. 8726, pp. 504–507). Berlin: Springer.
– reference: LloydJShepherdsonJPartial evaluation in logic programmingThe Journal of Logic Programming19911134217242112545310.1016/0743-1066(91)90027-M0741.68030
– reference: Natarajan, S., Bui, H. H., Tadepalli, P., Kersting, K., & Keen Wong, W. (2008). Logical hierarchical hidden markov models for modeling user activities. In Proceedings of the 18th international conference in inductive logic programming (ILP 2008). Lecture notes in computer science (Vol. 5194, pp. 192–209).
– reference: RobertCCasellaGMonte Carlo statistical methods. Springer texts in statistics2004New YorkSpringer10.1007/978-1-4757-4145-2
– reference: Doucet, A., de Freitas, N., Murphy, K., & Russell, S. (2000). Rao-blackwellised particle filtering for dynamic bayesian networks. In Proceedings of the 16th conference on uncertainty in artificial intelligence (UAI ’00) (pp. 176–183). Burlington: Morgan Kaufmann.
– reference: Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D., & Kolobov, A. (2005). BLOG: Probabilistic models with unknown objects. In Proceedings of the 19th international joint conference on artificial intelligence (IJCAI 2005), pp. 1352–1359.
– reference: PfefferADasSLawlessDNgBFactored reasoning for monitoring dynamic team and goal formationInformation Fusion20091019910610.1016/j.inffus.2008.05.005
– reference: Thon, I., Landwehr, N., & De Raedt, L. (2011). Stochastic relational processes: Efficient inference and applications. Machine Learning, 82(2), 239–272.
– reference: Zettlemoyer, L. S., Pasula, H. M., & Kaelbling, L. P. (2007). Logical particle filtering. In Proceedings of the Dagstuhl seminar on probabilistic, logical, and relational learning.
– reference: Hajishirzi, H., & Amir, E. (2008). Sampling first order logical particles. In Proceedings of the 24th conference on uncertainty in artificial intelligence (UAI 2008) (pp. 248–255). Edinburgh: AUAI Press.
– reference: NilssonUMałiszyńskiJLogic, programming and prolog19952New YorkWiley
– reference: CarvalhoCMLopesHFPolsonNGTaddyMAParticle learning for general mixturesBayesian Analysis201054709740274015410.1214/10-BA5251330.62348
– reference: KalmanRA new approach to linear filtering and prediction problemsJournal of Basic Engineering196082354510.1115/1.3662552
– reference: Sato, T. (1995). A statistical learning method for logic programs with distribution semantics. In Proceedings of the 12th international conference on logic programming (ICLP 1995) (pp. 715–729). Cambridge, MA: MIT Press.
– reference: Kantas, N., Doucet, A., Singh, S. S., & Maciejowski, J. M. (2009). An overview of sequential monte carlo methods for parameter estimation in general state-space models. In 15th IFAC symposium on system identification, Vol. 15, (pp. 774–785).
– reference: BancilhonFRamakrishnanRAn amateur’s introduction to recursive query processing strategiesSIGMOD Record198615165110.1145/16856.16859
– reference: Lopes, H. F., Carvalho, C. M., Johannes, M., & Polson, N. G. (2010). Particle learning for sequential bayesian computation. In J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, M. West (Eds.), Bayesian statistics 9 (Vol. 9, pp. 317–360). Oxford: Oxford University Press.
– reference: Nitti, D., Chliveros, G., De Raedt, L., Pateraki, M., Hourdakis, M., & Trahanias, P. (2014a). Application of dynamic distributional clauses for multi-hypothesis initialization in model-based object tracking. In 9th International conference on computer vision theory and applications (VISAPP 2014), Vol. 2.
– reference: Goodman, N., Mansinghka, V. K., Roy, D. M., Bonawitz, K., & Tenenbaum, J. B. (2008). Church: A language for generative models. In Proceedings of the 24th conference on uncertainty in artificial intelligence (UAI 2008) (pp. 220–229). Edinburgh: AUAI Press.
