Mitochondrial calcium cycling in neuronal function and neurodegeneration
Mitochondria are essential for proper cellular function through their critical roles in ATP synthesis, reactive oxygen species production, calcium (Ca 2+ ) buffering, and apoptotic signaling. In neurons, Ca 2+ buffering is particularly important as it helps to shape Ca 2+ signals and to regulate num...
Saved in:
| Published in: | Frontiers in cell and developmental biology Vol. 11; p. 1094356 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
Frontiers Media SA
24.01.2023
Frontiers Media S.A |
| Subjects: | |
| ISSN: | 2296-634X, 2296-634X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Mitochondria are essential for proper cellular function through their critical roles in ATP synthesis, reactive oxygen species production, calcium (Ca
2+
) buffering, and apoptotic signaling. In neurons, Ca
2+
buffering is particularly important as it helps to shape Ca
2+
signals and to regulate numerous Ca
2+
-dependent functions including neuronal excitability, synaptic transmission, gene expression, and neuronal toxicity. Over the past decade, identification of the mitochondrial Ca
2+
uniporter (MCU) and other molecular components of mitochondrial Ca
2+
transport has provided insight into the roles that mitochondrial Ca
2+
regulation plays in neuronal function in health and disease. In this review, we discuss the many roles of mitochondrial Ca
2+
uptake and release mechanisms in normal neuronal function and highlight new insights into the Ca
2+
-dependent mechanisms that drive mitochondrial dysfunction in neurologic diseases including epilepsy, Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. We also consider how targeting Ca
2+
uptake and release mechanisms could facilitate the development of novel therapeutic strategies for neurological diseases. |
|---|---|
| AbstractList | Mitochondria are essential for proper cellular function through their critical roles in ATP synthesis, reactive oxygen species production, calcium (Ca2+) buffering, and apoptotic signaling. In neurons, Ca2+ buffering is particularly important as it helps to shape Ca2+ signals and to regulate numerous Ca2+-dependent functions including neuronal excitability, synaptic transmission, gene expression, and neuronal toxicity. Over the past decade, identification of the mitochondrial Ca2+ uniporter (MCU) and other molecular components of mitochondrial Ca2+ transport has provided insight into the roles that mitochondrial Ca2+ regulation plays in neuronal function in health and disease. In this review, we discuss the many roles of mitochondrial Ca2+ uptake and release mechanisms in normal neuronal function and highlight new insights into the Ca2+-dependent mechanisms that drive mitochondrial dysfunction in neurologic diseases including epilepsy, Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. We also consider how targeting Ca2+ uptake and release mechanisms could facilitate the development of novel therapeutic strategies for neurological diseases. Mitochondria are essential for proper cellular function through their critical roles in ATP synthesis, reactive oxygen species production, calcium (Ca ) buffering, and apoptotic signaling. In neurons, Ca buffering is particularly important as it helps to shape Ca signals and to regulate numerous Ca -dependent functions including neuronal excitability, synaptic transmission, gene expression, and neuronal toxicity. Over the past decade, identification of the mitochondrial Ca uniporter (MCU) and other molecular components of mitochondrial Ca transport has provided insight into the roles that mitochondrial Ca regulation plays in neuronal function in health and disease. In this review, we discuss the many roles of mitochondrial Ca uptake and release mechanisms in normal neuronal function and highlight new insights into the Ca -dependent mechanisms that drive mitochondrial dysfunction in neurologic diseases including epilepsy, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. We also consider how targeting Ca uptake and release mechanisms could facilitate the development of novel therapeutic strategies for neurological diseases. Mitochondria are essential for proper cellular function through their critical roles in ATP synthesis, reactive oxygen species production, calcium (Ca2+) buffering, and apoptotic signaling. In neurons, Ca2+ buffering is particularly important as it helps to shape Ca2+ signals and to regulate numerous Ca2+-dependent functions including neuronal excitability, synaptic transmission, gene expression, and neuronal toxicity. Over the past decade, identification of the mitochondrial Ca2+ uniporter (MCU) and other molecular components of mitochondrial Ca2+ transport has provided insight into the roles that mitochondrial Ca2+ regulation plays in neuronal function in health and disease. In this review, we discuss the many roles of mitochondrial Ca2+ uptake and release mechanisms in normal neuronal function and highlight new insights into the Ca2+-dependent mechanisms that drive mitochondrial dysfunction in neurologic diseases including epilepsy, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. We also consider how targeting Ca2+ uptake and release mechanisms could facilitate the development of novel therapeutic strategies for neurological diseases.Mitochondria are essential for proper cellular function through their critical roles in ATP synthesis, reactive oxygen species production, calcium (Ca2+) buffering, and apoptotic signaling. In neurons, Ca2+ buffering is particularly important as it helps to shape Ca2+ signals and to regulate numerous Ca2+-dependent functions including neuronal excitability, synaptic transmission, gene expression, and neuronal toxicity. Over the past decade, identification of the mitochondrial Ca2+ uniporter (MCU) and other molecular components of mitochondrial Ca2+ transport has provided insight into the roles that mitochondrial Ca2+ regulation plays in neuronal function in health and disease. In this review, we discuss the many roles of mitochondrial Ca2+ uptake and release mechanisms in normal neuronal function and highlight new insights into the Ca2+-dependent mechanisms that drive mitochondrial dysfunction in neurologic diseases including epilepsy, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. We also consider how targeting Ca2+ uptake and release mechanisms could facilitate the development of novel therapeutic strategies for neurological diseases. Mitochondria are essential for proper cellular function through their critical roles in ATP synthesis, reactive oxygen species production, calcium (Ca 2+ ) buffering, and apoptotic signaling. In neurons, Ca 2+ buffering is particularly important as it helps to shape Ca 2+ signals and to regulate numerous Ca 2+ -dependent functions including neuronal excitability, synaptic transmission, gene expression, and neuronal toxicity. Over the past decade, identification of the mitochondrial Ca 2+ uniporter (MCU) and other molecular components of mitochondrial Ca 2+ transport has provided insight into the roles that mitochondrial Ca 2+ regulation plays in neuronal function in health and disease. In this review, we discuss the many roles of mitochondrial Ca 2+ uptake and release mechanisms in normal neuronal function and highlight new insights into the Ca 2+ -dependent mechanisms that drive mitochondrial dysfunction in neurologic diseases including epilepsy, Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. We also consider how targeting Ca 2+ uptake and release mechanisms could facilitate the development of novel therapeutic strategies for neurological diseases. |
| Author | Walters, Grant C. Usachev, Yuriy M. |
| AuthorAffiliation | Department of Neuroscience and Pharmacology , Iowa Neuroscience Institute , University of Iowa , Iowa City , IA , United States |
| AuthorAffiliation_xml | – name: Department of Neuroscience and Pharmacology , Iowa Neuroscience Institute , University of Iowa , Iowa City , IA , United States |
| Author_xml | – sequence: 1 givenname: Grant C. surname: Walters fullname: Walters, Grant C. – sequence: 2 givenname: Yuriy M. surname: Usachev fullname: Usachev, Yuriy M. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36760367$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktrVTEUhYNUbK39Aw7kgJNO7jWPk5xkIkixtlBxouAs5LFzm0tuUnPOKfTfm_uwtB04ScLOtxcr2estOsolA0LvCV4yJtWn4CClJcWULQlWPePiFTqhVImFYP3voyfnY3Q2jmuMMaF84JK9QcdMDAK35QRdfY9Tcbcl-xpN6pxJLs6bzj24FPOqi7nLMNeS212Ys5tiyZ3Jfl_1sIIM1Wyr79DrYNIIZ4f9FP26_Prz4mpx8-Pb9cWXm4XrlZgWBGyz0WwHTLkEcMF5Tol3NgSrrCfUKgHOeEklYBKkkxYYZl4wTKXh7BRd73V9MWt9V-PG1AddTNS7QqkrbeoUXQJtOQ6WWscZ871yVElBAhNY-AEz25um9XmvdTfbDXgHeaomPRN9fpPjrV6Ve60UpsMwNIHzg0Atf2YYJ72J43YwJkOZR90gLgiXUjX04wt0Xeba_nXUjAopG0Rloz48dfRo5d_AGkD3gKtlHCuER4RgvQ2G3gVDb4OhD8FoTfJFk4vTbmrtVTH9r_Uv3JW_3A |
| CitedBy_id | crossref_primary_10_1007_s12011_023_03832_8 crossref_primary_10_1016_j_brainres_2024_149060 crossref_primary_10_1016_j_ejphar_2025_177347 crossref_primary_10_1038_s41467_023_40929_z crossref_primary_10_3390_ijms26010044 crossref_primary_10_1016_j_jatmed_2024_04_002 crossref_primary_10_1016_j_jhazmat_2025_137374 crossref_primary_10_1113_JP286407 crossref_primary_10_1016_j_bbrc_2024_150010 crossref_primary_10_1016_j_tice_2025_102789 crossref_primary_10_1186_s40478_025_02023_x crossref_primary_10_1038_s44319_024_00313_4 crossref_primary_10_3389_fnmol_2025_1621070 crossref_primary_10_1038_s41582_024_01049_4 crossref_primary_10_3390_brainsci13050784 crossref_primary_10_1002_ana_27126 crossref_primary_10_1007_s11357_024_01133_z crossref_primary_10_1177_25152564241261228 crossref_primary_10_1038_s41420_024_02259_x crossref_primary_10_1007_s11064_024_04311_9 crossref_primary_10_3389_fphys_2024_1354091 crossref_primary_10_1016_j_jad_2025_119481 crossref_primary_10_1038_s41401_023_01144_0 crossref_primary_10_2174_0113816128264355231121064704 crossref_primary_10_1002_advs_202503830 crossref_primary_10_1016_j_ceca_2025_103013 crossref_primary_10_1016_j_dnarep_2024_103679 crossref_primary_10_3389_fphar_2024_1469053 crossref_primary_10_1016_j_bbrc_2025_152363 crossref_primary_10_1016_j_neuropharm_2023_109733 crossref_primary_10_3390_biom14040402 crossref_primary_10_1016_j_freeradbiomed_2025_02_035 crossref_primary_10_3390_pharmaceutics16081068 crossref_primary_10_3389_fphar_2025_1509317 crossref_primary_10_3390_ijms241914450 crossref_primary_10_3390_ijms252010973 crossref_primary_10_3389_fphar_2025_1684006 crossref_primary_10_1126_sciadv_adu9512 crossref_primary_10_1007_s12268_024_2319_2 crossref_primary_10_1016_j_aehs_2025_02_002 crossref_primary_10_1016_j_chmed_2025_09_005 crossref_primary_10_1042_BST20230012 crossref_primary_10_3389_fnins_2025_1631752 |
| Cites_doi | 10.1073/pnas.0806192105 10.1113/JP280351 10.1074/jbc.RA118.002926 10.3390/brainsci8100178 10.1089/ars.2018.7506 10.1016/j.molmed.2009.01.001 10.1111/j.1460-9568.2010.07345.x 10.1523/JNEUROSCI.19-15-06372.1999 10.1161/CIRCRESAHA.119.316369 10.1038/nm1277 10.1152/ajpcell.1990.258.5.C755 10.1016/j.neubiorev.2013.10.011 10.1016/j.neulet.2016.12.044 10.1111/j.1528-1167.2012.03618.x 10.1016/j.ceca.2012.02.010 10.1111/epi.12666 10.1038/jcbfm.2012.35 10.1523/jneurosci.3791-16.2017 10.1111/j.1469-7793.1998.131bu.x 10.15252/emmm.201606210 10.1002/alz.12068 10.2337/db20-0779 10.1080/146608201300079418 10.1111/j.1528-1167.2010.02522.x 10.1523/JNEUROSCI.4810-07.2008 10.3390/ijms20236004 10.1016/j.eplepsyres.2017.07.003 10.1038/s41467-020-16074-2 10.7554/eLife.69312 10.1073/pnas.1217823110 10.1016/j.cmet.2013.04.020 10.3389/fneur.2021.742625 10.1002/jnr.23562 10.1016/j.celrep.2020.108464 10.1016/j.cell.2019.03.050 10.1016/j.neuron.2007.05.004 10.3389/fncir.2021.711564 10.1038/nrn.2017.170 10.1016/j.cmet.2015.08.019 10.1016/j.mam.2010.03.002 10.1146/annurev.physiol.64.092501.114547 10.1038/nature22082 10.1016/j.neuron.2004.08.038 10.1523/JNEUROSCI.19-17-07495.1999 10.1016/s0896-6273(00)81248-9 10.1038/s41467-019-11813-6 10.1016/j.celrep.2013.06.040 10.1016/j.neuron.2013.10.026 10.1073/pnas.032539299 10.1016/j.celrep.2015.06.002 10.1002/anie.202000247 10.1007/s00424-015-1715-3 10.1159/000067897 10.3389/fnins.2018.00523 10.1146/annurev-physiol-031920-092419 10.7554/eLife.15545 10.1001/jama.1969.03160070046011 10.1038/s41467-019-11692-x 10.1523/JNEUROSCI.1301-11.2012 10.1523/jneurosci.2836-06.2006 10.1111/j.1471-4159.2007.04626.x 10.1038/ng.2851 10.1038/s42003-021-02114-0 10.1016/j.jalz.2016.12.006 10.1038/s41593-018-0221-2 10.1016/j.celrep.2015.08.079 10.1113/jphysiol.2002.035196 10.1074/jbc.M401229200 10.1056/NEJMra0909142 10.1111/j.1742-4658.2010.07754.x 10.1038/nature10234 10.1038/nrn3311 10.1523/jneurosci.2047-09.2009 10.1038/emboj.2013.157 10.1002/syn.20186 10.1038/s41583-019-0126-4 10.1016/j.ceca.2006.08.016 10.1523/JNEUROSCI.4701-09.2010 10.1152/jn.1998.80.1.452 10.1002/path.5351 10.1155/2012/843649 10.1038/s41593-020-00783-4 10.1016/bs.ircmb.2021.01.003 10.1016/j.neurobiolaging.2013.11.008 10.1111/j.1432-1033.1978.tb11993.x 10.1126/science.aau0437 10.1016/j.yjmcc.2020.09.014 10.1016/j.ceca.2012.03.003 10.1126/sciadv.abj4716 10.1073/pnas.1904005116 10.1038/ng1270 10.1016/j.neuron.2019.01.043 10.1016/j.cell.2012.10.011 10.1016/0003-9861(79)90372-2 10.1016/j.celrep.2015.06.017 10.1016/j.bbamcr.2017.01.011 10.1016/j.jbc.2021.101508 10.1016/s0021-9258(19)37140-6 10.1016/j.jneumeth.2009.09.016 10.1016/j.molcel.2009.02.013 10.1007/BF02110643 10.1016/j.stemcr.2020.03.023 10.1038/nrm3412 10.1074/jbc.RA118.006443 10.1523/JNEUROSCI.3985-07.2007 