Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities

In this paper, we analyze and discuss the well-posedness of two new variants of the so-called sweeping process, introduced by Moreau in the early 70s (Moreau in Sém Anal Convexe Montpellier, 1971 ) with motivation in plasticity theory. The first new variant is concerned with the perturbation of the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical programming Ročník 148; číslo 1-2; s. 5 - 47
Hlavní autori: Adly, Samir, Haddad, Tahar, Thibault, Lionel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2014
Springer Nature B.V
Springer Verlag
Predmet:
ISSN:0025-5610, 1436-4646
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we analyze and discuss the well-posedness of two new variants of the so-called sweeping process, introduced by Moreau in the early 70s (Moreau in Sém Anal Convexe Montpellier, 1971 ) with motivation in plasticity theory. The first new variant is concerned with the perturbation of the normal cone to the moving convex subset C ( t ) , supposed to have a bounded variation, by a Lipschitz mapping. Under some assumptions on the data, we show that the perturbed differential measure inclusion has one and only one right continuous solution with bounded variation. The second variant, for which a large analysis is made, concerns a first order sweeping process with velocity in the moving set C ( t ) . This class of problems subsumes as a particular case, the evolution variational inequalities [widely used in applied mathematics and unilateral mechanics (Duvaut and Lions in Inequalities in mechanics and physics. Springer, Berlin, 1976 ]. Assuming that the moving subset C ( t ) has a continuous variation for every t ∈ [ 0 , T ] with C ( 0 ) bounded, we show that the problem has at least a Lipschitz continuous solution. The well-posedness of this class of sweeping process is obtained under the coercivity assumption of the involved operator. We also discuss some applications of the sweeping process to the study of vector hysteresis operators in the elastoplastic model (Krejčı in Eur J Appl Math 2:281–292, 1991 ), to the planning procedure in mathematical economy (Henry in J Math Anal Appl 41:179–186, 1973 and Cornet in J. Math. Anal. Appl. 96:130–147, 1983 ), and to nonregular electrical circuits containing nonsmooth electronic devices like diodes (Acary et al. Nonsmooth modeling and simulation for switched circuits. Lecture notes in electrical engineering. Springer, New York 2011 ). The theoretical results are supported by some numerical simulations to prove the efficiency of the algorithm used in the existence proof. Our methodology is based only on tools from convex analysis. Like other papers in this collection, we show in this presentation how elegant modern convex analysis was influenced by Moreau’s seminal work.
AbstractList (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).In this paper, we analyze and discuss the well-posedness of two new variants of the so-called sweeping process, introduced by Moreau in the early 70s (Moreau in Sem Anal Convexe Montpellier, 1971) with motivation in plasticity theory. The first new variant is concerned with the perturbation of the normal cone to the moving convex subset ..., supposed to have a bounded variation, by a Lipschitz mapping. Under some assumptions on the data, we show that the perturbed differential measure inclusion has one and only one right continuous solution with bounded variation. The second variant, for which a large analysis is made, concerns a first order sweeping process with velocity in the moving set ... This class of problems subsumes as a particular case, the evolution variational inequalities [widely used in applied mathematics and unilateral mechanics (Duvaut and Lions in Inequalities in mechanics and physics. Springer, Berlin, 1976]. Assuming that the moving subset ... has a continuous variation for every ... with ... bounded, we show that the problem has at least a Lipschitz continuous solution. The well-posedness of this class of sweeping process is obtained under the coercivity assumption of the involved operator. We also discuss some applications of the sweeping process to the study of vector hysteresis operators in the elastoplastic model (KrejAei in Eur J Appl Math 2:281-292, 1991), to the planning procedure in mathematical economy (Henry in J Math Anal Appl 41:179-186, 1973 and Cornet in J. Math. Anal. Appl. 96:130-147, 1983), and to nonregular electrical circuits containing nonsmooth electronic devices like diodes (Acary et al. Nonsmooth modeling and simulation for switched circuits. Lecture notes in electrical engineering. Springer, New York 2011). The theoretical results are supported by some numerical simulations to prove the efficiency of the algorithm used in the existence proof. Our methodology is based only on tools from convex analysis. Like other papers in this collection, we show in this presentation how elegant modern convex analysis was influenced by Moreau's seminal work.
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Issue Title: Modern Convex Analysis In this paper, we analyze and discuss the well-posedness of two new variants of the so-called sweeping process, introduced by Moreau in the early 70s (Moreau in Sém Anal Convexe Montpellier, 1971 ) with motivation in plasticity theory. The first new variant is concerned with the perturbation of the normal cone to the moving convex subset ..., supposed to have a bounded variation, by a Lipschitz mapping. Under some assumptions on the data, we show that the perturbed differential measure inclusion has one and only one right continuous solution with bounded variation. The second variant, for which a large analysis is made, concerns a first order sweeping process with velocity in the moving set ... This class of problems subsumes as a particular case, the evolution variational inequalities [widely used in applied mathematics and unilateral mechanics (Duvaut and Lions in Inequalities in mechanics and physics. Springer, Berlin, 1976 ]. Assuming that the moving subset ... has a continuous variation for every ... with ... bounded, we show that the problem has at least a Lipschitz continuous solution. The well-posedness of this class of sweeping process is obtained under the coercivity assumption of the involved operator. We also discuss some applications of the sweeping process to the study of vector hysteresis operators in the elastoplastic model (Krejci in Eur J Appl Math 2:281-292, 1991 ), to the planning procedure in mathematical economy (Henry in J Math Anal Appl 41:179-186, 1973 and Cornet in J. Math. Anal. Appl. 96:130-147, 1983 ), and to nonregular electrical circuits containing nonsmooth electronic devices like diodes (Acary et al. Nonsmooth modeling and simulation for switched circuits. Lecture notes in electrical engineering. Springer, New York 2011 ). The theoretical results are supported by some numerical simulations to prove the efficiency of the algorithm used in the existence proof. Our methodology is based only on tools from convex analysis. Like other papers in this collection, we show in this presentation how elegant modern convex analysis was influenced by Moreau's seminal work.[PUBLICATION ABSTRACT]
In this paper, we analyze and discuss the well-posedness of two new variants of the so-called sweeping process, introduced by Moreau in the early 70s with motivation in plasticity theory. The first new variant is concerned with the perturbation of the normal cone to the moving convex subset $C(t)$, supposed to have a bounded variation, by a Lipschitz mapping. Under some assumptions on the data, we show that the perturbed differential measure inclusion has one and only one right continuous solution with bounded variation. The second variant, for which a large analysis is made, concerns a first order sweeping process with velocity in the moving set $C(t)$. This class of problems subsumes as a particular case, the evolution variational inequalities. Assuming that the moving subset $C(t)$ has a continuous variation for every $t \in [0, T ]$ with $C (0)$ bounded, we show that the problem has at least a Lipschitz continuous solution. The well-posedness of this class of sweeping process is obtained under the coercivity assumption of the involved operator. We also discuss some applications of the sweeping process to the study of vector hysteresis operators in the elastoplastic model, to the planning procedure in mathematical economy, and to nonregular electrical circuits containing nonsmooth electronic devices like diodes. The theoretical results are supported by some numerical simulations to prove the efficiency of the algorithm used in the existence proof. Our methodology is based only on tools from convex analysis. Like other papers in this collection, we show in this presentation how elegant modern convex analysis was influenced by Moreau’s seminal work.