– reference: Wood, F., van de Meent, J. W., & Mansinghka, V. (2014). A new approach to probabilistic programming inference. In Proceedings of the 17th international conference on artificial intelligence and statistics (AISTATS 2014), pp. 1024–1032.
– reference: Nitti, D., De Laet, T., & De Raedt, L. (2013). A particle filter for hybrid relational domains. In Proceedings of the international conference on intelligent robots and systems (IROS 2013), pp. 2764–2771.
– reference: Gutmann, B., Thon, I., Kimmig, A., Bruynooghe, M., & De Raedt, L. (2011). The magic of logical inference in probabilistic programming. Theory and Practice of Logic Programming, 11, 663–680.
– reference: StorvikGParticle filters for state-space models with the presence of unknown static parametersIEEE Transactions on Signal Processing200250228128910.1109/78.978383
– reference: GilksWRBerzuiniCFollowing a moving targetmonte carlo inference for dynamic bayesian modelsJournal of the Royal Statistical Society: Series B (Statistical Methodology)2001631127146181199510.1111/1467-9868.002800976.62021
– reference: CarvalhoCMJohannesMSLopesHFPolsonNGParticle learning and smoothingStatistical Science201025188106274181610.1214/10-STS3251328.62541
– reference: Tenorth, M., & Beetz, M. (2009). KnowRob—Knowledge processing for autonomous personal robots. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2009), pp. 4261–4266.
– reference: Whiteley, N., & Johansen, A. M. (2010). Recent developments in auxiliary particle filtering. Barber, C., & Chiappa, (Eds.), Inference and learning in dynamic models (pp. 38, 39–47). Cambridge: Cambridge University Press.
– reference: Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambridge, MA: MIT Press. ISBN: 0262201623.
– reference: Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., & De Raedt, L. (2008). On the efficient execution of ProbLog programs. In Proceedings of the 24th conference on logic programming (ICLP 2008). Lecture notes in computer science (Vol. 5366, pp. 175–189). Berlin: Springer.
– reference: KerstingKDe RaedtLRaikoTLogical hidden Markov modelsJournal of Artificial Intelligence Research20062542545622720691182.68353
– reference: KitagawaGMonte Carlo filter and smoother for non-gaussian nonlinear state space modelsJournal of Computational and Graphical Statistics1996511251380850
– reference: Nitti, D., De Laet, T., & De Raedt, L. (2014c). Relational object tracking and learning. In Proceedings of the International conference on robotics and automation (ICRA 2014).
– reference: RussellSNorvigPArtificial intelligence: A modern approach20093Englewood Cliffs, NJPrentice Hall0835.68093
– reference: DoucetAGodsillSAndrieuCOn sequential Monte Carlo sampling methods for Bayesian filteringStatistics and Computing200010319720810.1023/A:1008935410038
– reference: AptKFrom logic programming to Prolog1997Upper Saddle RiverPrentice-Hall international series in computer science. Prentice Hall
– reference: Andrieu, C., Doucet, A., & Tadic, V. B. (2005). On-line parameter estimation in general state-space models. In Proceedings of the 44th IEEE conference on decision and control, 2005 and 2005 European control conference (CDC-ECC ’05), pp. 332–337.
– reference: HiguchiTDoucetAFreitasNGordonNSelf-organizing time series modelSequential Monte Carlo methods in practice, statistics for engineering and information science2001New YorkSpringer42944410.1007/978-1-4757-3437-9_20
– reference: LloydJFoundations of logic programming1987New YorkSpringer10.1007/978-3-642-83189-80668.68004
– reference: Choi, J., Guzman-Rivera, A., & Amir, E. (2011). Lifted relational Kalman filtering. In Proceedings of the 22nd international joint conference on artificial intelligence (IJCAI 2011), pp. 2092–2099.
– reference: De Raedt, L., Frasconi, P., Kersting, K., & Muggleton, S. (Eds.). (2008). Probabilistic inductive logic programming, theory and applications. Lecture notes in computer science, Vol. 4911. Berlin: Springer.
– reference: Milch, B. C. (2006). Probabilistic models with unknown objects. Ph.D. thesis, University of California, Berkeley.