10.1042/bj1700511 10.1016/j.celrep.2016.04.050 10.1016/j.mito.2022.01.006 10.1021/bi060633b 10.1073/pnas.1308558110 10.1074/jbc.R112.411645 10.1212/wnl.0000000000002745 10.1146/annurev-biochem-060614-034216 10.1152/physrev.1994.74.3.723 10.1523/JNEUROSCI.3384-09.2009 10.1016/j.ceca.2022.102667 10.1073/pnas.0603007103 10.1016/j.celrep.2016.07.011 10.1083/jcb.136.4.833 10.1242/bio.044347 10.1016/j.neulet.2017.06.052 10.1097/00004647-200110000-00001 10.1523/JNEUROSCI.21-08-02553.2001 10.1016/0166-2236(89)90090-8 10.1016/S1474-4422(15)00148-9 10.1038/s41418-022-00972-7 10.1038/nm.1868 10.1007/s11910-007-0053-z 10.1038/nm.4397 10.1046/j.1471-4159.2001.00582.x 10.1212/wnl.0000000000004717 10.1038/s41598-018-32551-7 10.1016/j.ceca.2019.102150 10.1016/s0166-2236(99)01534-9 10.1038/362059a0 10.15252/embr.202051532 10.1038/s41418-018-0113-8 10.1016/S0092-8674(00)80301-3 10.1007/s12035-017-0623-2 10.1523/jneurosci.2001-07.2007 10.1016/j.ceca.2020.102216 10.1016/j.celrep.2021.109396 10.4137/JEN.S39887 10.1016/j.tins.2009.01.006 10.7554/eLife.00704 10.1038/s41525-018-0048-5 10.1016/S0166-2236(00)01930-5 10.1152/physrev.1990.70.2.391 10.3390/ijms20040996 10.1016/j.celrep.2021.109275 10.1146/annurev.physiol.67.032003.154341 10.1016/j.celrep.2016.08.017 10.1016/s0092-8674(03)00116-8 10.1152/ajpcell.00086.2017 10.1073/pnas.1711201114 10.1038/s42003-022-03848-1 10.1146/annurev.cellbio.16.1.521 10.1016/j.neuron.2008.08.019 10.1038/s41586-020-2309-6 10.3389/fncel.2022.889939 10.1016/s0166-2236(96)80026-9 10.1073/pnas.1401591111 10.1007/978-3-319-55330-6_3 10.1038/s41467-019-13766-2 10.1002/alz.12394 10.1038/nature02246 10.1016/j.tins.2008.06.005 10.3390/cells10061317 10.1073/pnas.1702357114 10.1523/JNEUROSCI.22-24-10653.2002 10.1124/pr.57.4.9 10.1371/journal.pone.0016038 10.1152/ajpcell.00139.2004 10.1016/j.neuron.2008.04.015 10.1038/1577 10.1016/j.ceca.2021.102382 10.1016/j.bpj.2013.03.064 10.3389/fcell.2020.599792 10.1038/nature09358 10.1371/journal.pbio.1002516 10.1016/S1474-4422(07)70246-6 10.1371/journal.pone.0065154 10.1523/jneurosci.4367-12.2013 10.1113/jphysiol.2006.110841 10.1038/s41419-018-0607-9 10.1186/s13041-020-0545-1 10.1152/physrev.1999.79.4.1127 10.1016/j.neuron.2010.07.002 10.1177/0271678x20908523 10.1002/9781119017127.ch4 10.1038/s41586-018-0331-8 10.1111/ejn.13473 10.1002/1873-3468.12964 10.3724/abbs.2022138 10.1016/j.jalz.2011.10.007 10.1016/j.bbrc.2014.04.144 10.1152/physrev.00020.2014 10.1016/S0140-6736(15)01124-1 10.3389/fnmol.2013.00036 10.1113/jphysiol.2012.247981 10.1038/nature17656 10.1212/WNL.0b013e3181a1d44c 10.1073/pnas.90.22.10573 10.1016/j.freeradbiomed.2013.02.011 10.1002/14651858.CD003154.pub4 10.1152/physrev.00041.2020 10.4161/cc.23599 10.1016/j.neuron.2019.02.032 10.1111/ene.13748 10.1016/j.phrs.2004.05.005 10.1212/WNL.0b013e318204a36a 10.7326/m19-2534./m.32227247 10.1016/j.molcel.2017.07.019 10.2165/00023210-200418060-00010 10.1523/JNEUROSCI.14-01-00348.1994 10.1016/j.bbabio.2009.01.005 10.1074/jbc.M115.686956 10.1523/JNEUROSCI.22-14-05840.2002 10.1523/JNEUROSCI.6008-11.2012 10.1074/jbc.RA119.011902 10.1016/j.biocel.2007.06.023 10.1111/j.1432-1033.1977.tb11839.x 10.1016/j.ceca.2005.01.008 10.1007/s11064-015-1657-3 10.1074/jbc.M109.020115 10.1186/s40478-019-0716-4 10.3389/fncel.2014.00353 10.1016/j.expneurol.2009.02.015 10.1056/nejm200002033420503 10.1021/bi2018909 10.1016/j.jbc.2021.100669 10.1016/j.jbc.2021.101174 10.1038/emboj.2011.337 10.1038/s41467-017-02729-0 10.3389/fnins.2019.00472 10.1016/j.neuron.2005.07.017 10.1126/science.1242993 10.1016/0163-7258(95)00018-c 10.1073/pnas.1620316114 10.1074/jbc.M212661200 10.1085/jgp.115.3.371 10.1038/nrn959 10.3389/fnagi.2018.00399 10.1038/nrm1150 10.1111/j.1471-4159.2006.03619.x 10.1007/s12035-010-8123-7 10.1073/pnas.0908099107 10.1038/11396 10.1155/2015/745613 10.1523/JNEUROSCI.20-19-07290.2000 10.1523/JNEUROSCI.5053-10.2011 10.3390/ijms18112365 10.1038/s41593-018-0325-8 10.1016/j.jbc.2022.102259 10.1007/bf03161151 10.3389/fncel.2021.695380 10.1016/j.bbadis.2006.05.002 10.1016/j.neuropharm.2020.107966 10.1038/s41598-021-88841-0 10.1371/journal.pone.0078516 10.3389/fnins.2021.769331 10.1007/s00018-013-1550-7 10.1152/jn.00627.2001 10.1016/j.molcel.2015.08.009 10.1523/JNEUROSCI.21-24-09598.2001 10.1038/s41467-021-25161-x 10.1038/nature05865 10.1016/S0197-4580(02)00065-9 10.3389/fncel.2019.00022 10.1016/j.ceca.2007.11.015 10.1126/science.8209258 10.1523/JNEUROSCI.0531-04.2004 10.1042/bj1280161 10.1016/S0300-9084(02)01369-X 10.1089/15230860260196209 10.1038/ncb2868 10.1016/j.cell.2012.02.035 10.1016/0166-2236(88)90167-1 10.1038/35048073 10.1146/annurev-physiol-052521-013426 10.1113/jphysiol.2012.249219 10.1113/JP280119 10.1093/cvr/27.10.1790 10.1016/j.neurobiolaging.2018.11.019 10.1371/journal.pone.0055785 10.1016/j.ceca.2011.04.007 10.1073/pnas.0810934106 10.2741/A838 10.1016/j.ceca.2005.01.009 10.1529/biophysj.107.110148 10.1016/0006-291x(73)91322-3 10.1038/nature10230 10.1056/NEJMra022567 10.1016/s0143-4160(02)00229-4 10.1523/JNEUROSCI.3268-05.2006 10.1016/j.ceca.2017.05.004 10.1016/j.ceca.2021.102453 10.1016/j.cbpa.2019.11.006 10.1016/j.neuron.2019.11.020 10.1002/acn3.51300 10.1038/ncb2622 10.1146/annurev.neuro.24.1.487 10.1016/j.ceca.2005.06.011 10.1016/j.jbc.2022.101604 10.1038/nature02196 10.3390/ijms18091935 10.1016/j.neuron.2008.10.010 10.1291/hypres.23.39 10.1016/j.celrep.2018.12.033 10.3390/cells9092135 10.1172/jci.insight.134063 10.1016/j.tips.2018.11.004 10.1111/nan.12458 10.1161/STROKEAHA.118.022330 10.1038/ncomms2325 10.1523/JNEUROSCI.22-16-06962.2002 10.1093/molbev/msh177 10.1016/j.tins.2021.01.001 10.1161/CIRCULATIONAHA.118.037968 10.1002/bip.21306 10.1085/jgp.115.3.351 10.1054/ceca.2000.0172 10.1016/j.molcel.2014.01.013 10.1097/j.pain.0000000000002391 10.1038/nrm4039 10.1074/jbc.M805235200 10.1016/j.isci.2022.105447 10.1007/978-0-85729-701-3_7 10.1074/jbc.M310908200 10.1038/nrn.2016.178 |
| ContentType | Journal Article |
| Copyright | Copyright © 2023 Walters and Usachev. 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2023 Walters and Usachev. 2023 Walters and Usachev |
| Copyright_xml | – notice: Copyright © 2023 Walters and Usachev. – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2023 Walters and Usachev. 2023 Walters and Usachev |
| DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3389/fcell.2023.1094356 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | Walters and Usachev |
| EISSN | 2296-634X |
| ExternalDocumentID | oai_doaj_org_article_b50fb2bc533d49c29861f3606d703b4a PMC9902777 36760367 10_3389_fcell_2023_1094356 |
| Genre | Journal Article Review |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS125884 – fundername: NIGMS NIH HHS grantid: T32 GM067795 – fundername: NINDS NIH HHS grantid: R01 NS113189 – fundername: ; grantid: NS125884 |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RPM ACXDI IAO IEA IHR IHW IPNFZ ISR NPM RIG 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c496t-1eb125202f0258eecfcd521dcbffb9bd12b96ecad828e01f8c8be303d63028a53 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 50 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000927833500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2296-634X |
| IngestDate | Fri Oct 03 12:43:47 EDT 2025 Tue Sep 30 17:16:25 EDT 2025 Fri Sep 05 13:32:10 EDT 2025 Mon Nov 10 11:10:23 EST 2025 Thu Jan 02 22:40:10 EST 2025 Tue Nov 18 22:24:39 EST 2025 Sat Nov 29 02:32:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | neurodegeneration calcium mitochondria MCU neuronal calcium homeostasis |
| Language | English |
| License | Copyright © 2023 Walters and Usachev. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c496t-1eb125202f0258eecfcd521dcbffb9bd12b96ecad828e01f8c8be303d63028a53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Reviewed by: Cecilia Hidalgo, University of Chile, Chile Edited by: Karthik Babu Mallilankaraman, National University of Singapore, Singapore Evgeny V. Pavlov, New York University, United States This article was submitted to Molecular and Cellular Pathology, a section of the journal Frontiers in Cell and Developmental Biology |
| OpenAccessLink | https://www.proquest.com/docview/3268858828?pq-origsite=%requestingapplication% |
| PMID | 36760367 |
| PQID | 3268858828 |
| PQPubID | 7426802 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b50fb2bc533d49c29861f3606d703b4a pubmedcentral_primary_oai_pubmedcentral_nih_gov_9902777 proquest_miscellaneous_2775615889 proquest_journals_3268858828 pubmed_primary_36760367 crossref_primary_10_3389_fcell_2023_1094356 crossref_citationtrail_10_3389_fcell_2023_1094356 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-24 |
| PublicationDateYYYYMMDD | 2023-01-24 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in cell and developmental biology |
| PublicationTitleAlternate | Front Cell Dev Biol |
| PublicationYear | 2023 |
| Publisher | Frontiers Media SA Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media SA – name: Frontiers Media S.A |
| References | Moskowitz (B205) 2010; 67 Shutov (B278) 2013; 591 Scharfman (B267) 2007; 7 Venuto (B313) 2021; 8 Patron (B237) 2019; 26 Lim (B173); 98 Golde (B115) 2018; 362 Caterina (B42) 2001; 24 Demuro (B77) 2013; 33 Giorgio (B111) 2009; 284 Corriveau (B61) 2017; 89 Kinjo (B154) 2018; 55 Gurney (B121) 1994; 264 Murphy (B208) 2014; 449 Manikandan (B189) 2021; 11 Szibor (B297) 2020; 295 Arduino (B6) 2017; 67 Briston (B29) 2019; 40 Zhong (B331) 2001; 21 Chouhan (B52) 2012; 32 Hori (B136) 2020; 598 Glancy (B114) 2012; 51 Bonora (B24) 2013; 12 David (B71) 1999; 19 Friedman (B101) 2018; 3 Scott (B271) 1995; 66 Logan (B179) 2014; 46 Modesti (B203) 2021; 10 Walker (B316) 2018; 667 Wimmer (B322) 2006; 26 Catterall (B44) 2000; 16 Buttmann (B33) 2016; 86 Olanow (B225) 2009; 72 Tai (B299) 2018; 44 Wu (B326) 2010; 41 Crompton (B64) 1978; 82 Jung (B151) 2020; 8 Fellin (B96) 2006; 26 Escartin (B91) 2021; 24 Nichols (B221) 2018; 9 Rasola (B253) 2011; 50 Areosa (B7) 2005; 2005 (B233) 2020; 172 Palty (B228) 2006; 45 Zucker (B333) 2002; 64 Fieni (B97) 2012; 3 Usachev (B310) 2015 Palty (B230) 2012; 52 Gandhi (B105) 2009; 33 Konen (B157) 2020; 13 Spat (B287) 2008; 44 Beckhauser (B15) 2016; 10 Han (B126) 2015; 467 Angelova (B4) 2018; 592 Calvo-Rodriguez (B38) 2020; 11 Woods (B323) 2020; 59 Baughman (B14) 2011; 476 Akundi (B1) 2011; 6 Nicholls (B218) 2012 Scott (B270) 2004; 18 Rybalchenko (B261) 2008; 40 Vanden Berghe (B312) 2002; 22 Finsterer (B99) 2017; 136 Luo (B182) 2018; 49 Van Den Bosch (B311) 2006; 1762 Denton (B79) 2009; 1787 Cai (B36); 21 Plotegher (B245) 2021; 44 Spruill (B288) 2015; 93 Ivannikov (B145) 2013; 104 Shoshan-Barmatz (B277) 2010; 31 Smith (B281) 2019; 710 Neher (B213) 2008; 59 Zamzami (B330) 2001; 2 Sonkusare (B286) 2005; 51 Mnatsakanyan (B201) 2019; 10 Giorgio (B113) 2013; 110 Palty (B229) 2004; 279 Redmond (B254) 2005; 37 Stelzer (B291) 2010; 93 Soman (B283) 2019; 8 Drago (B86) 2011; 30 Catterall (B43) 2013; 288 Tian (B304) 2005; 11 Jadiya (B146) 2019; 10 Luongo (B184) 2015; 12 More (B204) 2018; 10 Soman (B284) 2021; 15 Cividini (B55) 2021; 70 Neginskaya (B212) 2019; 26 Rosales-Corral (B256) 2012; 2012 Cook (B60) 2019; 101 Chartier (B49) 2018; 25 Tomar (B306) 2016; 15 Nicholls (B216) 1978; 170 Kwon (B163) 2016; 14 Liu (B177) 2017 Chan (B47) 2009; 32 Walters (B317) 2022; 298 Bezprozvanny (B21) 2008; 31 Du (B87) 2008; 14 Marland (B190) 2016; 291 Jang (B147) 2007; 93 Querfurth (B251) 2010; 362 Bernardi (B19) 1996; 28 Pivovarova (B243) 2004; 24 Howland (B138) 2002; 99 Irwin (B144) 2003; 35 Nunnari (B224) 2012; 148 Ashrafi (B9) 2020; 105 Braak (B26) 2003; 24 Hartzell (B128) 2005; 67 Dey (B81) 2020; 89 Pan (B232) 2013; 15 Shigetomi (B276) 2019; 20 Munoz-Pinedo (B207) 2006; 103 Emrich (B90) 2021; 84 Cai (B34) 2022; 54 Medvedeva (B200) 2008; 28 Boyenle (B25) 2022; 63 De Mario (B74) 2021; 35 Neginskaya (B211) 2022; 25 Groten (B118) 2022; 5 Fan (B94) 2020; 582 Woods (B324) 2020; 55 Thurman (B303) 2014; 55 Kovac (B159) 2017; 18 Hurst (B141) 2019; 294 Huo (B140) 2020 Tsai (B307) 2016; 5 Cousin (B62) 2001; 24 Medler (B199) 2002; 87 García-Chacón (B107) 2006; 574 Nowicky (B223) 1998; 507 Baradaran (B13) 2018; 559 Prakriya (B248) 2015; 95 Guo (B120) 2021; 15 Bezprozvanny (B20) 2009; 15 Oxenoid (B227) 2016; 533 Yang (B328) 2021; 599 Workgroup (B325) 2017; 13 Zsurka (B332) 2015; 14 Fu (B103) 2018; 21 Verma (B314) 2017; 37 Cao (B39) 2017; 114 Hamilton (B125) 2018; 293 Lee (B167) 2019; 7 Sun (B294) 2013; 4 Alavian (B2) 2014; 111 Crompton (B63) 1977; 79 Kim (B153) 2009; 29 Li (B171) 2021; 36 Rosen (B257) 1993; 362 Chuang (B54) 2004; 43 Marty (B194) 1989; 12 Hesdorffer (B133) 2011; 76 Shaw (B275) 2000; 247 Mühling (B206) 2014; 8 Yoast (B329) 2021; 297 Werth (B321) 1994; 14 (B3); 16 Pivovarova (B242) 1999; 19 Petrungaro (B240) 2015; 22 Selvaraj (B273) 2018; 9 Nicholls (B219) 2000; 23 Puttachary (B249) 2015; 2015 Leung (B168) 2008; 283 Fuchs (B104) 2013; 591 Perocchi (B239) 2010; 467 Raffaello (B252) 2013; 32 Hyman (B142) 2012; 8 Martin (B193) 2014; 35 Gregory (B117) 2020; 250 Csordás (B65) 2013; 17 David (B69) 2003; 548 Storozhuk (B292) 2005; 58 Sancak (B265) 2013; 342 Lambert (B165) 2019; 140 Santello (B266) 2019; 22 Dafinca (B66) 2020; 14 Nguyen (B215) 2009; 106 Rossi (B258) 2013; 8 Plovanich (B246) 2013; 8 Gottschalk (B116) 2019; 10 Howarth (B137) 2012; 32 Patel (B235) 2019; 20 Pivovarova (B241) 2010; 277 Heuser (B134) 2021; 15 Mallilankaraman (B187); 151 Nicholls (B217) 2005; 38 Colegrove (B59); 115 Singh (B280) 2022; 8 Beers (B16) 2001; 79 Mattson (B196) 2008; 60 Hajnoczky (B123) 2006; 40 