In this paper, we analyze and discuss the well-posedness of two new variants of the so-called sweeping process, introduced by Moreau in the early 70s (Moreau in Sém Anal Convexe Montpellier, 1971 ) with motivation in plasticity theory. The first new variant is concerned with the perturbation of the normal cone to the moving convex subset C ( t ) , supposed to have a bounded variation, by a Lipschitz mapping. Under some assumptions on the data, we show that the perturbed differential measure inclusion has one and only one right continuous solution with bounded variation. The second variant, for which a large analysis is made, concerns a first order sweeping process with velocity in the moving set C ( t ) . This class of problems subsumes as a particular case, the evolution variational inequalities [widely used in applied mathematics and unilateral mechanics (Duvaut and Lions in Inequalities in mechanics and physics. Springer, Berlin, 1976 ]. Assuming that the moving subset C ( t ) has a continuous variation for every t ∈ [ 0 , T ] with C ( 0 ) bounded, we show that the problem has at least a Lipschitz continuous solution. The well-posedness of this class of sweeping process is obtained under the coercivity assumption of the involved operator. We also discuss some applications of the sweeping process to the study of vector hysteresis operators in the elastoplastic model (Krejčı in Eur J Appl Math 2:281–292, 1991 ), to the planning procedure in mathematical economy (Henry in J Math Anal Appl 41:179–186, 1973 and Cornet in J. Math. Anal. Appl. 96:130–147, 1983 ), and to nonregular electrical circuits containing nonsmooth electronic devices like diodes (Acary et al. Nonsmooth modeling and simulation for switched circuits. Lecture notes in electrical engineering. Springer, New York 2011 ). The theoretical results are supported by some numerical simulations to prove the efficiency of the algorithm used in the existence proof. Our methodology is based only on tools from convex analysis. Like other papers in this collection, we show in this presentation how elegant modern convex analysis was influenced by Moreau’s seminal work.
Author Haddad, Tahar
Thibault, Lionel
Adly, Samir
Author_xml – sequence: 1
  givenname: Samir
  surname: Adly
  fullname: Adly, Samir
  email: samir.adly@unilim.fr
  organization: Laboratoire XLIM, Université de Limoges
– sequence: 2
  givenname: Tahar
  surname: Haddad
  fullname: Haddad, Tahar
  organization: Laboratoire de Mathmatiques Pures et Appliques, Université de Jijel
– sequence: 3
  givenname: Lionel
  surname: Thibault
  fullname: Thibault, Lionel
  organization: Département de Mathématiques, Université Montpellier II
BackLink https://hal.science/hal-01313119$$DView record in HAL
BookMark eNp9kU9v1DAQxS1UJLYLH4CbJS5wCIyTiZMcqxXQSitxgbPlOOPWJWtv7WRbvj1OUyFUCeSD_-j3xm_mnbMzHzwx9lbARwHQfEoCBDQFCCygqbHAF2wjsJIFSpRnbANQ1kUtBbxi5yndAoCo2nbD4i74Ez3wdE90dP6aH2MwlBJ3nk83xG3UB7oP8ScPlh9IpzkSH5y1FMlPTo8ZNOOcXPCJaz9wOoVxnvKVn3R0ejk9QnQ369FNjtJr9tLqMdGbp33Lfnz5_H13Wey_fb3aXewLg52cCqFlI0TbWtPXA3W26xGtHKAzGivbllBZo4XGppGWyLaykz1Yslaj7Yeyr7bsw1r3Ro_qGN1Bx18qaKcuL_ZqecsjyEt0J5HZ9yub27-bKU3q4JKhcdSewpyUkFhWUCFiRt89Q2_DHHOTC1VCXXWY2S0TK2ViSCmS_eNAgFoSU2ti2QSqJTG1VG6eaYybHic4Re3G_yrLVZnyL_6a4l-e_in6DUWVrno
CODEN MHPGA4
CitedBy_id crossref_primary_10_1007_s10957_018_1384_4
crossref_primary_10_1007_s11590_017_1149_2
crossref_primary_10_1007_s40590_023_00545_9
crossref_primary_10_1137_16M1083657
crossref_primary_10_1007_s11228_017_0432_9
crossref_primary_10_1080_00036811_2019_1702166
crossref_primary_10_1137_18M1207120
crossref_primary_10_1134_S0037446625020211
crossref_primary_10_1007_s10957_018_1423_1
crossref_primary_10_1007_s00245_024_10139_0
crossref_primary_10_1137_21M1397635
crossref_primary_10_1017_S0956792518000256
crossref_primary_10_1137_19M1248613
crossref_primary_10_3390_math12060896
crossref_primary_10_1007_s10957_016_0905_2
crossref_primary_10_1007_s10107_021_01666_7
crossref_primary_10_1051_cocv_2025054
crossref_primary_10_1134_S0037446621040170
crossref_primary_10_1080_00036811_2025_2473499
crossref_primary_10_1007_s10231_018_0726_z
crossref_primary_10_1007_s10957_025_02610_x
crossref_primary_10_1007_s11784_017_0461_x
crossref_primary_10_1016_j_nahs_2019_100832
crossref_primary_10_1007_s11228_021_00611_2
crossref_primary_10_1007_s11071_024_10130_y
crossref_primary_10_1080_02331934_2019_1686504
crossref_primary_10_1007_s10957_021_01991_z
crossref_primary_10_1016_j_jde_2015_09_006
crossref_primary_10_3390_fractalfract8040194
crossref_primary_10_1007_s00028_023_00892_0
crossref_primary_10_1080_02331934_2023_2199032
crossref_primary_10_1007_s00245_021_09780_w
crossref_primary_10_1007_s00245_023_09995_z
crossref_primary_10_1007_s10957_018_1427_x
crossref_primary_10_1007_s11228_015_0323_x
crossref_primary_10_1007_s11253_021_01966_3
crossref_primary_10_1137_23M1622118
crossref_primary_10_1016_j_jde_2018_07_066
crossref_primary_10_1016_j_cnsns_2025_109288
crossref_primary_10_1137_18M1201561
crossref_primary_10_1016_j_jde_2020_10_017
crossref_primary_10_1007_s00245_024_10169_8
crossref_primary_10_1080_00036811_2022_2124974
crossref_primary_10_1007_s10473_025_0412_3
crossref_primary_10_1080_02331934_2024_2366832
crossref_primary_10_1007_s00245_024_10108_7
crossref_primary_10_1137_17M1120658
crossref_primary_10_1007_s11228_020_00533_5
crossref_primary_10_3390_math10030317
crossref_primary_10_3390_math8091395
crossref_primary_10_1007_s10957_022_02009_y
crossref_primary_10_1137_18M1234795
crossref_primary_10_1080_02331934_2024_2371037
crossref_primary_10_1007_s11590_023_02088_4
crossref_primary_10_1080_02331934_2018_1514039
crossref_primary_10_1007_s00033_019_1084_4
crossref_primary_10_1007_s10957_022_02004_3
crossref_primary_10_1007_s10957_024_02485_4
crossref_primary_10_1016_j_cnsns_2023_107361