– reference: KadaneJPrinciples of uncertainty2011AbingdonTaylor & Francis10.1201/b113221250.62009
– reference: GetoorLTaskarBAn introduction to statistical relational learning2007Cambridge, MAMIT Press1141.68054
– reference: Meyer-Delius, D., Plagemann, C., Wichert, G., Feiten, W., Lawitzky, G., & Burgard, W. (2008). A probabilistic relational model for characterizing situations in dynamic multi-agent systems. In Data analysis, machine learning and applications. Berlin: Springer.
– reference: Owen, A. B. (2013). Monte Carlo theory, methods and examples. http://statweb.stanford.edu/~owen/mc/
– reference: CattelaniLManfredottiCMessinaEA particle filtering approach for tracking an unknown number of objects with dynamic relationsJournal of Mathematical Modelling and Algorithms in Operations Research2012131321317110910.1007/s10852-012-9213-51279.62197
– reference: Fung, R. M., & Chang, K. (1989). Weighing and integrating evidence for stochastic simulation in Bayesian networks. In Proceedings of the 5th conference on uncertainty in artificial intelligence (UAI 1989).
– reference: LemieuxCMonte Carlo and Quasi-Monte Carlo sampling2009BerlinSpringer1269.65001
– reference: Milch, B., Marthi, B., Sontag, D., Russell, S., Ong, D. L., & Kolobov, A. (2005). Approximate inference for infinite contingent Bayesian networks. In R. G. Cowell, Z. Ghahramani (Eds.), Proceedings of the 10th international workshop on artificial intelligence and statistics (AISTATS 2005) (pp. 238–245). Society for Artificial Intelligence and Statistics.
– reference: KollerDFriedmanNProbabilistic graphical models: Principles and techniques—adaptive computation and machine learning2009Cambridge, MAMIT Press
– reference: Papai, T., Kautz, H., & Stefankovic, D. (2012). Slice normalized dynamic Markov logic networks. In Advances in neural information processing systems (NIPS 2012) (pp. 1907–1915).
– reference: Perov, Y., Paige, B., & Wood, F. The Indian GPA problem. Retrieved February 23, 2016, from http://www.robots.ox.ac.uk/~fwood/anglican/examples/viewer/?worksheet=indian-gpa.
– reference: CasellaGRobertCPRao-Blackwellisation of sampling schemesBiometrika19968318194139915710.1093/biomet/83.1.810866.62024
– reference: Beetz, M., Jain, D., Mosenlechner, L., Tenorth, M., Kunze, L., & Blodow, N., et al. (2012) Cognition-enabled autonomous robot control for the realization of home chore task intelligence. Proceedings of the IEEE, 100(8), 2454–2471.
– reference: Manfredotti, C. E., Fleet, D. J., Hamilton, H. J., & Zilles, S. (2010). Relational particle filtering. NIPS Workshop on Monte Carlo methods for modern applications, December 2010.
– ident: 5558_CR47
– volume: 83
  start-page: 81
  issue: 1
  year: 1996
  ident: 5558_CR7
  publication-title: Biometrika
  doi: 10.1093/biomet/83.1.81
– volume-title: Artificial intelligence: A modern approach
  year: 2009
  ident: 5558_CR52
– volume-title: Principles of uncertainty
  year: 2011
  ident: 5558_CR21
  doi: 10.1201/b11322
– volume: 5
  start-page: 1
  issue: 1
  year: 1996
  ident: 5558_CR26
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.1996.10474692
– volume: 82
  start-page: 35
  year: 1960
  ident: 5558_CR22
  publication-title: Journal of Basic Engineering
  doi: 10.1115/1.3662552
– volume: 15
  start-page: 16
  year: 1986
  ident: 5558_CR3
  publication-title: SIGMOD Record
  doi: 10.1145/16856.16859
– ident: 5558_CR56
  doi: 10.1109/IROS.2009.5354602
– volume: 10
  start-page: 197
  issue: 3
  year: 2000
  ident: 5558_CR13
  publication-title: Statistics and Computing
  doi: 10.1023/A:1008935410038
– ident: 5558_CR11
– ident: 5558_CR38
  doi: 10.1007/978-3-540-85928-4_17
– volume-title: An introduction to statistical relational learning
  year: 2007
  ident: 5558_CR15
  doi: 10.7551/mitpress/7432.001.0001
– ident: 5558_CR9
– volume: 25
  start-page: 88
  issue: 1
  year: 2010
  ident: 5558_CR5
  publication-title: Statistical Science
  doi: 10.1214/10-STS325
– ident: 5558_CR34
– ident: 5558_CR19
– ident: 5558_CR53
– volume: 11
  start-page: 217
  issue: 34
  year: 1991
  ident: 5558_CR30
  publication-title: The Journal of Logic Programming
  doi: 10.1016/0743-1066(91)90027-M
– volume: 94
  start-page: 590
  issue: 446
  year: 1999
  ident: 5558_CR49
  publication-title: Journal of the American statistical association
  doi: 10.1080/01621459.1999.10474153
– volume-title: Logic, programming and prolog
  year: 1995
  ident: 5558_CR40
– ident: 5558_CR23
  doi: 10.3182/20090706-3-FR-2004.00129
– volume: 5
  start-page: 709
  issue: 4
  year: 2010
  ident: 5558_CR6
  publication-title: Bayesian Analysis
  doi: 10.1214/10-BA525
– ident: 5558_CR57
  doi: 10.1007/s10994-010-5213-8
– ident: 5558_CR33
  doi: 10.1007/978-3-540-78246-9_32
– ident: 5558_CR46
– volume-title: From logic programming to Prolog
  year: 1997
  ident: 5558_CR2
– ident: 5558_CR44
  doi: 10.1109/ICRA.2014.6906966
– ident: 5558_CR42
  doi: 10.1109/IROS.2013.6696747
– ident: 5558_CR31
– volume: 10
  start-page: 99
  issue: 1
  year: 2009
  ident: 5558_CR48
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2008.05.005
– ident: 5558_CR14
– ident: 5558_CR39
– ident: 5558_CR35
– ident: 5558_CR10
  doi: 10.1007/978-3-540-78652-8
– volume-title: Probabilistic graphical models: Principles and techniques—adaptive computation and machine learning
  year: 2009
  ident: 5558_CR27
– volume: 50
  start-page: 281
  issue: 2
  year: 2002
  ident: 5558_CR55
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/78.978383
– volume: 13
  start-page: 3
  issue: 1
  year: 2012
  ident: 5558_CR8
  publication-title: Journal of Mathematical Modelling and Algorithms in Operations Research
  doi: 10.1007/s10852-012-9213-5
– volume-title: Monte Carlo and Quasi-Monte Carlo sampling
  year: 2009
  ident: 5558_CR28
– ident: 5558_CR25
  doi: 10.1007/978-3-540-89982-2_22
– ident: 5558_CR41
– ident: 5558_CR45
– ident: 5558_CR59
– ident: 5558_CR4
  doi: 10.1109/JPROC.2012.2200552
– ident: 5558_CR17
– ident: 5558_CR43
  doi: 10.1007/978-3-662-44845-8_45
– ident: 5558_CR18
  doi: 10.1017/S1471068411000238
– ident: 5558_CR32
– ident: 5558_CR36
– ident: 5558_CR1
  doi: 10.1109/CDC.2005.1582177
– ident: 5558_CR60
– ident: 5558_CR61
– start-page: 429
  volume-title: Sequential Monte Carlo methods in practice, statistics for engineering and information science
  year: 2001
  ident: 5558_CR20
  doi: 10.1007/978-1-4757-3437-9_20
– ident: 5558_CR58
– ident: 5558_CR12
– volume-title: Monte Carlo statistical methods. Springer texts in statistics
  year: 2004
  ident: 5558_CR51
  doi: 10.1007/978-1-4757-4145-2
– volume-title: Foundations of logic programming
  year: 1987
  ident: 5558_CR29
  doi: 10.1007/978-3-642-83189-8
– volume: 175
  start-page: 193
  issue: 1
  year: 2011
  ident: 5558_CR54
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2010.04.015
– volume: 63
  start-page: 127
  issue: 1
  year: 2001
  ident: 5558_CR16
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/1467-9868.00280
– ident: 5558_CR37
– ident: 5558_CR50
– volume: 25
  start-page: 425
  year: 2006
  ident: 5558_CR24
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.1675
SSID ssj0002686
Score 2.4028673
Snippet We introduce a probabilistic language and an efficient inference algorithm based on distributional clauses for static and dynamic inference in hybrid...