Wang (B319) 2019; 177 Clayton (B57) 2009; 185 Fleury (B100) 2002; 84 Lee (B166) 2007; 27 Xu (B327) 2007; 54 Carrer (B40) 2021; 12 Li (B170) 2019; 13 Salter (B264) 2017; 23 Haworth (B129) 1979; 195 Dolphin (B84) 2012; 13 Garbincius (B106) 2022; 102 Wang (B318) 2015; 40 Cai (B35); 279 De Camilli (B73) 2001 Orrenius (B226) 2003; 4 Thayer (B302) 2002; 7 Stanika (B289) 2012; 32 Johnson (B150) 2022; 298 Mallilankaraman (B186); 14 Bindoff (B23) 2012; 53 Murphy (B209) 2021; 83 Roy (B260) 2017; 1864 Lim (B174); 362 Maneshi (B188) 2020; 33 Patron (B236) 2014; 53 Chan (B48) 2007; 447 David (B72) 2003; 33 Garg (B108) 2021; 10 Rizzuto (B255) 2012; 13 Drago (B85) 2016; 16 Kristian (B161) 2007; 102 Wei (B320) 2005; 57 Levesque (B169) 2013; 37 McBain (B197) 1994; 74 Emrich (B89) 2022; 108 Loupatatzis (B181) 2002; 12 Novorolsky (B222) 2020; 40 Newmeyer (B214) 2003; 112 Surmeier (B296) 2017; 18 Brini (B27) 2014; 71 Jensen (B148) 2013; 6 Brini (B28) 1999; 5 Marta (B191) 2021; 151 Friel (B102) 2000; 28 Gemes (B109) 2011; 31 Appel (B5) 2001; 2 Calvo-Rodriguez (B37) 2019; 13 Dagda (B67) 2018; 8 MacAskill (B185) 2010; 32 Babcock (B11) 1997; 136 David (B70) 2000; 20 Selkoe (B272) 2016; 8 DiMauro (B82) 2003; 348 Tadić (B298) 2019; 75 Ichas (B143) 1997; 89 George (B110) 2021; 163 Tarasov (B301) 2012; 52 Rossi (B259) 1973; 50 Stout (B293) 1998; 1 Cheung (B51) 2008; 58 Ueda (B308) 2002; 4 Schwab (B269) 1969; 208 Farrell (B95) 2019; 101 Partridge (B234) 1988; 11 Matteucci (B195) 2018; 8 Damiano (B68) 2006; 96 Tang (B300) 1997; 18 Ureshino (B309) 2019; 20 Klann (B156) 1998; 80 Lohmann (B180) 2005; 37 Bernardi (B18) 1999; 79 Billups (B22) 2002; 22 McCormack (B198) 1990; 70 Kovacs (B160) 2021; 12 De Stefani (B75) 2011; 476 Liu (B176) 2016; 16 Chakroborty (B45) 2009; 29 Hollenbeck (B135) 2005; 47 Popugaeva (B247) 2018; 29 Li (B172) 1992; 267 Colegrove (B58); 115 Hernandez-Guijo (B132) 2001; 21 Soman (B285) 2017; 45 Bacaj (B12) 2013; 80 Pivovarova (B244) 2002; 22 Sah (B263) 1996; 19 Tokunaga (B305) 2000; 23 Rysted (B262) 2021; 96 Carroll (B41) 2019; 116 Gunter (B119) 1990; 258 De Stefani (B76) 2016; 85 Hagenston (B122) 2022; 298 Martin (B192) 2009; 218 Mnatsakanyan (B202) 2022; 29 Pearson-Smith (B238) 2017; 18 Luongo (B183) 2017; 545 Hamilton (B124) 2021; 296 Kwong (B164) 2015; 12 Ding (B83) 2007; 27 Esteras (B92) 2020; 9 Chalmers (B46) 2003; 278 Huang (B139) 2013; 8 Clapham (B56) 2003; 426 Esteras (B93) 2022; 18 Berg (B17) 2010; 51 Surmeier (B295) 2007; 6 He (B130); 114 Liochev (B175) 2013; 60 Liu (B178) 2020; 5 Hansson Petersen (B127) 2008; 105 Nakamura (B210) 2021; 22 Fink (B98) 2017; 313 Stavsky (B290) 2021; 4 Brookes (B31) 2004; 287 Chaudhuri (B50) 2013; 2 Palty (B231) 2010; 107 Verma (B315) 2018; 12 Scheltens (B268) 2016; 388 Kwan (B162) 2000; 342 Shanmughapriya (B274) 2015; 60 Sills (B279) 2020; 168 Kostic (B158) 2015; 13 He (B131); 114 Chouhan (B53) 2010; 30 Britti (B30) 2020; 86 Kirichok (B155) 2004; 427 Budde (B32) 2002; 3 Kamer (B152) 2015; 16 Denton (B78) 1972; 128 Devine (B80) 2018; 19 Duchen (B88) 1993; 27 Giorgio (B112) 2018; 70 Sobolczyk (B282) 2022; 16 Arispe (B8) 1993; 90 Jiang (B149) 2013; 110 Attwell (B10) 2001; 21 |
| References_xml | – volume: 105 start-page: 13145 year: 2008 ident: B127 article-title: The amyloid β-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0806192105 – volume: 599 start-page: 1567 year: 2021 ident: B328 article-title: Inter-spike mitochondrial Ca(2+) release enhances high frequency synaptic transmission publication-title: J. Physiol. doi: 10.1113/JP280351 – volume: 293 start-page: 15652 year: 2018 ident: B125 article-title: Deletion of mitochondrial calcium uniporter incompletely inhibits calcium uptake and induction of the permeability transition pore in brain mitochondria publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.002926 – volume: 8 start-page: 178 year: 2018 ident: B67 article-title: Role of mitochondrial dysfunction in degenerative brain diseases, an overview publication-title: Brain Sci. doi: 10.3390/brainsci8100178 – volume: 29 start-page: 1176 year: 2018 ident: B247 article-title: Dysregulation of intracellular calcium signaling in alzheimer's disease publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2018.7506 – volume: 15 start-page: 89 year: 2009 ident: B20 article-title: Calcium signaling and neurodegenerative diseases publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2009.01.001 – volume: 32 start-page: 231 year: 2010 ident: B185 article-title: Mitochondrial trafficking and the provision of energy and calcium buffering at excitatory synapses publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2010.07345.x – volume: 19 start-page: 6372 year: 1999 ident: B242 article-title: Depolarization-induced mitochondrial Ca accumulation in sympathetic neurons: Spatial and temporal characteristics publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.19-15-06372.1999 – start-page: 379 year: 2020 ident: B140 article-title: MCUb induction protects the heart from post-ischemic remodeling publication-title: Circulation Res. doi: 10.1161/CIRCRESAHA.119.316369 – volume: 11 start-page: 973 year: 2005 ident: B304 article-title: An astrocytic basis of epilepsy publication-title: Nat. Med. doi: 10.1038/nm1277 – volume: 258 start-page: C755 year: 1990 ident: B119 article-title: Mechanisms by which mitochondria transport calcium publication-title: Am. J. Physiol. doi: 10.1152/ajpcell.1990.258.5.C755 – volume: 37 start-page: 2887 year: 2013 ident: B169 article-title: The kainic acid model of temporal lobe epilepsy publication-title: Neurosci. Biobehav Rev. doi: 10.1016/j.neubiorev.2013.10.011 – volume: 667 start-page: 84 year: 2018 ident: B316 article-title: Pathophysiology of status epilepticus publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2016.12.044 – volume: 53 start-page: 92 year: 2012 ident: B23 article-title: Mitochondrial diseases and epilepsy publication-title: Epilepsia doi: 10.1111/j.1528-1167.2012.03618.x – volume: 52 start-page: 9 year: 2012 ident: B230 article-title: The mitochondrial Na(+)/Ca(2+) exchanger publication-title: Cell Calcium doi: 10.1016/j.ceca.2012.02.010 – volume: 55 start-page: 1479 year: 2014 ident: B303 article-title: Sudden unexpected death in epilepsy: Assessing the public health burden publication-title: Epilepsia doi: 10.1111/epi.12666 – volume: 32 start-page: 1222 year: 2012 ident: B137 article-title: Updated energy budgets for neural computation in the neocortex and cerebellum publication-title: J. Cereb. Blood Flow Metabolism doi: 10.1038/jcbfm.2012.35 – volume: 37 start-page: 11151 year: 2017 ident: B314 article-title: Mitochondrial calcium dysregulation contributes to dendrite degeneration mediated by PD/LBD-Associated LRRK2 mutants publication-title: J. Neurosci. doi: 10.1523/jneurosci.3791-16.2017 – volume: 507 start-page: 131 year: 1998 ident: B223 article-title: Changes in [Ca2+]i and membrane currents during impaired mitochondrial metabolism in dissociated rat hippocampal neurons publication-title: J. physiology doi: 10.1111/j.1469-7793.1998.131bu.x – volume: 8 start-page: 595 year: 2016 ident: B272 article-title: The amyloid hypothesis of Alzheimer's disease at 25 years publication-title: EMBO Mol. Med. doi: 10.15252/emmm.201606210 – volume: 16 start-page: 391 ident: B3 article-title: Alzheimer's disease facts and figures publication-title: Alzheimer's Dementia doi: 10.1002/alz.12068 – volume: 70 start-page: 665 year: 2021 ident: B55 article-title: Ncor2/PPARα-Dependent upregulation of MCUb in the type 2 diabetic heart impacts cardiac metabolic flexibility and function publication-title: Diabetes doi: 10.2337/db20-0779 – volume: 2 start-page: 47 year: 2001 ident: B5 article-title: Calcium: The darth vader of ALS publication-title: Amyotroph. Lateral Scler. Other Mot. Neuron Disord. doi: 10.1080/146608201300079418 – volume: 51 start-page: 676 year: 2010 ident: B17 article-title: Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005–2009 publication-title: Epilepsia doi: 10.1111/j.1528-1167.2010.02522.x – volume: 28 start-page: 5295 year: 2008 ident: B200 article-title: Mechanisms of prolonged presynaptic Ca2+ signaling and glutamate release induced by TRPV1 activation in rat sensory neurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4810-07.2008 – volume: 20 start-page: 6004 year: 2019 ident: B309 article-title: The interplay between Ca(2+) signaling pathways and neurodegeneration publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20236004 – volume: 136 start-page: 5 year: 2017 ident: B99 article-title: Effects of antiepileptic drugs on mitochondrial functions, morphology, kinetics, biogenesis, and survival publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2017.07.003 – volume: 11 start-page: 2146 year: 2020 ident: B38 article-title: Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer's disease publication-title: Nat. Commun. doi: 10.1038/s41467-020-16074-2 – volume: 10 start-page: e69312 year: 2021 ident: B108 article-title: The mechanism of MICU-dependent gating of the mitochondrial Ca2+uniporter publication-title: eLife doi: 10.7554/eLife.69312 – volume: 110 start-page: 5887 year: 2013 ident: B113 article-title: Dimers of mitochondrial ATP synthase form the permeability transition pore publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1217823110 – volume: 17 start-page: 976 year: 2013 ident: B65 article-title: MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca²⁺ uniporter publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.04.020 – volume: 12 start-page: 742625 year: 2021 ident: B160 article-title: Endoplasmic reticulum-based calcium dysfunctions in synucleinopathies publication-title: Front. Neurology doi: 10.3389/fneur.2021.742625 – volume: 93 start-page: 1184 year: 2015 ident: B288 article-title: Calbindin-D28K is increased in the ventral horn of spinal cord by neuroprotective factors for motor neurons publication-title: J. Neurosci. Res. doi: 10.1002/jnr.23562 – volume: 33 start-page: 108464 year: 2020 ident: B188 article-title: Orai1 channels are essential for amplification of glutamate-evoked Ca(2+) signals in dendritic spines to regulate working and associative memory publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.108464 – volume: 177 start-page: 1252 year: 2019 ident: B319 article-title: Structural mechanism of EMRE-dependent gating of the human mitochondrial calcium uniporter publication-title: Cell doi: 10.1016/j.cell.2019.03.050 – volume: 54 start-page: 567 year: 2007 ident: B327 article-title: Synaptotagmin-1, -2, and -9: Ca2+ sensors for fast release that specify distinct presynaptic properties in subsets of neurons publication-title: Neuron doi: 10.1016/j.neuron.2007.05.004 – volume: 15 start-page: 711564 year: 2021 ident: B120 article-title: Calcium permeable-AMPA receptors and excitotoxicity in neurological disorders publication-title: Front. Neural Circuits doi: 10.3389/fncir.2021.711564 – volume: 19 start-page: 63 year: 2018 ident: B80 article-title: Mitochondria at the neuronal presynapse in health and disease publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn.2017.170 – volume: 22 start-page: 721 year: 2015 ident: B240 article-title: The Ca(2+)-dependent release of the mia40-induced MICU1-MICU2 dimer from MCU regulates mitochondrial Ca(2+) uptake publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.08.019 – volume: 31 start-page: 227 year: 2010 ident: B277 article-title: VDAC, a multi-functional mitochondrial protein regulating cell life and death publication-title: Mol. aspects Med. doi: 10.1016/j.mam.2010.03.002 – volume: 64 start-page: 355 year: 2002 ident: B333 article-title: Short-term synaptic plasticity publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev.physiol.64.092501.114547 – volume: 545 start-page: 93 year: 2017 ident: B183 article-title: The mitochondrial Na(+)/Ca(2+) exchanger is essential for Ca(2+) homeostasis and viability publication-title: Nature doi: 10.1038/nature22082 – volume: 43 start-page: 859 year: 2004 ident: B54 article-title: The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel publication-title: Neuron doi: 10.1016/j.neuron.2004.08.038 – volume: 19 start-page: 7495 year: 1999 ident: B71 article-title: Mitochondrial clearance of cytosolic Ca2+ in stimulated lizard motor nerve terminals proceeds without progressive elevation of mitochondrial matrix [Ca2+] publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.19-17-07495.1999 – volume: 18 start-page: 483 year: 1997 ident: B300 article-title: Mitochondrial involvement in post-tetanic potentiation of synaptic transmission publication-title: Neuron doi: 10.1016/s0896-6273(00)81248-9 – volume: 10 start-page: 3885 year: 2019 ident: B146 article-title: Impaired mitochondrial calcium efflux contributes to disease progression in models of Alzheimer’s disease publication-title: Nat. Commun. doi: 10.1038/s41467-019-11813-6 – volume: 4 start-page: 413 year: 2013 ident: B294 article-title: Motile axonal mitochondria contribute to the variability of presynaptic strength publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.06.040 – volume: 80 start-page: 947 year: 2013 ident: B12 article-title: Synaptotagmin-1 and synaptotagmin-7 trigger synchronous and asynchronous phases of neurotransmitter release publication-title: Neuron doi: 10.1016/j.neuron.2013.10.026 – volume: 99 start-page: 1604 year: 2002 ident: B138 article-title: Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS) publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.032539299 – volume: 12 start-page: 15 year: 2015 ident: B164 article-title: The mitochondrial calcium uniporter selectively matches metabolic output to acute contractile stress in the heart publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.06.002 – volume: 59 start-page: 6482 year: 2020 ident: B323 article-title: Redox stability controls the cellular uptake and activity of ruthenium-based inhibitors of the mitochondrial calcium uniporter (MCU) publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202000247 – volume: 467 start-page: 2461 year: 2015 ident: B126 article-title: Ca2+ clearance by plasmalemmal NCLX, Li+-permeable Na+/Ca2+ exchanger, is required for the sustained exocytosis in rat insulinoma INS-1 cells publication-title: Pflügers Archiv - Eur. J. Physiology doi: 10.1007/s00424-015-1715-3 – volume: 12 start-page: 269 year: 2002 ident: B181 article-title: Single-channel currents of the permeability transition pore from the inner mitochondrial membrane of rat liver and of a human hepatoma cell line publication-title: Cell Physiol. Biochem. doi: 10.1159/000067897 – volume: 12 start-page: 523 year: 2018 ident: B315 article-title: Excitatory dendritic mitochondrial calcium toxicity: Implications for Parkinson's and other neurodegenerative diseases publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00523 – volume: 83 start-page: 107 year: 2021 ident: B209 article-title: Regulation of mitochondrial Ca2+ uptake publication-title: Annu. Rev. Physiology doi: 10.1146/annurev-physiol-031920-092419 – volume: 5 start-page: e15545 year: 2016 ident: B307 article-title: Dual functions of a small regulatory subunit in the mitochondrial calcium uniporter complex publication-title: Elife doi: 10.7554/eLife.15545 – volume: 208 start-page: 1168 year: 1969 ident: B269 article-title: Amantadine in the treatment of Parkinson's disease publication-title: JAMA doi: 10.1001/jama.1969.03160070046011 – volume: 10 start-page: 3732 year: 2019 ident: B116 article-title: MICU1 controls cristae junction and spatially anchors mitochondrial Ca2+ uniporter complex publication-title: Nat. Commun. doi: 10.1038/s41467-019-11692-x – volume: 32 start-page: 1233 year: 2012 ident: B52 article-title: Cytosolic calcium coordinates mitochondrial energy metabolism with presynaptic activity publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1301-11.2012 – volume: 26 start-page: 9312 year: 2006 ident: B96 article-title: Astrocytic glutamate is not necessary for the generation of epileptiform neuronal activity in hippocampal slices publication-title: J. Neurosci. doi: 10.1523/jneurosci.2836-06.2006 – volume: 102 start-page: 1346 year: 2007 ident: B161 article-title: Calcium-induced precipitate formation in brain mitochondria: Composition, calcium capacity, and retention publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2007.04626.x – volume: 46 start-page: 188 year: 2014 ident: B179 article-title: Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling publication-title: Nat. Genet. doi: 10.1038/ng.2851 – volume: 4 start-page: 666 year: 2021 ident: B290 article-title: Aberrant activity of mitochondrial NCLX is linked to impaired synaptic transmission and is associated with mental retardation publication-title: Commun. Biol. doi: 10.1038/s42003-021-02114-0 – volume: 13 start-page: 178 year: 2017 ident: B325 article-title: Calcium hypothesis of alzheimer's disease and brain aging: A framework for integrating new evidence into a comprehensive theory of pathogenesis publication-title: Alzheimer's Dementia doi: 10.1016/j.jalz.2016.12.006 – volume: 21 start-page: 1350 year: 2018 ident: B103 article-title: Selective vulnerability in neurodegenerative diseases publication-title: Nat. Neurosci. doi: 10.1038/s41593-018-0221-2 – volume: 13 start-page: 376 year: 2015 ident: B158 article-title: PKA phosphorylation of NCLX reverses mitochondrial calcium overload and depolarization, promoting survival of PINK1-deficient dopaminergic neurons publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.08.079 – volume: 548 start-page: 425 year: 2003 ident: B69 article-title: Mitochondrial Ca2+ uptake prevents desynchronization of quantal release and minimizes depletion during repetitive stimulation of mouse motor nerve terminals publication-title: J. Physiol. doi: 10.1113/jphysiol.2002.035196 – volume: 279 start-page: 25234 year: 2004 ident: B229 article-title: Lithium-calcium exchange is mediated by a distinct potassium-independent sodium-calcium exchanger publication-title: J. Biol. Chem. doi: 10.1074/jbc.M401229200 – volume: 362 start-page: 329 year: 2010 ident: B251 article-title: Alzheimer's disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra0909142 – volume: 277 start-page: 3622 year: 2010 ident: B241 article-title: Calcium-dependent mitochondrial function and dysfunction in neurons publication-title: FEBS J. doi: 10.1111/j.1742-4658.2010.07754.x – volume: 476 start-page: 341 year: 2011 ident: B14 article-title: Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter publication-title: Nature doi: 10.1038/nature10234 – volume: 13 start-page: 542 year: 2012 ident: B84 article-title: Calcium channel auxiliary α2δ and β subunits: Trafficking and one step beyond publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3311 – volume: 29 start-page: 9458 year: 2009 ident: B45 article-title: Deviant ryanodine receptor-mediated calcium release resets synaptic homeostasis in presymptomatic 3xTg-AD mice publication-title: J. Neurosci. doi: 10.1523/jneurosci.2047-09.2009 – volume: 32 start-page: 2362 year: 2013 ident: B252 article-title: The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit publication-title: EMBO J. doi: 10.1038/emboj.2013.157 – volume: 58 start-page: 45 year: 2005 ident: B292 article-title: Possible role of mitochondria in posttetanic potentiation of GABAergic synaptic transmission in rat neocortical cell cultures publication-title: Synapse doi: 10.1002/syn.20186 – volume: 20 start-page: 282 year: 2019 ident: B235 article-title: Neuron-glia interactions in the pathophysiology of epilepsy publication-title: Nat. Rev. Neurosci. doi: 10.1038/s41583-019-0126-4 – volume: 40 start-page: 553 year: 2006 ident: B123 article-title: Mitochondrial calcium signalling and cell death: Approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis publication-title: Cell Calcium doi: 10.1016/j.ceca.2006.08.016 – volume: 30 start-page: 1869 year: 2010 ident: B53 article-title: Presynaptic mitochondria in functionally different motor neurons exhibit similar affinities for Ca2+ but exert little influence as Ca2+ buffers at nerve firing rates in situ publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4701-09.2010 – volume: 80 start-page: 452 year: 1998 ident: B156 article-title: Cell-permeable scavengers of superoxide prevent long-term potentiation in hippocampal area CA1 publication-title: J. Neurophysiology doi: 10.1152/jn.1998.80.1.452 – volume: 250 start-page: 67 year: 2020 ident: B117 article-title: Dysregulation of AMPA receptor subunit expression in sporadic ALS post-mortem brain publication-title: J. Pathology doi: 10.1002/path.5351 – volume: 2012 start-page: 843649 year: 2012 ident: B256 article-title: Accumulation of exogenous amyloid-beta peptide in hippocampal mitochondria causes their dysfunction: A protective role for melatonin publication-title: Oxidative Med. Cell. Longev. doi: 10.1155/2012/843649 – volume: 24 start-page: 312 year: 2021 ident: B91 article-title: Reactive astrocyte nomenclature, definitions, and future directions publication-title: Nat. Neurosci. doi: 10.1038/s41593-020-00783-4 – volume: 362 start-page: 1 ident: B174 article-title: Calcium signaling in neuroglia publication-title: Int. Rev. Cell Mol. Biol. doi: 10.1016/bs.ircmb.2021.01.003 – volume: 35 start-page: 1132 year: 2014 ident: B193 article-title: Mitochondrial permeability transition pore regulates Parkinson's disease development in mutant α-synuclein transgenic mice publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2013.11.008 – volume: 82 start-page: 25 year: 1978 ident: B64 article-title: The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1978.tb11993.x – volume: 362 start-page: 1250 year: 2018 ident: B115 article-title: Alzheimer's disease: The right drug, the right time publication-title: Science doi: 10.1126/science.aau0437 – volume: 151 start-page: 135 year: 2021 ident: B191 article-title: Pharmacological inhibition of the mitochondrial Ca(2+) uniporter: Relevance for pathophysiology and human therapy publication-title: J. Mol. Cell Cardiol. doi: 10.1016/j.yjmcc.2020.09.014 – volume: 52 start-page: 28 year: 2012 ident: B301 article-title: Regulation of ATP production by mitochondrial Ca(2+) publication-title: Cell calcium doi: 10.1016/j.ceca.2012.03.003 – volume: 8 start-page: eabj4716 year: 2022 ident: B280 article-title: Uncontrolled mitochondrial calcium uptake underlies the pathogenesis of neurodegeneration in MICU1-deficient mice and patients publication-title: Sci. Adv. doi: 10.1126/sciadv.abj4716 – volume: 116 start-page: 12816 year: 2019 ident: B41 article-title: Persistence of the permeability transition pore in human mitochondria devoid of an assembled ATP synthase publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1904005116 – volume: 35 start-page: 367 year: 2003 ident: B144 article-title: Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency publication-title: Nat. Genet. doi: 10.1038/ng1270 – volume: 101 start-page: 1016 year: 2019 ident: B95 article-title: Resolving the micro-macro disconnect to address core features of seizure networks publication-title: Neuron doi: 10.1016/j.neuron.2019.01.043 – volume: 151 start-page: 630 ident: B187 article-title: MICU1 is an essential gatekeeper for MCU-mediated mitochondrial Ca2+ uptake that regulates cell survival publication-title: Cell doi: 10.1016/j.cell.2012.10.011 – volume: 195 start-page: 460 year: 1979 ident: B129 article-title: The Ca2+-induced membrane transition in mitochondria: II. Nature of the Ca2+ trigger site publication-title: Archives Biochem. Biophysics doi: 10.1016/0003-9861(79)90372-2 – volume: 12 start-page: 23 year: 2015 ident: B184 article-title: The mitochondrial calcium uniporter matches energetic supply with cardiac workload during stress and modulates permeability transition publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.06.017 – volume: 1864 start-page: 997 year: 2017 ident: B260 article-title: Identification of residues that control Li+ versus Na+ dependent Ca2+ exchange at the transport site of the mitochondrial NCLX publication-title: Biochimica Biophysica Acta (BBA) - Mol. Cell Res. doi: 10.1016/j.bbamcr.2017.01.011 – volume: 298 start-page: 101508 year: 2022 ident: B122 article-title: Disrupted expression of mitochondrial NCLX sensitizes neuroglial networks to excitotoxic stimuli and renders synaptic activity toxic publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2021.101508 – volume: 267 start-page: 17983 year: 1992 ident: B172 article-title: Reconstitution, identification, purification, and immunological characterization of the 110-kDa Na+/Ca2+ antiporter from beef heart mitochondria publication-title: J. Biol. Chem. doi: 10.1016/s0021-9258(19)37140-6 – volume: 185 start-page: 76 year: 2009 ident: B57 article-title: Quantitative monitoring of activity-dependent bulk endocytosis of synaptic vesicle membrane by fluorescent dextran imaging publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2009.09.016 – volume: 33 start-page: 627 year: 2009 ident: B105 article-title: PINK1-Associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.02.013 – volume: 28 start-page: 131 year: 1996 ident: B19 article-title: The permeability transition pore as a mitochondrial calcium release channel: A critical appraisal publication-title: J. Bioenergetics Biomembr. doi: 10.1007/BF02110643 – volume: 14 start-page: 892 year: 2020 ident: B66 article-title: Impairment of mitochondrial calcium buffering links mutations in C9ORF72 and TARDBP in iPS-derived motor neurons from patients with ALS/FTD publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2020.03.023 – volume: 13 start-page: 566 year: 2012 ident: B255 article-title: Mitochondria as sensors and regulators of calcium signalling publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3412 – volume: 294 start-page: 10807 year: 2019 ident: B141 article-title: SPG7 targets the m-AAA protease complex to process MCU for uniporter assembly, Ca2+ influx, and regulation of mitochondrial permeability transition pore opening publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.006443 – volume: 27 start-page: 13603 year: 2007 ident: B166 article-title: Target cell-specific involvement of presynaptic mitochondria in post-tetanic potentiation at hippocampal mossy fiber synapses publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3985-07.2007 – volume: 170 start-page: 511 year: 1978 ident: B216 article-title: Calcium transport and porton electrochemical potential gradient in mitochondria from Guinea-pig cerebral cortex and rat heart publication-title: Biochem. J. doi: 10.1042/bj1700511 – volume: 15 start-page: 1673 year: 2016 ident: B306 article-title: MCUR1 is a scaffold factor for the MCU complex function and promotes mitochondrial bioenergetics publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.04.050 – volume: 63 start-page: 57 year: 2022 ident: B25 article-title: Targeting the mitochondrial permeability transition pore for drug discovery: Challenges and opportunities publication-title: Mitochondrion doi: 10.1016/j.mito.2022.01.006 – volume: 45 start-page: 11856 year: 2006 ident: B228 article-title: Single α-domain constructs of the Na+/Ca2+ exchanger, NCLX, oligomerize to form a functional exchanger publication-title: Biochemistry doi: 10.1021/bi060633b – volume: 110 start-page: E2249 year: 2013 ident: B149 article-title: Letm1, the mitochondrial Ca2+/H+ antiporter, is essential for normal glucose metabolism and alters brain function in Wolf–Hirschhorn syndrome publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1308558110 – volume: 288 start-page: 10742 year: 2013 ident: B43 article-title: Calcium channels and short-term synaptic plasticity publication-title: J. Biol. Chem. doi: 10.1074/jbc.R112.411645 – volume: 86 start-page: 2203 year: 2016 ident: B33 article-title: Malignancies after mitoxantrone for multiple sclerosis: A retrospective cohort study publication-title: A Retrosp. cohort study doi: 10.1212/wnl.0000000000002745 – volume: 85 start-page: 161 year: 2016 ident: B76 article-title: Enjoy the trip: Calcium in mitochondria back and forth publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060614-034216 – volume: 74 start-page: 723 year: 1994 ident: B197 article-title: N-methyl-D-aspartic acid receptor structure and function publication-title: Physiol. Rev. doi: 10.1152/physrev.1994.74.3.723 – volume: 29 start-page: 12101 year: 2009 ident: B153 article-title: Mitochondrial Ca2+ cycling facilitates activation of the transcription factor NFAT in sensory neurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3384-09.2009 – volume: 108 start-page: 102667 year: 2022 ident: B89 article-title: The mitochondrial sodium/calcium exchanger NCLX (Slc8b1) in B lymphocytes publication-title: Cell Calcium doi: 10.1016/j.ceca.2022.102667 – volume: 103 start-page: 11573 year: 2006 ident: B207 article-title: Different mitochondrial intermembrane space proteins are released during apoptosis in a manner that is coordinately initiated but can vary in duration publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0603007103 – volume: 16 start-page: 1561 year: 2016 ident: B176 article-title: MICU1 serves as a molecular gatekeeper to prevent in vivo mitochondrial calcium overload publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.07.011 – volume: 136 start-page: 833 year: 1997 ident: B11 article-title: Mitochondrial participation in the intracellular Ca2+ network publication-title: J. Cell Biol. doi: 10.1083/jcb.136.4.833 – volume: 8 start-page: bio044347 year: 2019 ident: B283 article-title: Restriction of mitochondrial calcium overload by mcu inactivation renders a neuroprotective effect in zebrafish models of Parkinson's disease publication-title: Biol. Open doi: 10.1242/bio.044347 – volume: 710 start-page: 132933 year: 2019 ident: B281 article-title: The role of mitochondria in amyotrophic lateral sclerosis publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2017.06.052 – volume: 21 start-page: 1133 year: 2001 ident: B10 article-title: An energy budget for signaling in the grey matter of the brain publication-title: J. Cereb. Blood Flow Metabolism doi: 10.1097/00004647-200110000-00001 – volume: 21 start-page: 2553 year: 2001 ident: B132 article-title: Calcium-dependent inhibition of L, N, and P/Q Ca2+ channels in chromaffin cells: Role of mitochondria publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-08-02553.2001 – volume: 12 start-page: 420 year: 1989 ident: B194 article-title: The physiological role of calcium-dependent channels publication-title: Trends Neurosci. doi: 10.1016/0166-2236(89)90090-8 – volume: 14 start-page: 956 year: 2015 ident: B332 article-title: Mitochondrial dysfunction and seizures: The neuronal energy crisis publication-title: Lancet Neurology doi: 10.1016/S1474-4422(15)00148-9 – volume: 29 start-page: 1874 year: 2022 ident: B202 article-title: Mitochondrial ATP synthase c-subunit leak channel triggers cell death upon loss of its F1 subcomplex publication-title: Cell Death Differ. doi: 10.1038/s41418-022-00972-7 – volume: 14 start-page: 1097 year: 2008 ident: B87 article-title: Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease publication-title: Nat. Med. doi: 10.1038/nm.1868 – volume: 7 start-page: 348 year: 2007 ident: B267 article-title: The neurobiology of epilepsy publication-title: Curr. neurology Neurosci. Rep. doi: 10.1007/s11910-007-0053-z – volume: 23 start-page: 1018 year: 2017 ident: B264 article-title: Microglia emerge as central players in brain disease publication-title: Nat. Med. doi: 10.1038/nm.4397 – volume: 79 start-page: 499 year: 2001 ident: B16 article-title: Parvalbumin overexpression alters immune-mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.2001.00582.x – volume: 89 start-page: 2381 year: 2017 ident: B61 article-title: Alzheimer's disease–related dementias summit 2016: National research priorities publication-title: Neurology doi: 10.1212/wnl.0000000000004717 – volume: 8 start-page: 14199 year: 2018 ident: B195 article-title: Parkin-dependent regulation of the MCU complex component MICU1 publication-title: Sci. Rep. doi: 10.1038/s41598-018-32551-7 – volume: 86 start-page: 102150 year: 2020 ident: B30 article-title: Tau inhibits mitochondrial calcium efflux and makes neurons vulnerable to calcium-induced cell death publication-title: Cell Calcium doi: 10.1016/j.ceca.2019.102150 – volume: 23 start-page: 166 year: 2000 ident: B219 article-title: Mitochondrial membrane potential and neuronal glutamate excitotoxicity: Mortality and millivolts publication-title: Trends Neurosci. doi: 10.1016/s0166-2236(99)01534-9 – volume: 362 start-page: 59 year: 1993 ident: B257 article-title: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis publication-title: Nature doi: 10.1038/362059a0 – volume: 22 start-page: e51532 year: 2021 ident: B210 article-title: The mitochondrial Ca2+ uptake regulator, MICU1, is involved in cold stress-induced ferroptosis publication-title: EMBO Rep. doi: 10.15252/embr.202051532 – volume: 26 start-page: 179 year: 2019 ident: B237 article-title: MICU3 is a tissue-specific enhancer of mitochondrial calcium uptake publication-title: Cell Death Differ. doi: 10.1038/s41418-018-0113-8 – volume: 89 start-page: 1145 year: 1997 ident: B143 article-title: Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals publication-title: Cell doi: 10.1016/S0092-8674(00)80301-3 – volume: 55 start-page: 3990 year: 2018 ident: B154 article-title: New insights on temporal lobe epilepsy based on plasticity-related network changes and high-order statistics publication-title: Mol. Neurobiol. doi: 10.1007/s12035-017-0623-2 – volume: 27 start-page: 10674 year: 2007 ident: B83 article-title: Enhanced astrocytic Ca2+ signals contribute to neuronal excitotoxicity after status epilepticus publication-title: J. Neurosci. doi: 10.1523/jneurosci.2001-07.2007 – volume: 89 start-page: 102216 year: 2020 ident: B81 article-title: Targeting mitochondrial calcium pathways as a potential treatment against Parkinson’s disease publication-title: Cell Calcium doi: 10.1016/j.ceca.2020.102216 – volume: 36 start-page: 109396 year: 2021 ident: B171 article-title: α2δ-1 switches the phenotype of synaptic AMPA receptors by physically disrupting heteromeric subunit assembly publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.109396 – volume: 10 start-page: 23 year: 2016 ident: B15 article-title: Reactive oxygen species: Physiological and physiopathological effects on synaptic plasticity publication-title: J. Exp. Neurosci. doi: 10.4137/JEN.S39887 – volume: 32 start-page: 249 year: 2009 ident: B47 article-title: Calcium homeostasis, selective vulnerability and Parkinson's disease publication-title: Trends Neurosci. doi: 10.1016/j.tins.2009.01.006 – volume: 2 start-page: e00704 year: 2013 ident: B50 article-title: MCU encodes the pore conducting mitochondrial calcium currents publication-title: eLife doi: 10.7554/eLife.00704 – volume: 3 start-page: 9 year: 2018 ident: B101 article-title: Cardiac arrhythmia and neuroexcitability gene variants in resected brain tissue from patients with sudden unexpected death in epilepsy (SUDEP) publication-title: npj Genomic Med. doi: 10.1038/s41525-018-0048-5 – volume: 24 start-page: 659 year: 2001 ident: B62 article-title: The dephosphins: Dephosphorylation by calcineurin triggers synaptic vesicle endocytosis publication-title: Trends Neurosci. doi: 10.1016/S0166-2236(00)01930-5 – volume: 70 start-page: 391 year: 1990 ident: B198 article-title: Role of calcium ions in regulation of mammalian intramitochondrial metabolism publication-title: Physiol. Rev. doi: 10.1152/physrev.1990.70.2.391 – volume: 20 start-page: 996 year: 2019 ident: B276 article-title: Aberrant calcium signals in reactive astrocytes: A key process in neurological disorders publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20040996 – volume: 35 start-page: 109275 year: 2021 ident: B74 article-title: Identification and functional validation of FDA-approved positive and negative modulators of the mitochondrial calcium uniporter publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.109275 – volume: 67 start-page: 719 year: 2005 ident: B128 article-title: Calcium-activated chloride channels publication-title: Annu. Rev. Physiology doi: 10.1146/annurev.physiol.67.032003.154341 – volume: 16 start-page: 2763 year: 2016 ident: B85 article-title: Inhibiting the mitochondrial calcium uniporter during development impairs memory in adult Drosophila publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.08.017 – volume: 112 start-page: 481 year: 2003 ident: B214 article-title: Mitochondria: Releasing power for life and unleashing the machineries of death publication-title: Cell doi: 10.1016/s0092-8674(03)00116-8 – volume: 313 start-page: C146 year: 2017 ident: B98 article-title: Regulation of ATP production: Dependence on calcium concentration and respiratory state publication-title: Am. J. Physiology-Cell Physiology doi: 10.1152/ajpcell.00086.2017 – volume: 114 start-page: 9086 ident: B130 article-title: Permeability transition in human mitochondria persists in the absence of peripheral stalk subunits of ATP synthase publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1711201114 – volume: 5 start-page: 900 year: 2022 ident: B118 article-title: Mitochondrial Ca2+ uptake by the MCU facilitates pyramidal neuron excitability and metabolism during action potential firing publication-title: Commun. Biol. doi: 10.1038/s42003-022-03848-1 – volume: 16 start-page: 521 year: 2000 ident: B44 article-title: Structure and regulation of voltage-gated Ca2+ channels publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.16.1.521 – volume: 59 start-page: 861 year: 2008 ident: B213 article-title: Multiple roles of calcium ions in the regulation of neurotransmitter release publication-title: Neuron doi: 10.1016/j.neuron.2008.08.019 – volume: 582 start-page: 129 year: 2020 ident: B94 article-title: Structure and mechanism of the mitochondrial Ca2+ uniporter holocomplex publication-title: Nature doi: 10.1038/s41586-020-2309-6 – volume: 16 start-page: 889939 year: 2022 ident: B282 article-title: Astrocytic calcium and cAMP in neurodegenerative diseases publication-title: Front. Cell Neurosci. doi: 10.3389/fncel.2022.889939 – volume: 19 start-page: 150 year: 1996 ident: B263 article-title: Ca2+-activated K+ currents in neurones: Types, physiological roles and modulation publication-title: Trends Neurosci. doi: 10.1016/s0166-2236(96)80026-9 – volume: 111 start-page: 10580 year: 2014 ident: B2 article-title: An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1401591111 – start-page: 49 volume-title: Mitochondrial dynamics in cardiovascular medicine year: 2017 ident: B177 article-title: The in vivo Biology of the mitochondrial calcium uniporter doi: 10.1007/978-3-319-55330-6_3 – volume: 10 start-page: 5823 year: 2019 ident: B201 article-title: A mitochondrial megachannel resides in monomeric F1FO ATP synthase publication-title: Nat. Commun. doi: 10.1038/s41467-019-13766-2 – volume: 18 start-page: 318 year: 2022 ident: B93 article-title: Mitochondrial ROS control neuronal excitability and cell fate in frontotemporal dementia publication-title: Alzheimer's Dementia doi: 10.1002/alz.12394 – volume: 427 start-page: 360 year: 2004 ident: B155 article-title: The mitochondrial calcium uniporter is a highly selective ion channel publication-title: Nature doi: 10.1038/nature02246 – volume: 31 start-page: 454 year: 2008 ident: B21 article-title: Neuronal calcium mishandling and the pathogenesis of Alzheimer's disease publication-title: Trends Neurosci. doi: 10.1016/j.tins.2008.06.005 – volume: 10 start-page: 1317 year: 2021 ident: B203 article-title: Mitochondrial Ca2+ signaling in health, disease and therapy publication-title: Cells doi: 10.3390/cells10061317 – volume: 114 start-page: 3409 ident: B131 article-title: Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1702357114 – volume: 22 start-page: 10653 year: 2002 ident: B244 article-title: Correlated calcium uptake and release by mitochondria and endoplasmic reticulum of CA3 hippocampal dendrites after afferent synaptic stimulation publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-24-10653.2002 – volume: 57 start-page: 463 year: 2005 ident: B320 article-title: International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels publication-title: Pharmacol. Rev. doi: 10.1124/pr.57.4.9 – volume: 6 start-page: e16038 year: 2011 ident: B1 article-title: Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice publication-title: PLoS One doi: 10.1371/journal.pone.0016038 – volume: 287 start-page: C817 year: 2004 ident: B31 article-title: Calcium, ATP, and ROS: A mitochondrial love-hate triangle publication-title: Am. J. Physiology - Cell Physiology doi: 10.1152/ajpcell.00139.2004 – volume: 58 start-page: 871 year: 2008 ident: B51 article-title: Mechanism of Ca2+ disruption in alzheimer's disease by presenilin regulation of InsP3 receptor channel gating publication-title: Neuron doi: 10.1016/j.neuron.2008.04.015 – volume: 1 start-page: 366 year: 1998 ident: B293 article-title: Glutamate-induced neuron death requires mitochondrial calcium uptake publication-title: Nat. Neurosci. doi: 10.1038/1577 – volume: 96 start-page: 102382 year: 2021 ident: B262 article-title: Distinct properties of Ca2+ efflux from brain, heart and liver mitochondria: The effects of Na+, Li+ and the mitochondrial Na+/Ca2+ exchange inhibitor CGP37157 publication-title: Cell Calcium doi: 10.1016/j.ceca.2021.102382 – volume: 104 start-page: 2353 year: 2013 ident: B145 article-title: Mitochondrial free Ca²⁺ levels and their effects on energy metabolism in Drosophila motor nerve terminals publication-title: Biophysical J. doi: 10.1016/j.bpj.2013.03.064 – volume: 8 start-page: 599792 year: 2020 ident: B151 article-title: Dysfunction of mitochondrial Ca(2+) regulatory machineries in brain aging and neurodegenerative diseases publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2020.599792 – volume: 467 start-page: 291 year: 2010 ident: B239 article-title: MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake publication-title: Nature doi: 10.1038/nature09358 – volume: 14 start-page: e1002516 year: 2016 ident: B163 article-title: LKB1 regulates mitochondria-dependent presynaptic calcium clearance and neurotransmitter release properties at excitatory synapses along cortical axons publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1002516 – volume: 6 start-page: 933 year: 2007 ident: B295 article-title: Calcium, ageing, and neuronal vulnerability in Parkinson's disease publication-title: Lancet Neurology doi: 10.1016/S1474-4422(07)70246-6 – volume: 8 start-page: e65154 year: 2013 ident: B139 article-title: Pregabalin attenuates excitotoxicity in diabetes publication-title: PLoS One doi: 10.1371/journal.pone.0065154 – volume: 33 start-page: 3824 year: 2013 ident: B77 article-title: Cytotoxicity of intracellular Aβ42 amyloid oligomers involves Ca2+ release from the endoplasmic reticulum by stimulated production of inositol trisphosphate publication-title: J. Neurosci. doi: 10.1523/jneurosci.4367-12.2013 – volume: 574 start-page: 663 year: 2006 ident: B107 article-title: Extrusion of Ca(2+) from mouse motor terminal mitochondria via a Na(+)–Ca(2+) exchanger increases post-tetanic evoked release publication-title: J. Physiology doi: 10.1113/jphysiol.2006.110841 – volume: 9 start-page: 606 year: 2018 ident: B221 article-title: Tamoxifen-induced knockdown of the mitochondrial calcium uniporter in Thy1-expressing neurons protects mice from hypoxic/ischemic brain injury publication-title: Cell Death Dis. doi: 10.1038/s41419-018-0607-9 – volume: 13 start-page: 27 year: 2020 ident: B157 article-title: A new mouse line with reduced GluA2 Q/R site RNA editing exhibits loss of dendritic spines, hippocampal CA1-neuron loss, learning and memory impairments and NMDA receptor-independent seizure vulnerability publication-title: Mol. Brain doi: 10.1186/s13041-020-0545-1 – volume: 79 start-page: 1127 year: 1999 ident: B18 article-title: Mitochondrial transport of cations: Channels, exchangers, and permeability transition publication-title: Physiol. Rev. doi: 10.1152/physrev.1999.79.4.1127 – volume: 67 start-page: 181 year: 2010 ident: B205 article-title: The science of stroke: Mechanisms in search of treatments publication-title: Neuron doi: 10.1016/j.neuron.2010.07.002 – volume: 40 start-page: 1172 year: 2020 ident: B222 article-title: The cell-permeable mitochondrial calcium uniporter inhibitor Ru265 preserves cortical neuron respiration after lethal oxygen glucose deprivation and reduces hypoxic/ischemic brain injury publication-title: J. Cereb. Blood Flow. Metab. doi: 10.1177/0271678x20908523 – start-page: 103 volume-title: The functions, disease-related dysfunctions, and therapeutic targeting of neuronal mitochondria year: 2015 ident: B310 article-title: Mitochondrial Ca2+ transport in the control of neuronal functions: Molecular and cellular mechanisms doi: 10.1002/9781119017127.ch4 – volume: 559 start-page: 580 year: 2018 ident: B13 article-title: Cryo-EM structures of fungal and metazoan mitochondrial calcium uniporters publication-title: Nature doi: 10.1038/s41586-018-0331-8 – volume: 45 start-page: 528 year: 2017 ident: B285 article-title: Inhibition of the mitochondrial calcium uniporter rescues dopaminergic neurons in pink1−/− zebrafish publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.13473 – volume: 592 start-page: 692 year: 2018 ident: B4 article-title: Role of mitochondrial ROS in the brain: From physiology to neurodegeneration publication-title: FEBS Lett. doi: 10.1002/1873-3468.12964 – volume: 54 start-page: 1528 year: 2022 ident: B34 article-title: MCU knockdown in hippocampal neurons improves memory performance of an Alzheimer's disease mouse model publication-title: Acta Biochimica Biophysica Sinica doi: 10.3724/abbs.2022138 – volume: 8 start-page: 1 year: 2012 ident: B142 article-title: National Institute on Aging–Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease publication-title: Alzheimer's Dementia doi: 10.1016/j.jalz.2011.10.007 – volume: 449 start-page: 384 year: 2014 ident: B208 article-title: Unresolved questions from the analysis of mice lacking MCU expression publication-title: Biochem. Biophysical Res. Commun. doi: 10.1016/j.bbrc.2014.04.144 – volume: 95 start-page: 1383 year: 2015 ident: B248 article-title: Store-operated calcium channels publication-title: Physiol. Rev. doi: 10.1152/physrev.00020.2014 – volume: 388 start-page: 505 year: 2016 ident: B268 article-title: Alzheimer's disease publication-title: Lancet doi: 10.1016/S0140-6736(15)01124-1 – volume: 6 start-page: 36 year: 2013 ident: B148 article-title: Alzheimer’s disease-associated peptide Aβ42 mobilizes ER Ca 2+ via InsP3R-dependent andindependent mechanisms publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2013.00036 – volume: 591 start-page: 2723 year: 2013 ident: B104 article-title: Selective mitochondrial Ca2+ uptake deficit in disease endstage vulnerable motoneurons of the SOD1G93A mouse model of amyotrophic lateral sclerosis publication-title: J. Physiology doi: 10.1113/jphysiol.2012.247981 – volume: 533 start-page: 269 year: 2016 ident: B227 article-title: Architecture of the mitochondrial calcium uniporter publication-title: Nature doi: 10.1038/nature17656 – volume: 72 start-page: S1 year: 2009 ident: B225 article-title: The scientific and clinical basis for the treatment of Parkinson disease (2009) publication-title: Neurology doi: 10.1212/WNL.0b013e3181a1d44c – volume: 90 start-page: 10573 year: 1993 ident: B8 article-title: Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein [A beta P-(1-40)] in bilayer membranes publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.90.22.10573 – volume: 60 start-page: 1 year: 2013 ident: B175 article-title: Reactive oxygen species and the free radical theory of aging publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2013.02.011 – volume: 2005 start-page: CD003154 year: 2005 ident: B7 article-title: Memantine for dementia publication-title: Cochrane database Syst. Rev. doi: 10.1002/14651858.CD003154.pub4 – volume: 102 start-page: 893 year: 2022 ident: B106 article-title: Mitochondrial calcium exchange in physiology and disease publication-title: Physiol. Rev. doi: 10.1152/physrev.00041.2020 – volume: 12 start-page: 674 year: 2013 ident: B24 article-title: Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition publication-title: Cell Cycle doi: 10.4161/cc.23599 – volume: 101 start-page: 1057 year: 2019 ident: B60 article-title: Genetic convergence brings clarity to the enigmatic red line in ALS publication-title: Neuron doi: 10.1016/j.neuron.2019.02.032 – volume: 25 start-page: 1439 year: 2018 ident: B49 article-title: Clinical follow-up of 411 patients with relapsing and progressive multiple sclerosis 10 years after discontinuing mitoxantrone treatment: A real-life cohort study publication-title: Eur. J. Neurology doi: 10.1111/ene.13748 – volume: 51 start-page: 1 year: 2005 ident: B286 article-title: Dementia of Alzheimer’s disease and other neurodegenerative disorders—Memantine, a new hope publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2004.05.005 – volume: 76 start-page: 23 year: 2011 ident: B133 article-title: Estimating risk for developing epilepsy: A population-based study in rochester, Minnesota publication-title: A population-based study Rochester, Minn. doi: 10.1212/WNL.0b013e318204a36a – volume: 172 start-page: 591 year: 2020 ident: B233 article-title: Isradipine versus placebo in early Parkinson disease publication-title: Ann. Intern. Med. doi: 10.7326/m19-2534./m.32227247 – volume: 67 start-page: 711 year: 2017 ident: B6 article-title: Systematic identification of MCU modulators by orthogonal interspecies chemical screening publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.07.019 – volume: 18 start-page: 379 year: 2004 ident: B270 article-title: Mitoxantrone: A review of its use in multiple sclerosis publication-title: CNS Drugs doi: 10.2165/00023210-200418060-00010 – volume: 14 start-page: 348 year: 1994 ident: B321 article-title: Mitochondria buffer physiological calcium loads in cultured rat dorsal root ganglion neurons publication-title: J. Neurosci. official J. Soc. Neurosci. doi: 10.1523/JNEUROSCI.14-01-00348.1994 – volume: 1787 start-page: 1309 year: 2009 ident: B79 article-title: Regulation of mitochondrial dehydrogenases by calcium ions publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2009.01.005 – volume: 291 start-page: 2080 year: 2016 ident: B190 article-title: Mitochondrial calcium uptake modulates synaptic vesicle endocytosis in central nerve terminals publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.686956 – volume: 22 start-page: 5840 year: 2002 ident: B22 article-title: Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-14-05840.2002 – volume: 32 start-page: 6642 year: 2012 ident: B289 article-title: Comparative impact of voltage-gated calcium channels and NMDA receptors on mitochondria-mediated neuronal injury publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.6008-11.2012 – volume: 295 start-page: 4383 year: 2020 ident: B297 article-title: Cytosolic, but not matrix, calcium is essential for adjustment of mitochondrial pyruvate supply publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA119.011902 – volume: 40 start-page: 84 year: 2008 ident: B261 article-title: The cytosolic N-terminus of presenilin-1 potentiates mouse ryanodine receptor single channel activity publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2007.06.023 – volume: 79 start-page: 549 year: 1977 ident: B63 article-title: The calcium-induced and sodium-induced effluxes of calcium from heart mitochondria. Evidence for a sodium-calcium carrier publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1977.tb11839.x – volume: 37 start-page: 403 year: 2005 ident: B180 article-title: Regulation of dendritic growth and plasticity by local and global calcium dynamics publication-title: Cell Calcium doi: 10.1016/j.ceca.2005.01.008 – volume: 40 start-page: 1739 year: 2015 ident: B318 article-title: Role of the mitochondrial calcium uniporter in rat hippocampal neuronal death after pilocarpine-induced status epilepticus publication-title: Neurochem. Res. doi: 10.1007/s11064-015-1657-3 – volume: 284 start-page: 33982 year: 2009 ident: B111 article-title: Cyclophilin D modulates mitochondrial F0F1-ATP synthase by interacting with the lateral stalk of the complex publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.020115 – volume: 7 start-page: 68 year: 2019 ident: B167 article-title: Parkinson’s disease-associated LRRK2-G2019S mutant acts through regulation of SERCA activity to control ER stress in astrocytes publication-title: Acta Neuropathol. Commun. doi: 10.1186/s40478-019-0716-4 – volume: 8 start-page: 353 year: 2014 ident: B206 article-title: Elevated mRNA-levels of distinct mitochondrial and plasma membrane Ca2+ transporters in individual hypoglossal motor neurons of endstage SOD1 transgenic mice publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2014.00353 – volume: 218 start-page: 333 year: 2009 ident: B192 article-title: The mitochondrial permeability transition pore in motor neurons: Involvement in the pathobiology of ALS mice publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2009.02.015 – volume: 342 start-page: 314 year: 2000 ident: B162 article-title: Early identification of refractory epilepsy publication-title: N. Engl. J. Med. doi: 10.1056/nejm200002033420503 – volume: 51 start-page: 2959 year: 2012 ident: B114 article-title: Role of mitochondrial Ca2+ in the regulation of cellular energetics publication-title: Biochemistry doi: 10.1021/bi2018909 – volume: 296 start-page: 100669 year: 2021 ident: B124 article-title: The effect of mitochondrial calcium uniporter and cyclophilin D knockout on resistance of brain mitochondria to Ca2+-induced damage publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2021.100669 – volume: 297 start-page: 101174 year: 2021 ident: B329 article-title: The Mitochondrial Ca(2+) uniporter is a central regulator of interorganellar Ca(2+) transfer and NFAT activation publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2021.101174 – volume: 30 start-page: 4119 year: 2011 ident: B86 article-title: After half a century mitochondrial calcium in- and efflux machineries reveal themselves publication-title: EMBO J. doi: 10.1038/emboj.2011.337 – volume: 9 start-page: 347 year: 2018 ident: B273 article-title: C9ORF72 repeat expansion causes vulnerability of motor neurons to Ca2+-permeable AMPA receptor-mediated excitotoxicity publication-title: Nat. Commun. doi: 10.1038/s41467-017-02729-0 – volume: 13 start-page: 472 year: 2019 ident: B170 article-title: Meta-analysis of randomized controlled trials on the efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00472 – volume: 47 start-page: 331 year: 2005 ident: B135 article-title: Mitochondria and neurotransmission: Evacuating the synapse publication-title: Neuron doi: 10.1016/j.neuron.2005.07.017 – volume: 342 start-page: 1379 year: 2013 ident: B265 article-title: EMRE is an essential component of the mitochondrial calcium uniporter complex publication-title: Science doi: 10.1126/science.1242993 – volume: 66 start-page: 535 year: 1995 ident: B271 article-title: Aspects of calcium-activated chloride currents: A neuronal perspective publication-title: Pharmacol. Ther. doi: 10.1016/0163-7258(95)00018-c – volume: 114 start-page: E2846 year: 2017 ident: B39 article-title: Ion and inhibitor binding of the double-ring ion selectivity filter of the mitochondrial calcium uniporter publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1620316114 – volume: 278 start-page: 19062 year: 2003 ident: B46 article-title: The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria publication-title: J. Biol. Chem. doi: 10.1074/jbc.M212661200 – volume: 115 start-page: 371 ident: B59 article-title: Quantitative analysis of mitochondrial Ca2+ uptake and release pathways in sympathetic neurons - reconstruction of the recovery after depolarization-evoked [Ca2+](i) elevations publication-title: J. General Physiology doi: 10.1085/jgp.115.3.371 – volume: 3 start-page: 873 year: 2002 ident: B32 article-title: Calcium-dependent inactivation of neuronal calcium channels publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn959 – volume: 10 start-page: 399 year: 2018 ident: B204 article-title: N-acetylcysteine prevents the spatial memory deficits and the redox-dependent RyR2 decrease displayed by an Alzheimer’s disease rat model publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2018.00399 – volume: 4 start-page: 552 year: 2003 ident: B226 article-title: Regulation of cell death: The calcium-apoptosis link publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1150 – volume: 96 start-page: 1349 year: 2006 ident: B68 article-title: Neural mitochondrial Ca2+ capacity impairment precedes the onset of motor symptoms in G93A Cu/Zn-superoxide dismutase mutant mice publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2006.03619.x – volume: 41 start-page: 256 year: 2010 ident: B326 article-title: Mitochondrial DNA mutation-elicited oxidative stress, oxidative damage, and altered gene expression in cultured cells of patients with MERRF syndrome publication-title: Mol. Neurobiol. doi: 10.1007/s12035-010-8123-7 – volume: 107 start-page: 436 year: 2010 ident: B231 article-title: NCLX is an essential component of mitochondrial Na+/Ca2+ exchange publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0908099107 – volume: 5 start-page: 951 year: 1999 ident: B28 article-title: A calcium signaling defect in the pathogenesis of a mitochondrial DNA inherited oxidative phosphorylation deficiency publication-title: Nat. Med. doi: 10.1038/11396 – start-page: 89 volume-title: Synapses year: 2001 ident: B73 article-title: The structure of synapses – volume: 2015 start-page: 745613 year: 2015 ident: B249 article-title: Seizure-induced oxidative stress in temporal lobe epilepsy publication-title: Biomed. Res. Int. doi: 10.1155/2015/745613 – volume: 20 start-page: 7290 year: 2000 ident: B70 article-title: Stimulation-evoked increases in cytosolic [Ca2+] in mouse motor nerve terminals are limited by mitochondrial uptake and are temperature-dependent publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-19-07290.2000 – volume: 31 start-page: 3536 year: 2011 ident: B109 article-title: Store-operated Ca2+ entry in sensory neurons: Functional role and the effect of painful nerve injury publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5053-10.2011 – volume: 18 start-page: 2365 year: 2017 ident: B238 article-title: Metabolic dysfunction and oxidative stress in epilepsy publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18112365 – volume: 22 start-page: 154 year: 2019 ident: B266 article-title: Astrocyte function from information processing to cognition and cognitive impairment publication-title: Nat. Neurosci. doi: 10.1038/s41593-018-0325-8 – volume: 298 start-page: 102259 year: 2022 ident: B150 article-title: The airway smooth muscle sodium/calcium exchanger NCLX is critical for airway remodeling and hyperresponsiveness in asthma publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2022.102259 – volume: 247 start-page: I17 year: 2000 ident: B275 article-title: Molecular factors underlying selective vulnerability of motor neurons to neurodegeneration in amyotrophic lateral sclerosis publication-title: J. Neurol. doi: 10.1007/bf03161151 – volume: 15 start-page: 695380 year: 2021 ident: B134 article-title: Astrocytic Ca(2+) signaling in epilepsy publication-title: Front. Cell Neurosci. doi: 10.3389/fncel.2021.695380 – volume: 1762 start-page: 1068 year: 2006 ident: B311 article-title: The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis publication-title: Biochimica Biophysica Acta (BBA) - Mol. Basis Dis. doi: 10.1016/j.bbadis.2006.05.002 – volume: 168 start-page: 107966 year: 2020 ident: B279 article-title: Mechanisms of action of currently used antiseizure drugs publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2020.107966 – volume: 11 start-page: 9660 year: 2021 ident: B189 article-title: Mitochondrial calcium uniporter is essential for hearing and hair cell preservation in congenic FVB/NJ mice publication-title: Sci. Rep. doi: 10.1038/s41598-021-88841-0 – volume: 8 start-page: e78516 year: 2013 ident: B258 article-title: Gabapentin administration reduces reactive gliosis and neurodegeneration after pilocarpine-induced status epilepticus publication-title: PLoS One doi: 10.1371/journal.pone.0078516 – volume: 15 start-page: 769331 year: 2021 ident: B284 article-title: Role of cleaved PINK1 in neuronal development, synaptogenesis, and plasticity: Implications for Parkinson's disease publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.769331 – volume: 71 start-page: 2787 year: 2014 ident: B27 article-title: Neuronal calcium signaling: Function and dysfunction publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-013-1550-7 – volume: 87 start-page: 1426 year: 2002 ident: B199 article-title: Mitochondrial Ca2+ buffering regulates synaptic transmission between retinal amacrine cells publication-title: J. Neurophysiology doi: 10.1152/jn.00627.2001 – volume: 60 start-page: 47 year: 2015 ident: B274 article-title: SPG7 is an essential and conserved component of the mitochondrial permeability transition pore publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.08.009 – volume: 21 start-page: 9598 year: 2001 ident: B331 article-title: Roles for mitochondrial and reverse mode Na+/Ca2+ exchange and the plasmalemma Ca2+ ATPase in post-tetanic potentiation at crayfish neuromuscular junctions publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-24-09598.2001 – volume: 12 start-page: 4835 year: 2021 ident: B40 article-title: Defining the molecular mechanisms of the mitochondrial permeability transition through genetic manipulation of F-ATP synthase publication-title: Nat. Commun. doi: 10.1038/s41467-021-25161-x – volume: 447 start-page: 1081 year: 2007 ident: B48 article-title: ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease publication-title: Nature doi: 10.1038/nature05865 – volume: 24 start-page: 197 year: 2003 ident: B26 article-title: Staging of brain pathology related to sporadic Parkinson’s disease publication-title: Neurobiol. Aging doi: 10.1016/S0197-4580(02)00065-9 – volume: 13 start-page: 22 year: 2019 ident: B37 article-title: Amyloid β oligomers increase ER-mitochondria Ca2+ cross talk in young hippocampal neurons and exacerbate aging-induced intracellular Ca2+ remodeling publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2019.00022 – volume: 44 start-page: 51 year: 2008 ident: B287 article-title: High- and low-calcium-dependent mechanisms of mitochondrial calcium signalling publication-title: Cell Calcium doi: 10.1016/j.ceca.2007.11.015 – volume: 264 start-page: 1772 year: 1994 ident: B121 article-title: Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation publication-title: Science doi: 10.1126/science.8209258 – volume: 24 start-page: 5611 year: 2004 ident: B243 article-title: Excitotoxic calcium overload in a subpopulation of mitochondria triggers delayed death in hippocampal neurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0531-04.2004 – volume: 128 start-page: 161 year: 1972 ident: B78 article-title: Stimulation by calcium ions of pyruvate dehydrogenase phosphate phosphatase publication-title: Biochem. J. doi: 10.1042/bj1280161 – volume: 84 start-page: 131 year: 2002 ident: B100 article-title: Mitochondrial reactive oxygen species in cell death signaling publication-title: Biochimie doi: 10.1016/S0300-9084(02)01369-X – volume: 4 start-page: 405 year: 2002 ident: B308 article-title: Redox control of cell death publication-title: Antioxidants Redox Signal. doi: 10.1089/15230860260196209 – volume: 15 start-page: 1464 year: 2013 ident: B232 article-title: The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter publication-title: Nat. Cell Biol. doi: 10.1038/ncb2868 – volume: 148 start-page: 1145 year: 2012 ident: B224 article-title: Mitochondria: In sickness and in health publication-title: Cell doi: 10.1016/j.cell.2012.02.035 – volume: 11 start-page: 69 year: 1988 ident: B234 article-title: Calcium-activated non-specific cation channels publication-title: Trends Neurosci. doi: 10.1016/0166-2236(88)90167-1 – volume: 2 start-page: 67 year: 2001 ident: B330 article-title: The mitochondrion in apoptosis: How pandora's box opens publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/35048073 – volume: 84 start-page: 355 year: 2021 ident: B90 article-title: Physiological functions of CRAC channels publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-052521-013426 – volume: 591 start-page: 2443 year: 2013 ident: B278 article-title: Mitochondria and plasma membrane Ca2+-ATPase control presynaptic Ca2+ clearance in capsaicin-sensitive rat sensory neurons publication-title: J. Physiol. doi: 10.1113/jphysiol.2012.249219 – volume: 598 start-page: 5391 year: 2020 ident: B136 article-title: Regulation of chemoconvulsant-induced seizures by store-operated Orai1 channels publication-title: J. Physiol. doi: 10.1113/JP280119 – volume: 27 start-page: 1790 year: 1993 ident: B88 article-title: On the involvement of a cyclosporin A sensitive mitochondrial pore in myocardial reperfusion injury publication-title: Cardiovasc. Res. doi: 10.1093/cvr/27.10.1790 – volume: 75 start-page: 209 year: 2019 ident: B298 article-title: Investigation of mitochondrial calcium uniporter role in embryonic and adult motor neurons from G93AhSOD1 mice publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2018.11.019 – volume: 8 start-page: e55785 year: 2013 ident: B246 article-title: MICU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling publication-title: PLoS ONE doi: 10.1371/journal.pone.0055785 – volume: 50 start-page: 222 year: 2011 ident: B253 article-title: Mitochondrial permeability transition in Ca2+-dependent apoptosis and necrosis publication-title: Cell Calcium doi: 10.1016/j.ceca.2011.04.007 – volume: 106 start-page: 2007 year: 2009 ident: B215 article-title: The Psi(m) depolarization that accompanies mitochondrial Ca2+ uptake is greater in mutant SOD1 than in wild-type mouse motor terminals publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0810934106 – volume: 7 start-page: D1255 year: 2002 ident: B302 article-title: Modulating Ca2+ clearance from neurons publication-title: Front. Biosci. doi: 10.2741/A838 – volume: 37 start-page: 411 year: 2005 ident: B254 article-title: Regulation of dendritic development by calcium signaling publication-title: Cell Calcium doi: 10.1016/j.ceca.2005.01.009 – volume: 93 start-page: 1938 year: 2007 ident: B147 article-title: Models of β-amyloid ion channels in the membrane suggest that channel formation in the bilayer is a dynamic process publication-title: Biophysical J. doi: 10.1529/biophysj.107.110148 – volume: 50 start-page: 846 year: 1973 ident: B259 article-title: The effect of ruthenium red on the uptake and release of Ca 2+ by mitochondria publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291x(73)91322-3 – volume: 476 start-page: 336 year: 2011 ident: B75 article-title: A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter publication-title: Nature doi: 10.1038/nature10230 – volume: 348 start-page: 2656 year: 2003 ident: B82 article-title: Mitochondrial respiratory-chain diseases publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra022567 – volume: 33 start-page: 197 year: 2003 ident: B72 article-title: Quantitative estimate of mitochondrial [Ca2+] in stimulated motor nerve terminals publication-title: Cell Calcium doi: 10.1016/s0143-4160(02)00229-4 – volume: 26 start-page: 109 year: 2006 ident: B322 article-title: Donut-like topology of synaptic vesicles with a central cluster of mitochondria wrapped into membrane protrusions: A novel structure-function module of the adult calyx of Held publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3268-05.2006 – volume: 70 start-page: 56 year: 2018 ident: B112 article-title: Calcium and regulation of the mitochondrial permeability transition publication-title: Cell Calcium doi: 10.1016/j.ceca.2017.05.004 – volume: 98 start-page: 102453 ident: B173 article-title: Ca(2+) handling at the mitochondria-ER contact sites in neurodegeneration publication-title: Cell Calcium doi: 10.1016/j.ceca.2021.102453 – volume: 55 start-page: 9 year: 2020 ident: B324 article-title: Inhibitors of the mitochondrial calcium uniporter for the treatment of disease publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2019.11.006 – volume: 105 start-page: 678 year: 2020 ident: B9 article-title: Molecular tuning of the axonal mitochondrial Ca2+ uniporter ensures metabolic flexibility of neurotransmission publication-title: Neuron doi: 10.1016/j.neuron.2019.11.020 – volume: 8 start-page: 603 year: 2021 ident: B313 article-title: Isradipine plasma pharmacokinetics and exposure–response in early Parkinson’s disease publication-title: Ann. Clin. Transl. Neurology doi: 10.1002/acn3.51300 – volume: 14 start-page: 1336 ident: B186 article-title: MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism publication-title: Nat. Cell Biol. doi: 10.1038/ncb2622 – volume: 24 start-page: 487 year: 2001 ident: B42 article-title: The vanilloid receptor: A molecular gateway to the pain pathway publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.24.1.487 – volume: 38 start-page: 311 year: 2005 ident: B217 article-title: Mitochondria and calcium signaling publication-title: Cell Calcium doi: 10.1016/j.ceca.2005.06.011 – volume: 298 start-page: 101604 year: 2022 ident: B317 article-title: MCU (mitochondrial Ca(2+) uniporter) makes the calcium go round publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2022.101604 – volume: 426 start-page: 517 year: 2003 ident: B56 article-title: TRP channels as cellular sensors publication-title: Nature doi: 10.1038/nature02196 – volume: 18 start-page: 1935 year: 2017 ident: B159 article-title: Metabolic and homeostatic changes in seizures and acquired epilepsy—mitochondria, calcium dynamics and reactive oxygen species publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18091935 – volume: 60 start-page: 748 year: 2008 ident: B196 article-title: Mitochondria in neuroplasticity and neurological disorders publication-title: Neuron doi: 10.1016/j.neuron.2008.10.010 – volume: 23 start-page: 39 year: 2000 ident: B305 article-title: Sodium-dependent calcium release from vascular smooth muscle mitochondria publication-title: Hypertens. Res. doi: 10.1291/hypres.23.39 – volume: 26 start-page: 11 year: 2019 ident: B212 article-title: ATP synthase C-Subunit-Deficient mitochondria have a small cyclosporine A-sensitive channel, but lack the permeability transition pore publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.12.033 – volume: 9 start-page: 2135 year: 2020 ident: B92 article-title: Mitochondrial calcium deregulation in the mechanism of beta-amyloid and tau pathology publication-title: Cells doi: 10.3390/cells9092135 – volume: 5 start-page: e134063 year: 2020 ident: B178 article-title: EMRE is essential for mitochondrial calcium uniporter activity in a mouse model publication-title: JCI Insight doi: 10.1172/jci.insight.134063 – volume: 40 start-page: 50 year: 2019 ident: B29 article-title: Mitochondrial permeability transition: A molecular lesion with multiple drug targets publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2018.11.004 – volume: 44 start-page: 70 year: 2018 ident: B299 article-title: Review: Neurodegenerative processes in temporal lobe epilepsy with hippocampal sclerosis: Clinical, pathological and neuroimaging evidence publication-title: Neuropathol. Appl. Neurobiol. doi: 10.1111/nan.12458 – volume: 49 start-page: 2464 year: 2018 ident: B182 article-title: Focal cerebral ischemia and reperfusion induce brain injury through α2δ-1-bound NMDA receptors publication-title: Stroke doi: 10.1161/STROKEAHA.118.022330 – volume: 3 start-page: 1317 year: 2012 ident: B97 article-title: Activity of the mitochondrial calcium uniporter varies greatly between tissues publication-title: Nat. Commun. doi: 10.1038/ncomms2325 – volume: 22 start-page: 6962 year: 2002 ident: B312 article-title: Mitochondrial Ca2+ uptake regulates the excitability of myenteric neurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-16-06962.2002 – volume: 21 start-page: 1692 ident: B36 article-title: The cation/Ca2+ exchanger superfamily: Phylogenetic analysis and structural implications publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msh177 – volume: 44 start-page: 342 year: 2021 ident: B245 article-title: Excitotoxicity revisited: Mitochondria on the verge of a nervous breakdown publication-title: Trends Neurosci. doi: 10.1016/j.tins.2021.01.001 – volume: 140 start-page: 1720 year: 2019 ident: B165 article-title: MCUB regulates the molecular composition of the mitochondrial calcium uniporter channel to limit mitochondrial calcium overload during stress publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.118.037968 – volume: 93 start-page: 85 year: 2010 ident: B291 article-title: NMR studies of an immunomodulatory benzodiazepine binding to its molecular target on the mitochondrial F(1)F(0)-ATPase publication-title: Biopolymers doi: 10.1002/bip.21306 – volume: 115 start-page: 351 ident: B58 article-title: Dissection of mitochondrial Ca2+ uptake and release fluxes in situ after depolarization-evoked [Ca2+]i elevations in sympathetic neurons publication-title: J. Gen. Physiol. doi: 10.1085/jgp.115.3.351 – volume: 28 start-page: 307 year: 2000 ident: B102 article-title: Mitochondria as regulators of stimulus-evoked calcium signals in neurons publication-title: Cell Calcium doi: 10.1054/ceca.2000.0172 – volume: 53 start-page: 726 year: 2014 ident: B236 article-title: MICU1 and MICU2 finely tune the mitochondrial Ca2+ uniporter by exerting opposite effects on MCU activity publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.01.013 – volume: 163 start-page: 560 year: 2021 ident: B110 article-title: Mitochondrial calcium uniporter deletion prevents painful diabetic neuropathy by restoring mitochondrial morphology and dynamics publication-title: PAIN doi: 10.1097/j.pain.0000000000002391 – volume: 16 start-page: 545 year: 2015 ident: B152 article-title: The molecular era of the mitochondrial calcium uniporter publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm4039 – volume: 283 start-page: 26312 year: 2008 ident: B168 article-title: The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition publication-title: J. Biol. Chem. doi: 10.1074/jbc.M805235200 – volume: 25 start-page: 105447 year: 2022 ident: B211 article-title: Both ANT and ATPase are essential for mitochondrial permeability transition but not depolarization publication-title: iScience doi: 10.1016/j.isci.2022.105447 – start-page: 113 volume-title: Mitochondrial dysfunction in neurodegenerative disorders year: 2012 ident: B218 article-title: Mitochondria, sodium, and calcium in neuronal dysfunction doi: 10.1007/978-0-85729-701-3_7 – volume: 279 start-page: 5867 ident: B35 article-title: Molecular cloning of a sixth member of the K+-dependent Na+/Ca2+ exchanger gene family, NCKX6 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M310908200 – volume: 18 start-page: 101 year: 2017 ident: B296 article-title: Selective neuronal vulnerability in Parkinson disease publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn.2016.178 |
| SSID | ssj0001257583 |
| Score | 2.4414132 |
| SecondaryResourceType | review_article |
| Snippet | Mitochondria are essential for proper cellular function through their critical roles in ATP synthesis, reactive oxygen species production, calcium (Ca
2+
)... Mitochondria are essential for proper cellular function through their critical roles in ATP synthesis, reactive oxygen species production, calcium (Ca )... Mitochondria are essential for proper cellular function through their critical roles in ATP synthesis, reactive oxygen species production, calcium (Ca2+)... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1094356 |
| SubjectTerms | Alzheimer's disease Amyotrophic lateral sclerosis Apoptosis calcium Calcium (mitochondrial) Calcium buffering Calcium influx Calcium signalling Calcium transport Cell and Developmental Biology Dehydrogenases Disease Epilepsy Excitability Gene expression MCU Mitochondria Mutation Neurodegeneration Neurodegenerative diseases Neurological diseases neuronal calcium homeostasis Neurotoxicity Oxidative stress Parkinson's disease Permeability Physiology Reactive oxygen species Synaptic transmission |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxEB5ViEpcEFAe29JqK3FDS7JP28e2apQDRT2AxM3yM0SCDSJJpfx7ZuxNlCAEl17tXWs8Hs98Y9nfAJzlWrkGnWNmmCmzShUmUzVjWb9kXuRKFY0OPLOX7OqK396Kv2ulvuhOWKQHjorr6brvdaENwhJbCVMI3uS-RNht0VZ1FaARop61ZCqeriAM4WV8JYNZmOh5Ogi_oGLhxKCEIKHZiESBsP81lPnysuRa9BnswW4HG9MfUdx9-ODaA_gYC0kuPsHwD25MdGStJXtKUe9mPH9IzYIePo7ScZsG3koaggIZLUaqWhtbrRsF7mlqPYSbwe_rX8Osq5GQmUo0syxHX1vUOC2P4IU7Z7yxGJGt0d5roW1eaNE4oyxmVq6fe264dhi2bFMislB1eQRb7aR1J5ByohUVVY0JCa8UQj90Pdy6WtnSCc5FAvlSX9J0BOJUx-JeYiJBOpZBx5J0LDsdJ3C--ucx0me8-fVPWobVl0R9HRrQIGRnEPI9g0jgdLmIstuPU4kglfMaswmewPdVN-4kkkG1bjKfyoIxBJN1mOlxXPOVJMRrh7GeJcA2rGFD1M2ednwX2Lox3OPI7PP_mNsX2CF90RFQUZ3C1uxp7r7Ctvk3G0-fvoUt8AwacguQ priority: 102 providerName: Directory of Open Access Journals |
| Title | Mitochondrial calcium cycling in neuronal function and neurodegeneration |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36760367 https://www.proquest.com/docview/3268858828 https://www.proquest.com/docview/2775615889 https://pubmed.ncbi.nlm.nih.gov/PMC9902777 https://doaj.org/article/b50fb2bc533d49c29861f3606d703b4a |
| Volume | 11 |
| WOSCitedRecordID | wos000927833500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2296-634X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257583 issn: 2296-634X databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2296-634X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257583 issn: 2296-634X databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2296-634X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257583 issn: 2296-634X databaseCode: M7P dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: eissn: 2296-634X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257583 issn: 2296-634X databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2296-634X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257583 issn: 2296-634X databaseCode: PIMPY dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvB-BsgoSNxS6edo-IYq2KhJdRQik5WT5uV0JsmUfSL3w25lxvEsXoV645GAn0djjmfk8cb4BeJVr5Rp0jplhpswqVZhM1Yxlw5J5kStVNDrwzH5k4zGfTEQbE27LeKxy4xODo7ZzQznyI4QZnNeIB_nbix8ZVY2ir6uxhMYeHBBLQhmO7rVXciwIRnjZ_yuDezFx5Ckd_oZKhhOPEkKFZiceBdr-f2HNv49MXolBJ3f_V_p7cCeiz_Rdv1zuww3XPYBbfT3Ky4dweob2jf6ws7QsU1Sfma2_p-aS_p-cprMuDfSX9AqKh6TTVHW2b7VuGiisqfURfDkZfX5_msVSC5mpRLPKcnTZRY3z4hEDceeMNxYDuzXaey20zQstGmeUxRG4Ye654dph9LNNiQBF1eVj2O_mnXsKKSd2UlHVuK_hlUIEiR6MW1crWzrBuUgg30y4NJGHnMphfJO4HyElyaAkSUqSUUkJvN4-c9GzcFx79zHpcXsnMWiHhvliKqNBSl0PvS60QbhrK2EKwZvcl7ids-gDdaUSONxoUkazXso_akzg5bYbDZJkUJ2br5eyYAwxaR1G-qRfNFtJiB4PIQNLgO0spx1Rd3u62Xkg_UbUgG9mz64X6zncppmgHFFRHcL-arF2L-Cm-bmaLRcD2GMTPoCD49G4_TQI6YdBsBi6_hphT_vhrP36G2ExII0 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH6qUhBc2BdDASPBCZnG42VmDgixVYmaRDkUqZyG2RwitU7JAsqf4jfynpfQINRbD1zH29j-5nvfG3u-B_AiNtrnSI6R5TaJUs1spDPOo27CCxlrzXJT-cwO-Ggkjo_leAd-tWth6LfKlhMronYzS3Pk-ygzhMhQD4q3Z98jqhpFX1fbEho1LA79-iembIs3_Y_4fl8ydvDp6EMvaqoKRDaV-TKKkZ1Yhjl_geFeeG8L6zCGOWuKwkjjYmZk7q12eCnfjQthhfFI9C5PMBZrqhKBlL-bIthFB3bH_eH4y7lZHZQ_IqlX52D2J_cLmoB_TUXKybkJxUm-FQGrQgH_Urd__6R5Luod3PzfntctuNHo6_BdPSBuw44v78DVuuLm-i70hshgyPilo4EXIkDtdHUa2jWtEJ2E0zKsDD7pFBTxCbWhLl3d6vykMumm1nvw-VJu4z50ylnpH0IoyH9VphlmbiLVqJGRo4XzmXaJl0LIAOL2BSvbOK1TwY8ThRkXgUJVoFAECtWAIoBXm2POap-RC_d-T7jZ7Eke4VXDbD5RDeUok3ULw4xFQe9SaZkUeVwkmLA6ZHmT6gD2WuSohrgW6g9sAni-2YyUQ33QpZ-tFopxjqo7q-70QQ3STU_IABBFEQ-Ab8F3q6vbW8rpt8rWHHURnpk_urhbz-Ba72g4UIP-6PAxXKenQjNiLN2DznK-8k_giv2xnC7mT5uxGcLXy4b3b05teu4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+calcium+cycling+in+neuronal+function+and+neurodegeneration&rft.jtitle=Frontiers+in+cell+and+developmental+biology&rft.au=Walters%2C+Grant+C.&rft.au=Usachev%2C+Yuriy+M.&rft.date=2023-01-24&rft.issn=2296-634X&rft.eissn=2296-634X&rft.volume=11&rft_id=info:doi/10.3389%2Ffcell.2023.1094356&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fcell_2023_1094356 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-634X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-634X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-634X&client=summon |