crossref_primary_10_1080_00036811_2022_2040994
crossref_primary_10_1080_02331934_2017_1337765
crossref_primary_10_1137_20M1371063
crossref_primary_10_1016_j_jde_2018_10_024
crossref_primary_10_1002_zamm_202400012
Cites_doi 10.1007/978-3-662-02796-7
10.1007/s10107-009-0315-4
10.1016/j.jde.2005.12.005
10.1016/0022-1236(87)90029-2
10.1007/s10107-006-0052-x
10.1017/CBO9780511623813
10.1007/978-90-481-9681-4
10.1007/s11228-011-0201-0
10.1007/BF01027688
10.1007/BFb0087685
10.1016/j.nahs.2006.04.001
10.1007/978-3-642-02431-3
10.1006/jdeq.1999.3756
10.1007/978-3-642-66165-5
10.1016/S0022-0396(02)00021-9
10.1142/9789812812827_0002
10.1016/0022-0396(77)90085-7
10.1016/S0045-7825(98)00387-9
10.1137/1.9781611970524
10.1007/3-540-45501-9_1
10.1007/BF01026248
10.1017/S0956792500000541
10.1016/B978-1-4831-9762-3.50004-4
10.1007/s10107-009-0268-7
10.1007/978-1-4612-4048-8
10.24033/bsmf.1625
10.1007/978-3-662-11557-2
10.1007/s11228-013-0236-5
10.1017/CBO9781139087322
10.12775/TMNA.1998.036
10.1007/978-3-0348-7614-8
10.1016/B978-0-12-775850-3.50012-1
10.1016/0362-546X(90)90167-F
10.1016/S0022-0396(03)00129-3
10.1016/0022-247X(83)90032-X
10.1515/9781400873173
10.1007/978-3-662-21569-2
10.1142/5021
10.1023/A:1008774529556
10.2140/pjm.1970.33.209
10.1016/j.crma.2008.10.014
10.1007/s10107-005-0619-y
10.1016/0022-247X(73)90192-3
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014
Attribution
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014
– notice: Attribution
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
1XC
VOOES
DOI 10.1007/s10107-014-0754-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Computer and Information Systems Abstracts
ProQuest Business Collection (Alumni Edition)


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
EISSN 1436-4646
EndPage 47
ExternalDocumentID oai:HAL:hal-01313119v1
3483187131
10_1007_s10107_014_0754_4
Genre Feature
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L.0
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
1XC
VOOES
ID FETCH-LOGICAL-c496t-1a671188fcb5de9f9b44f6d09ca43f8203fca1a4776feef8696b0feffa4fbd2b3
IEDL.DBID RSV
ISICitedReferencesCount 90
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000344809700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Tue Oct 14 20:46:01 EDT 2025
Thu Sep 04 18:17:23 EDT 2025
Thu Sep 25 00:38:45 EDT 2025
Sat Nov 29 03:33:58 EST 2025
Tue Nov 18 22:05:39 EST 2025
Fri Feb 21 02:32:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Normal cones
58E35
Convex integral functional
49J53
Evolution variational inequality
Differential inclusion
Moreau’s sweeping process
34G25
Language English
License http://www.springer.com/tdm
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-1a671188fcb5de9f9b44f6d09ca43f8203fca1a4776feef8696b0feffa4fbd2b3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4375-0106
OpenAccessLink https://hal.science/hal-01313119
PQID 1620539442
PQPubID 25307
PageCount 43
ParticipantIDs hal_primary_oai_HAL_hal_01313119v1
proquest_miscellaneous_1642303444
proquest_journals_1620539442
crossref_primary_10_1007_s10107_014_0754_4
crossref_citationtrail_10_1007_s10107_014_0754_4
springer_journals_10_1007_s10107_014_0754_4
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2014
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Verlag
References KrejčıPVector hysteresis modelsEur. J. Appl. Math.1991228129210.1017/S09567925000005410754.73015
Castaing, C.: Equation différentielle multivoque avec contrainte sur l’état dans les espaces de Banach. Sem. Anal. Convexe Montpellier (1978), Exposé 13
Monteiro Marques, M.D.P.: Perturbations convexes semi-continues supérieurement dans les espaces de Hilbert. Sem. Anal. Convexe Montpellier (1984), Exposé 2
Borwein, J.M., Vanderwerff, J.D.: Convex Functions: Constructions, Characterizations and Counterexamples. Encyclopedia of Mathematics and its Applications, vol. 109, Cambridge University Press, Cambridge (2010)
PoliquinRASubgradient monotonicity and convex functionsNonlinear Anal.19901438539810.1016/0362-546X(90)90167-F1040008
BounkhelMThibaultLNonconvex sweeping process and prox-regularity in Hilbert space J. Nonlinear Convex Anal.200563593741086.490162159846
RockafellarRTConvex Analysis1970PrincetonPrinceton University Press0193.18401
Moreau, J.J.: On unilateral constraints, friction and plasticity. In: Capriz, G., Stampacchia, G. (eds.) New Variational Techniques in Mathematical Physics, pp. 173–322. C.I.M.E. II Ciclo 1973, Edizioni Cremonese, Rome (1974)
MoreauJJNumerical aspects of the sweeping processComput. Methods Appl. Mech. Eng.199917732934910.1016/S0045-7825(98)00387-90968.700061710456
ZalinescuCConvex Analysis in General Vector Spaces2002River EdgeWorld Scientific10.1142/97898127770961023.46003
Moreau, J.J.: Rafle par un convexe variable II, Sém. Anal. Convexe Montpellier (1972), Exposé 3
RockafellarRTOn the maximal monotonicity of subdifferential mappingsPac. J. Math.19703320921610.2140/pjm.1970.33.2090199.47101262827
Moreau, J.J.: Rafle par un convexe variable I. Sém. Anal. Convexe Montpellier (1971), Exposé 15
BrezisHOperateurs Maximaux Monotones1973AmsterdamNorth Holland0252.47055
Correa, R., Jofre, A., Thibault, L.: Subdifferential characterization of convexity. In: Du, D., Qi, L., Womersley, R. (eds.) Recent Advances in Nonsmooth Optimization, pp. 18–23. World Scientific, Singapore (1995)
Monteiro Marques, M.D.P.: Differential Inclusions in Nonsmooth Mechanical Problems, Shocks and Dry Friction. Birkhauser, Basel (1993)
Moreau, J.J.: An introduction to unilateral dynamics. In: Frémond, M., Maceri, F. (eds.) Novel Approaches in Civil Engineering. Springer, Berlin (2002)
ColomboGGoncharovVVThe sweeping process without convexitySet-Valued Anal.1999735737410.1023/A:10087745295560957.340601756914
Rockafellar, R.T.: Conjugate Duality and Optimization. Conferences Board of Mathematics Sciences Series, vol. 16. SIAM, Philadelphia (1974)
CastaingCMonteiro MarquesMDPEvolution problems associated with non-convex closed moving sets with bounded variationPortugaliae Math19965373870848.350521384501
Colombo, G., Thibault, L.: Prox-regular sets and applications. In: Gao, D.Y., Motreanu, D. (eds.) Handbook of Nonconvex Analysis. International Press, Vienna (2010)
BenabdellahHExistence of solutions to the nonconvex sweeping processJ. Differ. Equ.200016428529510.1006/jdeq.1999.37561765576
EdmondJFThibaultLRelaxation of an optimal control problem involving a perturbed sweeping processMath. Program.200510434737310.1007/s10107-005-0619-y1124.490102179241
MattilaPGeometry of Sets and Measures in Euclidean Spaces1995LondonCambridge University Press10.1017/CBO97805116238130819.28004
Rockafellar, R.T.: Convex integral functionals and duality. In: Zarantonello, E. (ed.) Contributions to Nonlinear Functional Analysis, pp. 215–236. Academic Press, London (1971)
Hiriart-Urruty, J.-B., Lemarechal, C.: Convex Analysis and Minimization Algorithms I & II, Grundlehren der Mathematischen Wissenschaften, vol. 305–306, Springer, New York (1993)
BrokateMSprekelsJHysteresis and Phase Transitions, Applied Mathematical Sciences1996BerlinSpringer10.1007/978-1-4612-4048-8
PangJSStewartDEDifferential variational inequalitiesMath. Progam. Ser. A200811334542410.1007/s10107-006-0052-x1139.580112375486
CastaingCValadierMConvex Analysis and Measurable Multifunctions1977BerlinSpringer10.1007/BFb00876850346.46038
Valadier, M.: Rafle et viabilité, Sem. Anal. Convexe Montpellier (1992), Exposé 17
BrogliatoBThibaultLExistence and uniqueness of solutions for non-autonomous complementarity dynamical systemsJ. Convex Anal.2010173–49619901217.340262731287
KunzeM.Monteiro MarquesM.D.P.On parabolic quasi-variational inequalities and state-dependent sweeping processesTopol. Methods Nonlinear Anal.199812179191
MoreauJJSur l’évolution d’un système élastoplastiqueC. R. Acad. Sci. Paris Ser. A–B1971273A118A121284066
MoreauJJValadierMA chain rule involving vector functions of bounded variationJ. Funct. Anal.19877433334510.1016/0022-1236(87)90029-20632.46040904823
Kunze, M., Monteiro Marques, M.D.P.: An introduction to Moreau’s sweeping process. In: Brogliato, B. (ed.) Impacts in Mechanical Systems. Analysis and Modelling, pp. 1–60. Springer, Berlin (2000)
CastaingCDuc HaTXValadierMEvolution equations governed by the sweeping processSet-Valued Anal.1993110913910.1007/BF010276880813.340181239400
MauryBVenelJA mathematical framework for a crowd motion modelC. R. Math. Acad. Sci. Paris20083461245125010.1016/j.crma.2008.10.0141168.343332473301
ThibaultLSweeping process with regular and nonregular setsJ. Differ. Equ.200319312610.1016/S0022-0396(03)00129-31037.340071994056
MoreauJ.J.Evolution problem associated with a moving convex set in a Hilbert spaceJ. Differ. Equ.19772347374
CornetBExistence of slow solutions for a class of differential inclusionsJ. Math. Anal. Appl.19839613014710.1016/0022-247X(83)90032-X0558.34011717499
Valadier, M.: Quelques problèmes d’entrainement unilatéral en dimension finie, Sem. Anal. Convexe Montpellier (1988), Exposé 8
HenryCAn existence theorem for a class of differential equations with multivalued right-hand sideJ. Math. Anal. Appl.19734117918610.1016/0022-247X(73)90192-30262.49019335906
CastaingCMonteiro MarquesMDPBV periodic solutions of an evolution problem associated with continuous moving convex setsSet-Valued Anal.1995338139910.1007/BF010262480845.351421372875
AdlySGoelevenDLeBKStability analysis and attractivity results of a DC–DC buck converterSet Valued Var. Anal.20122033135310.1007/s11228-011-0201-01279.340582949631
AdlySOutrataJQualitative stability of a class of non-monotone variational inclusionsJ .Convex Anal. Appl. Electron.20132013086440
VisintinADifferential Models of Hysteresis. Applied Mathematical Sciences1994BerlinSpringer10.1007/978-3-662-11557-2
AddiKAdlySBrogliatoBGoelevenDA method using the approach of Moreau and Panagiotopoulos for the mathematical formulation of non-regular circuits in electronicsNonlinear Anal. Hybrid Syst.200711304310.1016/j.nahs.2006.04.0011172.946502340260
DinculeanuNVector Measures1967OxfordPergamon
DuvautDLionsJLInequalities in Mechanics and Physics1976BerlinSpringer10.1007/978-3-642-66165-50331.35002
EdmondJFThibaultLBV solutions of nonconvex sweeping process differential inclusions with perturbationJ. Differ. Equ.200622613517910.1016/j.jde.2005.12.0051110.340382232433
Moreau, J.J.: Sur les mesures différentielles des fonctions vectorielles à variation bornée. Sem. Anal. Convexe Montpellier (1975), Exposé 17
Phelps, R.R.: Convex Functions. Monotone Operators and Differentiability. Lecture Notes in Mathematics. Springer, Berlin (1989)
AddiK.BrogliatoB.GoelevenD.A qualitative mathematical analysis of a class of linear variational inequalities via semi-complementarity problemsAppl. Electron. Math. Program.201112613167
MoreauJJProximité et dualité dans un espace hilbertienBull. Soc. Math. France1965932732990136.12101201952
HaddadTThibaultLMixed semicontinuous perturbations of nonconvex sweeping processesMath. Program. Ser. B.201012322524010.1007/s10107-009-0315-41195.340242577329
Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, Grundlehren der Mathematischen Wissenschaften, vol. 317. Springer, New York (1998)
KunzeMMonteiro MarquesMDPPortugaliae Math.On the discretization of degenerate sweeping process1998552192320923.340171629634
Acary, V., Bonnefon, O., Brogliato, B.: Nonsmooth Modeling and Simulation for Switched Circuits. Lecture Notes in Electrical Engineering, vol. 69. Springer, Dordrecht (2011). ISBN 978-90-481-9680-7
Moreau, J.J.: Fonctionnelles Convexes. Edizioni del Dipartimento di Ingegneria Civile dell’Università di Roma (2003)