Issue Title: Special Issue on Inductive Logic Programming; Guest Editors: Jesse Davis and Jan Ramon We introduce a probabilistic language and an efficient...
SourceID swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 407
SubjectTerms Algorithms
Artificial Intelligence
Computer programming
Computer Science
Control
Discrete andcontinuous distributions
Dynamics
Filtering
Filtration
Inference
Learning
Likelihood weighting
Logic programming
Mechatronics
Natural Language Processing (NLP)
Particle filter
Probabilistic methods
Probabilistic programming
Probability theory
Robotics
Simulation and Modeling
Statistical relational learning
Statistics
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4QwEJ74OnjxbVxfwUQvmsbdAm05GeMjHtR4UOONQFvUREF3XRP_vTOlsGqiFw9wAEonzJPO9BuAbaXDGEN7zpLQGhYV0qJK5YIZdF3GCJtx7UBcz-Xlpbq7S678gtvAl1U2NtEZalNpWiPfd0hSQkgeH7y8MuoaRdlV30JjHCYxsulRSdcFv2otMReu0yMqUszIkzdZzXrrnAPF7QlGiFdMffdLo2CzzY_-wBJ1_ud09r-Uz8GMjzyDw1pU5mHMlgsw23R1CLySL8A0xZ81fPMiEJp-7kB46ULgDGXga7qekeAAY97g4YO2fQV9X1eHk5jqOXssB0twc3pyfXTGfMcFpqNEvLEwQnUUUuieNDk1iE14boyShRYmKqw0idJ4tpJnsUXXZlURGsK8y3TeLWwYLsNEWZV2BQLJuzgQzYPNVGTzJCniuEhiGyqe4RjbgW7zvVPt4cipK8ZTOgJSJhalVIJGLEpVB3bbIS81FsdfD6833Ei9Wg7SESs6sNXeRoWiLElW2mqIz9A_c4x-vdeBvYb5X17x-4Q7tXy0tBFy9_Hj7WFa9e_xGKYqwlBg9W_C1mCak1S6hZ51mHjrD-0GTOl35Hx_08n3J4vVAL0
  priority: 102
  providerName: ProQuest
Title Probabilistic logic programming for hybrid relational domains
URI https://link.springer.com/article/10.1007/s10994-016-5558-8
https://www.proquest.com/docview/1790566725
https://www.proquest.com/docview/1825453621
https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-84471
Volume 103
WOSCitedRecordID wos000376645600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: M2P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 1573-0565
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7U9eDFt7g-lgp6UQK7afPo0SeCuiw-FvFS2iTVBe3KPgT_vZNs211FBT00lyaTkMzkSzuTbwB2pfIZHu0pCX2jSZAKgyaVcKIRurTmJqbKkbheimZT3t-Hrfwed7-Idi9ckm6nnrjs5mhsG5xYjioip6GCaCdtvobrm3a5_VLu0jui9TBi4btwZX4n4jMYjU-YpVP0C4GoA52zhX8NdxHm8zOmdzhSiiWYMtkyLBT5G7zcnFfAUuUnjmHXkjV7bhf08oCtF-zLwwOt9_Ru73R5vTxoDuXq7kvcyfqrcHd2ent8TvJ0CkQFIR8QP0Bb44KrhtCJzf4a0kRrKVLFdZAaoUOpsDSCxswgbhmZ-toS2sUqqafG99dgJutmZh08QevYEG3fxDIwSRimjKUhM76kMbYxVagX8xqpnGvcprx4jsYsyXZ6IhtfZqcnklXYL5u8jog2fqu8VSxWlNtcP3JcY5wLyqqwU75Ga7EukDgz3SHWsR_EDEG7UYWDYt0mRPzc4d5ID8qxWVruk077MOr2HvEZRjJAnN_4k9RNmKNWQdxPnS2YGfSGZhtm1dug0-_VoHJ02mxd12D6QhAsr2gLyxZ7qDmF_wA_fvZO
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB0hilQupdBWbEuLK5VLkdVdJ7GdQ1WhUgRiu-JAETc3sR1AKgndZVvxp_iNzDgf2yLBjQOH5JDYsRPPvJnY4zcAH7SNEnTtBU8j73hcKI8qlUvu0HQ5J30mbCBxHarRSB8fpwdzcN3uhaGwyhYTA1C7ytIc-afAJCWlEsmXi9-cskbR6mqbQqMWi31_9Rd_2Saf97ZxfDeE2Pl2-HWXN1kFuI1TecmjGEVOKmkHyuWUBDUVuXNaFVa6uPDKpdri2SuRJR7h2-sicsTrltm8X3iaAEXIfxITsxiFCoqDDvmFDJklUXETTp5Du4pab9ULJLwDyYlhi-v_7eDMue3WY29xlwZ7t7P02L7Uc3jWeNZsq1aFZZjz5QostVkrWANiK7BI_nVNT_0CKFtAHkiG6QILhoA1MWvn-IEY-vTs9Iq2tbFxEzeIjbjqPDsrJy_hx4O80SuYL6vSrwJToo8VEf58pmOfp2mRJEWa-EiLDOv4HvTb8TW2oVunrB-_zIwomkTCUIgdiYTRPfjYVbmouUbuK7zWjr5pYGdiZkPfg_fdbQQMWgXKSl9NsQzNCSTotwx6sNkK2z-PuLvBjVoeu74RM_n22dGWqcYneEyNjtHVeX1_x9bh6e7h96EZ7o3238CiII0Ik1prMH85nvq3sGD_oBSM3wXdYvDzoUX0BukAXtQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBaFeWiggthQwEr2ArO468SMHhCqWFVWr1R4AVVxMYjtQiSZltwvqX-PXMeM8FpDorQcOySGxYyf55mF7_A3AM-MSia694FkSPE9LHVCkCsU9mi7vVciFiySux3o6NScn2WwNfnZ7YSisstOJUVH72tEc-X5kklJKC7lftmERs_Hk1fk3ThmkaKW1S6fRQOQoXP7A4dvi5eEY__WeEJM3716_5W2GAe7STF3wJEX4Ka3cSPuCEqJmovDe6NIpn5ZB-8w4PActchlQlQdTJp443nJXDMtAk6Go_m9oHGNSOOFMfuytgFAxyyQKseTkRXQrqs22vUjIO1Kc2La4-dMmrhzdfm32Lx7TaPsmW__zV7sNm63HzQ4aEbkDa6Hahq0umwVrlds2bJDf3dBW3wXKIlBE8mG6wKKBYG0s2xl-LIa-PvtySdvd2LyNJ8RGfH2Wn1aLe_D-Wt7oPqxXdRUeANNiiBVRLYbcpKHIslLKMpMhMSLHOmEAw-5fW9fSsFM2kK92RSBN8LAUekfwsGYAz_sq5w0HyVWFdzsk2FYdLewKBgN42t9GRUKrQ3kV6iWWobkCif7MaAAvOuD99oh_N7jXYLPvGzGWj08_HNh6_hmPpTUpukA7V3fsCdxCZNrjw-nRQ9gQJBxxrmsX1i_my_AIbrrvCIL54yhmDD5dN0J_AcDyZ8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+logic+programming+for+hybrid+relational+domains&rft.jtitle=Machine+learning&rft.au=Nitti%2C+Davide&rft.au=De+Laet%2C+Tinne&rft.au=De+Raedt%2C+Luc&rft.date=2016-06-01&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=103&rft.issue=3&rft.spage=407&rft.epage=449&rft_id=info:doi/10.1007%2Fs10994-016-5558-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon