Fractional Fourier transform and stability of fractional differential equation on Lizorkin space

In the current study, we conduct an investigation into the Hyers–Ulam stability of linear fractional differential equation using the Riemann–Liouville derivatives based on fractional Fourier transform. In addition, some new results on stability conditions with respect to delay differential equation...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in Difference Equations Ročník 2020; číslo 1; s. 1 - 23
Hlavní autoři: Unyong, Bundit, Mohanapriya, Arusamy, Ganesh, Anumanthappa, Rajchakit, Grienggrai, Govindan, Vediyappan, Vadivel, R., Gunasekaran, Nallappan, Lim, Chee Peng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer Science and Business Media LLC 16.10.2020
Springer International Publishing
SpringerOpen
Témata:
ISSN:1687-1847, 1687-1847
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In the current study, we conduct an investigation into the Hyers–Ulam stability of linear fractional differential equation using the Riemann–Liouville derivatives based on fractional Fourier transform. In addition, some new results on stability conditions with respect to delay differential equation of fractional order are obtained. We establish the Hyers–Ulam–Rassias stability results as well as examine their existence and uniqueness of solutions pertaining to nonlinear problems. We provide examples that indicate the usefulness of the results presented.
ISSN:1687-1847
1687-1847
DOI:10.1186/s13662-020-03046-5