HaddadTJouraniAThibaultLReduction of sweeping process to unconstrained differential inclusionPac. J. Optim.200844935121185.340182541259
Adly, S., Cibulka, R., Massias, H.: Variational analysis and generalized equations in electronics. Set-valued Var. Anal. (2013) (to appear)
ColomboGMonteiroMDPMarques, sweeping by a continuous prox-regular setJ. Differ. Equ.2003187466210.1016/S0022-0396(02)00021-91029.34052
C Henry (754_CR29) 1973; 41
RT Rockafellar (754_CR54) 1970
754_CR1
754_CR2
754_CR4
P Krejčı (754_CR31) 1991; 2
G Colombo (754_CR19) 2003; 187
M Kunze (754_CR33) 1998; 55
JS Pang (754_CR50) 2008; 113
RT Rockafellar (754_CR53) 1970; 33
JF Edmond (754_CR25) 2005; 104
754_CR41
M Bounkhel (754_CR9) 2005; 6
754_CR43
754_CR42
S Adly (754_CR6) 2013; 20
754_CR45
754_CR44
754_CR47
B Brogliato (754_CR12) 2010; 17
754_CR48
C Castaing (754_CR16) 1996; 53
P Mattila (754_CR35) 1995
B Maury (754_CR36) 2008; 346
JF Edmond (754_CR26) 2006; 226
C Castaing (754_CR15) 1995; 3
754_CR30
754_CR32
754_CR34
JJ Moreau (754_CR40) 1971; 273
M Brokate (754_CR11) 1996
754_CR38
754_CR37
C Castaing (754_CR14) 1993; 1
H Brezis (754_CR10) 1973
H Benabdellah (754_CR7) 2000; 164
N Dinculeanu (754_CR23) 1967
S Adly (754_CR5) 2012; 20
B Cornet (754_CR21) 1983; 96
RA Poliquin (754_CR52) 1990; 14
C Zalinescu (754_CR62) 2002
K Addi (754_CR3) 2007; 1
JJ Moreau (754_CR46) 1999; 177
754_CR60
A Visintin (754_CR61) 1994
754_CR20
754_CR22
T Haddad (754_CR27) 2008; 4
JJ Moreau (754_CR39) 1965; 93
L Thibault (754_CR58) 2003; 193
754_CR8
JJ Moreau (754_CR49) 1987; 74
754_CR51
754_CR56
754_CR55
754_CR13
G Colombo (754_CR18) 1999; 7
T Haddad (754_CR28) 2010; 123
754_CR57
C Castaing (754_CR17) 1977
D Duvaut (754_CR24) 1976
754_CR59
References_xml – reference: Valadier, M.: Quelques problèmes d’entrainement unilatéral en dimension finie, Sem. Anal. Convexe Montpellier (1988), Exposé 8
– reference: Rockafellar, R.T.: Convex integral functionals and duality. In: Zarantonello, E. (ed.) Contributions to Nonlinear Functional Analysis, pp. 215–236. Academic Press, London (1971)
– reference: BrogliatoBThibaultLExistence and uniqueness of solutions for non-autonomous complementarity dynamical systemsJ. Convex Anal.2010173–49619901217.340262731287
– reference: KunzeMMonteiro MarquesMDPPortugaliae Math.On the discretization of degenerate sweeping process1998552192320923.340171629634
– reference: Monteiro Marques, M.D.P.: Perturbations convexes semi-continues supérieurement dans les espaces de Hilbert. Sem. Anal. Convexe Montpellier (1984), Exposé 2
– reference: Adly, S., Cibulka, R., Massias, H.: Variational analysis and generalized equations in electronics. Set-valued Var. Anal. (2013) (to appear)
– reference: AdlySGoelevenDLeBKStability analysis and attractivity results of a DC–DC buck converterSet Valued Var. Anal.20122033135310.1007/s11228-011-0201-01279.340582949631
– reference: MoreauJJProximité et dualité dans un espace hilbertienBull. Soc. Math. France1965932732990136.12101201952
– reference: Moreau, J.J.: Sur les mesures différentielles des fonctions vectorielles à variation bornée. Sem. Anal. Convexe Montpellier (1975), Exposé 17
– reference: Castaing, C.: Equation différentielle multivoque avec contrainte sur l’état dans les espaces de Banach. Sem. Anal. Convexe Montpellier (1978), Exposé 13
– reference: CastaingCMonteiro MarquesMDPBV periodic solutions of an evolution problem associated with continuous moving convex setsSet-Valued Anal.1995338139910.1007/BF010262480845.351421372875
– reference: ColomboGMonteiroMDPMarques, sweeping by a continuous prox-regular setJ. Differ. Equ.2003187466210.1016/S0022-0396(02)00021-91029.34052
– reference: CornetBExistence of slow solutions for a class of differential inclusionsJ. Math. Anal. Appl.19839613014710.1016/0022-247X(83)90032-X0558.34011717499
– reference: HaddadTJouraniAThibaultLReduction of sweeping process to unconstrained differential inclusionPac. J. Optim.200844935121185.340182541259
– reference: MoreauJJValadierMA chain rule involving vector functions of bounded variationJ. Funct. Anal.19877433334510.1016/0022-1236(87)90029-20632.46040904823
– reference: Moreau, J.J.: On unilateral constraints, friction and plasticity. In: Capriz, G., Stampacchia, G. (eds.) New Variational Techniques in Mathematical Physics, pp. 173–322. C.I.M.E. II Ciclo 1973, Edizioni Cremonese, Rome (1974)
– reference: DuvautDLionsJLInequalities in Mechanics and Physics1976BerlinSpringer10.1007/978-3-642-66165-50331.35002
– reference: HaddadTThibaultLMixed semicontinuous perturbations of nonconvex sweeping processesMath. Program. Ser. B.201012322524010.1007/s10107-009-0315-41195.340242577329
– reference: Moreau, J.J.: Rafle par un convexe variable I. Sém. Anal. Convexe Montpellier (1971), Exposé 15
– reference: MoreauJJNumerical aspects of the sweeping processComput. Methods Appl. Mech. Eng.199917732934910.1016/S0045-7825(98)00387-90968.700061710456
– reference: Rockafellar, R.T.: Conjugate Duality and Optimization. Conferences Board of Mathematics Sciences Series, vol. 16. SIAM, Philadelphia (1974)
– reference: CastaingCDuc HaTXValadierMEvolution equations governed by the sweeping processSet-Valued Anal.1993110913910.1007/BF010276880813.340181239400
– reference: ZalinescuCConvex Analysis in General Vector Spaces2002River EdgeWorld Scientific10.1142/97898127770961023.46003
– reference: Correa, R., Jofre, A., Thibault, L.: Subdifferential characterization of convexity. In: Du, D., Qi, L., Womersley, R. (eds.) Recent Advances in Nonsmooth Optimization, pp. 18–23. World Scientific, Singapore (1995)
– reference: Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, Grundlehren der Mathematischen Wissenschaften, vol. 317. Springer, New York (1998)
– reference: Phelps, R.R.: Convex Functions. Monotone Operators and Differentiability. Lecture Notes in Mathematics. Springer, Berlin (1989)
– reference: Acary, V., Bonnefon, O., Brogliato, B.: Nonsmooth Modeling and Simulation for Switched Circuits. Lecture Notes in Electrical Engineering, vol. 69. Springer, Dordrecht (2011). ISBN 978-90-481-9680-7
– reference: BrezisHOperateurs Maximaux Monotones1973AmsterdamNorth Holland0252.47055
– reference: Borwein, J.M., Vanderwerff, J.D.: Convex Functions: Constructions, Characterizations and Counterexamples. Encyclopedia of Mathematics and its Applications, vol. 109, Cambridge University Press, Cambridge (2010)
– reference: PoliquinRASubgradient monotonicity and convex functionsNonlinear Anal.19901438539810.1016/0362-546X(90)90167-F1040008
– reference: Moreau, J.J.: An introduction to unilateral dynamics. In: Frémond, M., Maceri, F. (eds.) Novel Approaches in Civil Engineering. Springer, Berlin (2002)
– reference: MoreauJJSur l’évolution d’un système élastoplastiqueC. R. Acad. Sci. Paris Ser. A–B1971273A118A121284066
– reference: BrokateMSprekelsJHysteresis and Phase Transitions, Applied Mathematical Sciences1996BerlinSpringer10.1007/978-1-4612-4048-8
– reference: Hiriart-Urruty, J.-B., Lemarechal, C.: Convex Analysis and Minimization Algorithms I & II, Grundlehren der Mathematischen Wissenschaften, vol. 305–306, Springer, New York (1993)
– reference: DinculeanuNVector Measures1967OxfordPergamon
– reference: Kunze, M., Monteiro Marques, M.D.P.: An introduction to Moreau’s sweeping process. In: Brogliato, B. (ed.) Impacts in Mechanical Systems. Analysis and Modelling, pp. 1–60. Springer, Berlin (2000)
– reference: RockafellarRTConvex Analysis1970PrincetonPrinceton University Press0193.18401
– reference: Valadier, M.: Rafle et viabilité, Sem. Anal. Convexe Montpellier (1992), Exposé 17
– reference: CastaingCMonteiro MarquesMDPEvolution problems associated with non-convex closed moving sets with bounded variationPortugaliae Math19965373870848.350521384501
– reference: MauryBVenelJA mathematical framework for a crowd motion modelC. R. Math. Acad. Sci. Paris20083461245125010.1016/j.crma.2008.10.0141168.343332473301
– reference: Moreau, J.J.: Fonctionnelles Convexes. Edizioni del Dipartimento di Ingegneria Civile dell’Università di Roma (2003)
– reference: AddiK.BrogliatoB.GoelevenD.A qualitative mathematical analysis of a class of linear variational inequalities via semi-complementarity problemsAppl. Electron. Math. Program.201112613167
– reference: EdmondJFThibaultLRelaxation of an optimal control problem involving a perturbed sweeping processMath. Program.200510434737310.1007/s10107-005-0619-y1124.490102179241
– reference: AddiKAdlySBrogliatoBGoelevenDA method using the approach of Moreau and Panagiotopoulos for the mathematical formulation of non-regular circuits in electronicsNonlinear Anal. Hybrid Syst.200711304310.1016/j.nahs.2006.04.0011172.946502340260
– reference: BenabdellahHExistence of solutions to the nonconvex sweeping processJ. Differ. Equ.200016428529510.1006/jdeq.1999.37561765576
– reference: BounkhelMThibaultLNonconvex sweeping process and prox-regularity in Hilbert space J. Nonlinear Convex Anal.200563593741086.490162159846
– reference: HenryCAn existence theorem for a class of differential equations with multivalued right-hand sideJ. Math. Anal. Appl.19734117918610.1016/0022-247X(73)90192-30262.49019335906
– reference: AdlySOutrataJQualitative stability of a class of non-monotone variational inclusionsJ .Convex Anal. Appl. Electron.20132013086440
– reference: KrejčıPVector hysteresis modelsEur. J. Appl. Math.1991228129210.1017/S09567925000005410754.73015
– reference: Colombo, G., Thibault, L.: Prox-regular sets and applications. In: Gao, D.Y., Motreanu, D. (eds.) Handbook of Nonconvex Analysis. International Press, Vienna (2010)
– reference: ThibaultLSweeping process with regular and nonregular setsJ. Differ. Equ.200319312610.1016/S0022-0396(03)00129-31037.340071994056
– reference: MattilaPGeometry of Sets and Measures in Euclidean Spaces1995LondonCambridge University Press10.1017/CBO97805116238130819.28004
– reference: MoreauJ.J.Evolution problem associated with a moving convex set in a Hilbert spaceJ. Differ. Equ.19772347374
– reference: EdmondJFThibaultLBV solutions of nonconvex sweeping process differential inclusions with perturbationJ. Differ. Equ.200622613517910.1016/j.jde.2005.12.0051110.340382232433
– reference: KunzeM.Monteiro MarquesM.D.P.On parabolic quasi-variational inequalities and state-dependent sweeping processesTopol. Methods Nonlinear Anal.199812179191
– reference: VisintinADifferential Models of Hysteresis. Applied Mathematical Sciences1994BerlinSpringer10.1007/978-3-662-11557-2
– reference: Monteiro Marques, M.D.P.: Differential Inclusions in Nonsmooth Mechanical Problems, Shocks and Dry Friction. Birkhauser, Basel (1993)
– reference: CastaingCValadierMConvex Analysis and Measurable Multifunctions1977BerlinSpringer10.1007/BFb00876850346.46038
– reference: ColomboGGoncharovVVThe sweeping process without convexitySet-Valued Anal.1999735737410.1023/A:10087745295560957.340601756914
– reference: RockafellarRTOn the maximal monotonicity of subdifferential mappingsPac. J. Math.19703320921610.2140/pjm.1970.33.2090199.47101262827
– reference: PangJSStewartDEDifferential variational inequalitiesMath. Progam. Ser. A200811334542410.1007/s10107-006-0052-x1139.580112375486
– reference: Moreau, J.J.: Rafle par un convexe variable II, Sém. Anal. Convexe Montpellier (1972), Exposé 3
– ident: 754_CR13
– ident: 754_CR42
– ident: 754_CR30
  doi: 10.1007/978-3-662-02796-7
– volume: 17
  start-page: 961
  issue: 3–4
  year: 2010
  ident: 754_CR12
  publication-title: J. Convex Anal.
– volume: 123
  start-page: 225
  year: 2010
  ident: 754_CR28
  publication-title: Math. Program. Ser. B.
  doi: 10.1007/s10107-009-0315-4
– volume: 20
  start-page: 1
  year: 2013
  ident: 754_CR6
  publication-title: J .Convex Anal. Appl. Electron.
– volume: 226
  start-page: 135
  year: 2006
  ident: 754_CR26
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2005.12.005
– volume: 74
  start-page: 333
  year: 1987
  ident: 754_CR49
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(87)90029-2
– volume: 113
  start-page: 345
  year: 2008
  ident: 754_CR50
  publication-title: Math. Progam. Ser. A
  doi: 10.1007/s10107-006-0052-x
– volume-title: Geometry of Sets and Measures in Euclidean Spaces
  year: 1995
  ident: 754_CR35
  doi: 10.1017/CBO9780511623813
– ident: 754_CR1
  doi: 10.1007/978-90-481-9681-4
– volume: 20
  start-page: 331
  year: 2012
  ident: 754_CR5
  publication-title: Set Valued Var. Anal.
  doi: 10.1007/s11228-011-0201-0
– volume: 1
  start-page: 109
  year: 1993
  ident: 754_CR14
  publication-title: Set-Valued Anal.
  doi: 10.1007/BF01027688
– ident: 754_CR59
– volume-title: Convex Analysis and Measurable Multifunctions
  year: 1977
  ident: 754_CR17
  doi: 10.1007/BFb0087685
– volume: 1
  start-page: 30
  issue: 1
  year: 2007
  ident: 754_CR3
  publication-title: Nonlinear Anal. Hybrid Syst.
  doi: 10.1016/j.nahs.2006.04.001
– ident: 754_CR57
  doi: 10.1007/978-3-642-02431-3
– volume: 164
  start-page: 285
  year: 2000
  ident: 754_CR7
  publication-title: J. Differ. Equ.
  doi: 10.1006/jdeq.1999.3756
– volume-title: Inequalities in Mechanics and Physics
  year: 1976
  ident: 754_CR24
  doi: 10.1007/978-3-642-66165-5
– volume: 187
  start-page: 46
  year: 2003
  ident: 754_CR19
  publication-title: J. Differ. Equ.
  doi: 10.1016/S0022-0396(02)00021-9
– volume: 4
  start-page: 493
  year: 2008
  ident: 754_CR27
  publication-title: Pac. J. Optim.
– ident: 754_CR22
  doi: 10.1142/9789812812827_0002
– ident: 754_CR45
  doi: 10.1016/0022-0396(77)90085-7
– volume: 177
  start-page: 329
  year: 1999
  ident: 754_CR46
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(98)00387-9
– ident: 754_CR43
– volume-title: Operateurs Maximaux Monotones
  year: 1973
  ident: 754_CR10
– ident: 754_CR47
– ident: 754_CR60
– ident: 754_CR56
  doi: 10.1137/1.9781611970524
– volume: 55
  start-page: 219
  year: 1998
  ident: 754_CR33
  publication-title: On the discretization of degenerate sweeping process
– volume: 6
  start-page: 359
  year: 2005
  ident: 754_CR9
  publication-title: J. Nonlinear Convex Anal.
– ident: 754_CR34
  doi: 10.1007/3-540-45501-9_1
– volume: 3
  start-page: 381
  year: 1995
  ident: 754_CR15
  publication-title: Set-Valued Anal.
  doi: 10.1007/BF01026248
– volume: 2
  start-page: 281
  year: 1991
  ident: 754_CR31
  publication-title: Eur. J. Appl. Math.
  doi: 10.1017/S0956792500000541
– volume-title: Vector Measures
  year: 1967
  ident: 754_CR23
  doi: 10.1016/B978-1-4831-9762-3.50004-4
– volume: 53
  start-page: 73
  year: 1996
  ident: 754_CR16
  publication-title: Portugaliae Math
– ident: 754_CR37
– ident: 754_CR2
  doi: 10.1007/s10107-009-0268-7
– volume-title: Hysteresis and Phase Transitions, Applied Mathematical Sciences
  year: 1996
  ident: 754_CR11
  doi: 10.1007/978-1-4612-4048-8
– volume: 93
  start-page: 273
  year: 1965
  ident: 754_CR39
  publication-title: Bull. Soc. Math. France
  doi: 10.24033/bsmf.1625
– ident: 754_CR48
– volume-title: Differential Models of Hysteresis. Applied Mathematical Sciences
  year: 1994
  ident: 754_CR61
  doi: 10.1007/978-3-662-11557-2
– ident: 754_CR44
– ident: 754_CR4
  doi: 10.1007/s11228-013-0236-5
– ident: 754_CR8
  doi: 10.1017/CBO9781139087322
– ident: 754_CR32
  doi: 10.12775/TMNA.1998.036
– volume: 273
  start-page: A118
  year: 1971
  ident: 754_CR40
  publication-title: C. R. Acad. Sci. Paris Ser. A–B
– ident: 754_CR38
  doi: 10.1007/978-3-0348-7614-8
– ident: 754_CR55
  doi: 10.1016/B978-0-12-775850-3.50012-1
– ident: 754_CR41
– volume: 14
  start-page: 385
  year: 1990
  ident: 754_CR52
  publication-title: Nonlinear Anal.
  doi: 10.1016/0362-546X(90)90167-F
– ident: 754_CR20
– volume: 193
  start-page: 1
  year: 2003
  ident: 754_CR58
  publication-title: J. Differ. Equ.
  doi: 10.1016/S0022-0396(03)00129-3
– volume: 96
  start-page: 130
  year: 1983
  ident: 754_CR21
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(83)90032-X
– volume-title: Convex Analysis
  year: 1970
  ident: 754_CR54
  doi: 10.1515/9781400873173
– ident: 754_CR51
  doi: 10.1007/978-3-662-21569-2
– volume-title: Convex Analysis in General Vector Spaces
  year: 2002
  ident: 754_CR62
  doi: 10.1142/5021
– volume: 7
  start-page: 357
  year: 1999
  ident: 754_CR18
  publication-title: Set-Valued Anal.
  doi: 10.1023/A:1008774529556
– volume: 33
  start-page: 209
  year: 1970
  ident: 754_CR53
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1970.33.209
– volume: 346
  start-page: 1245
  year: 2008
  ident: 754_CR36
  publication-title: C. R. Math. Acad. Sci. Paris
  doi: 10.1016/j.crma.2008.10.014
– volume: 104
  start-page: 347
  year: 2005
  ident: 754_CR25
  publication-title: Math. Program.
  doi: 10.1007/s10107-005-0619-y
– volume: 41
  start-page: 179
  year: 1973
  ident: 754_CR29
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(73)90192-3
SSID ssj0001388
Score 2.459282
Snippet In this paper, we analyze and discuss the well-posedness of two new variants of the so-called sweeping process, introduced by Moreau in the early 70s (Moreau...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Issue Title: Modern Convex Analysis In this paper, we analyze and discuss the...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).In this paper, we analyze and discuss the well-posedness of two new variants of the...
In this paper, we analyze and discuss the well-posedness of two new variants of the so-called sweeping process, introduced by Moreau in the early 70s with...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5
SubjectTerms Analysis
Applied mathematics
Approximation
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Computer engineering
Computer science
Computer simulation
Convex analysis
Differential equations
Evolution
Full Length Paper
Inclusions
Inequalities
Integrals
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical models
Mathematical programming
Mathematics
Mathematics and Statistics
Mathematics of Computing
Mechanics
Numerical Analysis
Operators
Optimization and Control
Ordinary differential equations
Studies
Sweeping
Theoretical
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0OqDAxzaUkBsWyqDOIEs1onXiU9VVVFVAioOIPUW2c5YVFqyy2Z34fOZSex0QaIXLpGSTGJL8x7Pg7HX6FQUDrQSdY4XNcmNcKilBJgatX1dSKf7YRPF9XV5c2M-x4BbG9Mqk0zsBHU98xQjfyd1hvRilMrO5j8ETY2i09U4QmOb7cosk0TnHwoxSGKZl2Ua2Up2QjrV7EvnZJd0qQQqTdzlH3pp-xtlRW6YnH-dknbK53L_f7d9wPai2cnPezp5zLagOWT7aaQDjxx-yB5t9CfEu09DU9f2CVtcUIb6L97-BKAqKz7viwz4bcMRjIeU58VngX_vY488DWBBQTJFQD9dUXiu5bapOawj3fM1euwxKolA0Fd6og__lH29fP_l4krEkQ3CK6OXQlpdoMtSBu8mNZhgnFJB12PjrcoDWht58FZaVRQ6AIRSG-3GAUKwKrg6c_kzttPMGnjOuHTg1MSXygZQalLgn2zmwOpgchQycsTGCWGVj_3MaazGtLrrxEw4rhDHFeG4UiP2Zvhk3jfzuA_4FVLBAEdtuK_OP1b0jHoU5VKaNW7iJKG9iszfVnc4H7GXw2tkWzqLsQ3MVgSDdiy1W8R13ibi2vjFv3Z1dP-Cx-xhRjTd5ducsJ3lYgUv2AO_Xt62i9OOO34DNTYV1Q
  priority: 102
  providerName: ProQuest
Title Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities
URI https://link.springer.com/article/10.1007/s10107-014-0754-4
https://www.proquest.com/docview/1620539442
https://www.proquest.com/docview/1642303444
https://hal.science/hal-01313119
Volume 148
WOSCitedRecordID wos000344809700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: 7WY
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global (OCUL)
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M0C
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: P5Z
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: K7-
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M7S
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: BENPR
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: M2P
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw8EQ3HuBhfE50jMognkCR6sSx48dRbZoEq6qNj8FLZCe2mFTSqWkLP5-7JA4FARK8nOTk4lj2-T7s-wB4jkaFsk6KqEwQiDTRkUUpFTldorQvFbeyLTahptPs8lLPujjuOni7hyvJhlNvBbvxxk1SRCjmsN8B7KK0y2g3nl-879kvT7Is1Gkl5SBcZf6ui5-E0eAzuUJu6Zm_XI02Eufkzn-N9S7sdQomO2op4h7ccNV9uL2VdhBbZ32u1voBLCfkeP6N1V-do-Apdt3GDrCriiEa88F9iy08-9IeKbJQVwX5wxwRi_maTt1qZqqSuU1HzmyDhnh32IhIrg3gRNP8Ibw7OX47OY26SgxRIbRcRdxIhZZI5gublk57bYXwshzrwojEoxKR-MJwI5SS3jmfSS3t2DvvjfC2jG2yDzvVonKPgHHrrEiLTBjvhEgV9mRi64z0OkHewYcwDkuSF12acqqWMc9_JFimyc1xcnOa3FwM4UX_yXWbo-NvyM9wnXs8yq59evQmp2eUeijhXG9wEIeBDPJuT9c5lzFyLC1EPISn_WvcjXTFYiq3WBMOqqeURRH_8zKQxlYXfxrVwT9hP4ZbMdFW41VzCDur5do9gZvFZnVVL0cwUB8-jmD31fF0do6t1ypCeDaeEIxnBNUFwln6adRsne8U-Axt
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH_aBhJwYDBAlA0wCC6gaHXiOvEBoakwdVpXcRjSbsFObK1SSUvTdvBP8TfuvSTOChK77cAlUpIX23J-78P2-wB4g4uK2FgpgjzCi-hFKjCopQKrctT2ecyNrItNxKNRcnamvmzAbx8LQ26VXiZWgjqfZrRHvs9liHhRQoQfZz8CqhpFp6u-hEYNi2P76wKXbOWHo0_4f9-G4eHn0_4gaKoKBJlQchFwLWO0qhOXmV5ulVNGCCfzrsq0iBwqxMhlmmsRx9JZ6xKppOk665wWzuShibDdTbglBLIDuQp2-63k51GS-BKxZJf4U9Q6VI9XTp4iQCWNs_KHHtw8Jy_MNRP3r1PZStkdbv9v0_QA7jdmNTuo-eAhbNhiB7Z9yQrWSLAduLeWfxHvTtqkteUjmPfJA_8nKy-spSgyNquDKNi4YEjGnPdjY1PHvtd7q8wXmEFBOUHCbLKk7ceS6SJndtXwNVvp-bjZdUUiW0eyjm35GL7eyKw8ga1iWtinwLixRvSyRGhnhejF2JIOjdXSqQiFKO9A1wMkzZp87VQ2ZJJeZZomTKWIqZQwlYoOvGs_mdXJSq4jfo2oa-kozfjgYJjSM8rBFHGuVjiIPQ-ztBFuZXqFsQ68al-jWKKzJl3Y6ZJo0E6ndJLYz3sP5rUm_jWqZ9d3-BLuDE5PhunwaHS8C3dD4qfKt2gPthbzpX0Ot7PVYlzOX1ScyeDbTWP8EmnndtE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xgRB74HNohQEG8QSKVidXJ36cBtUQo5rEh_Zm2YktJpW0atrCn89dE4eCAAnxEinJxbacs-_Od_c7gOdkVOTOK0yqjC44ynTiSEolXlck7atcOtUWm8gnk-LiQp93dU6bGO0eXZJtTgOjNNXLo3kVjrYS3-QmZBITEnnUxw5cRa4ZxOb6-0_9Viyzoog1W1lRiG7N3zXxk2Da-cxhkVs65y9u0o30Gd_673Hfhpud4imOW065A1d8fRf2tuAI6e5dj-Ha3IPFCQekfxPNV-85qUrM25wCcVkLIhMhhnWJWRBf2qNGEeut0L4xJcJyuuLTuEbYuhJ-3bG5WJOB3h1CEpFvEzvJZN-Hj-PXH05Ok65CQ1KiVstEWpWThVKE0o0qr4N2iEFVQ11azAIpF1korbSY5yp4HwqllRsGH4LF4KrUZfdht57V_gCEdN7hqCzQBo84yqklmzpvVdAZ7SlyAMP4e0zZwZdzFY2p-QG8zJNraHINT67BAbzoP5m32B1_I35G_7ynY9Tt0-Mzw88YkiiTUq9pEIeRJUy31hsjVUo7mUZMB_C0f02rlF0vtvazFdOQ2sroitTPy8gmW038aVQP_on6CVw_fzU2Z28mbx_CjZTZbBN4cwi7y8XKP4Jr5Xp52Sweb1bJdynUEPo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convex+sweeping+process+in+the+framework+of+measure+differential+inclusions+and+evolution+variational+inequalities&rft.jtitle=Mathematical+programming&rft.au=Adly%2C+Samir&rft.au=Haddad%2C+Tahar&rft.au=Thibault%2C+Lionel&rft.date=2014-12-01&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=148&rft.issue=1-2&rft.spage=5&rft.epage=47&rft_id=info:doi/10.1007%2Fs10107-014-0754-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10107_014_0754_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon