Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities
In this paper, we analyze and discuss the well-posedness of two new variants of the so-called sweeping process, introduced by Moreau in the early 70s (Moreau in Sém Anal Convexe Montpellier, 1971 ) with motivation in plasticity theory. The first new variant is concerned with the perturbation of the...
Uložené v:
| Vydané v: | Mathematical programming Ročník 148; číslo 1-2; s. 5 - 47 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2014
Springer Nature B.V Springer Verlag |
| Predmet: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, we analyze and discuss the well-posedness of two new variants of the so-called sweeping process, introduced by Moreau in the early 70s (Moreau in Sém Anal Convexe Montpellier,
1971
) with motivation in plasticity theory. The first new variant is concerned with the perturbation of the normal cone to the moving convex subset
C
(
t
)
, supposed to have a bounded variation, by a Lipschitz mapping. Under some assumptions on the data, we show that the perturbed differential measure inclusion has one and only one right continuous solution with bounded variation. The second variant, for which a large analysis is made, concerns a first order sweeping process with velocity in the moving set
C
(
t
)
. This class of problems subsumes as a particular case, the evolution variational inequalities [widely used in applied mathematics and unilateral mechanics (Duvaut and Lions in Inequalities in mechanics and physics. Springer, Berlin,
1976
]. Assuming that the moving subset
C
(
t
)
has a continuous variation for every
t
∈
[
0
,
T
]
with
C
(
0
)
bounded, we show that the problem has at least a Lipschitz continuous solution. The well-posedness of this class of sweeping process is obtained under the coercivity assumption of the involved operator. We also discuss some applications of the sweeping process to the study of vector hysteresis operators in the elastoplastic model (Krejčı in Eur J Appl Math 2:281–292,
1991
), to the planning procedure in mathematical economy (Henry in J Math Anal Appl 41:179–186,
1973
and Cornet in J. Math. Anal. Appl. 96:130–147,
1983
), and to nonregular electrical circuits containing nonsmooth electronic devices like diodes (Acary et al. Nonsmooth modeling and simulation for switched circuits. Lecture notes in electrical engineering. Springer, New York
2011
). The theoretical results are supported by some numerical simulations to prove the efficiency of the algorithm used in the existence proof. Our methodology is based only on tools from convex analysis. Like other papers in this collection, we show in this presentation how elegant modern convex analysis was influenced by Moreau’s seminal work. |
|---|---|
| AbstractList | (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).In this paper, we analyze and discuss the well-posedness of two new variants of the so-called sweeping process, introduced by Moreau in the early 70s (Moreau in Sem Anal Convexe Montpellier, 1971) with motivation in plasticity theory. The first new variant is concerned with the perturbation of the normal cone to the moving convex subset ..., supposed to have a bounded variation, by a Lipschitz mapping. Under some assumptions on the data, we show that the perturbed differential measure inclusion has one and only one right continuous solution with bounded variation. The second variant, for which a large analysis is made, concerns a first order sweeping process with velocity in the moving set ... This class of problems subsumes as a particular case, the evolution variational inequalities [widely used in applied mathematics and unilateral mechanics (Duvaut and Lions in Inequalities in mechanics and physics. Springer, Berlin, 1976]. Assuming that the moving subset ... has a continuous variation for every ... with ... bounded, we show that the problem has at least a Lipschitz continuous solution. The well-posedness of this class of sweeping process is obtained under the coercivity assumption of the involved operator. We also discuss some applications of the sweeping process to the study of vector hysteresis operators in the elastoplastic model (KrejAei in Eur J Appl Math 2:281-292, 1991), to the planning procedure in mathematical economy (Henry in J Math Anal Appl 41:179-186, 1973 and Cornet in J. Math. Anal. Appl. 96:130-147, 1983), and to nonregular electrical circuits containing nonsmooth electronic devices like diodes (Acary et al. Nonsmooth modeling and simulation for switched circuits. Lecture notes in electrical engineering. Springer, New York 2011). The theoretical results are supported by some numerical simulations to prove the efficiency of the algorithm used in the existence proof. Our methodology is based only on tools from convex analysis. Like other papers in this collection, we show in this presentation how elegant modern convex analysis was influenced by Moreau's seminal work. (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Issue Title: Modern Convex Analysis In this paper, we analyze and discuss the well-posedness of two new variants of the so-called sweeping process, introduced by Moreau in the early 70s (Moreau in Sém Anal Convexe Montpellier, 1971 ) with motivation in plasticity theory. The first new variant is concerned with the perturbation of the normal cone to the moving convex subset ..., supposed to have a bounded variation, by a Lipschitz mapping. Under some assumptions on the data, we show that the perturbed differential measure inclusion has one and only one right continuous solution with bounded variation. The second variant, for which a large analysis is made, concerns a first order sweeping process with velocity in the moving set ... This class of problems subsumes as a particular case, the evolution variational inequalities [widely used in applied mathematics and unilateral mechanics (Duvaut and Lions in Inequalities in mechanics and physics. Springer, Berlin, 1976 ]. Assuming that the moving subset ... has a continuous variation for every ... with ... bounded, we show that the problem has at least a Lipschitz continuous solution. The well-posedness of this class of sweeping process is obtained under the coercivity assumption of the involved operator. We also discuss some applications of the sweeping process to the study of vector hysteresis operators in the elastoplastic model (Krejci in Eur J Appl Math 2:281-292, 1991 ), to the planning procedure in mathematical economy (Henry in J Math Anal Appl 41:179-186, 1973 and Cornet in J. Math. Anal. Appl. 96:130-147, 1983 ), and to nonregular electrical circuits containing nonsmooth electronic devices like diodes (Acary et al. Nonsmooth modeling and simulation for switched circuits. Lecture notes in electrical engineering. Springer, New York 2011 ). The theoretical results are supported by some numerical simulations to prove the efficiency of the algorithm used in the existence proof. Our methodology is based only on tools from convex analysis. Like other papers in this collection, we show in this presentation how elegant modern convex analysis was influenced by Moreau's seminal work.[PUBLICATION ABSTRACT] In this paper, we analyze and discuss the well-posedness of two new variants of the so-called sweeping process, introduced by Moreau in the early 70s with motivation in plasticity theory. The first new variant is concerned with the perturbation of the normal cone to the moving convex subset $C(t)$, supposed to have a bounded variation, by a Lipschitz mapping. Under some assumptions on the data, we show that the perturbed differential measure inclusion has one and only one right continuous solution with bounded variation. The second variant, for which a large analysis is made, concerns a first order sweeping process with velocity in the moving set $C(t)$. This class of problems subsumes as a particular case, the evolution variational inequalities. Assuming that the moving subset $C(t)$ has a continuous variation for every $t \in [0, T ]$ with $C (0)$ bounded, we show that the problem has at least a Lipschitz continuous solution. The well-posedness of this class of sweeping process is obtained under the coercivity assumption of the involved operator. We also discuss some applications of the sweeping process to the study of vector hysteresis operators in the elastoplastic model, to the planning procedure in mathematical economy, and to nonregular electrical circuits containing nonsmooth electronic devices like diodes. The theoretical results are supported by some numerical simulations to prove the efficiency of the algorithm used in the existence proof. Our methodology is based only on tools from convex analysis. Like other papers in this collection, we show in this presentation how elegant modern convex analysis was influenced by Moreau’s seminal work. In this paper, we analyze and discuss the well-posedness of two new variants of the so-called sweeping process, introduced by Moreau in the early 70s (Moreau in Sém Anal Convexe Montpellier, 1971 ) with motivation in plasticity theory. The first new variant is concerned with the perturbation of the normal cone to the moving convex subset C ( t ) , supposed to have a bounded variation, by a Lipschitz mapping. Under some assumptions on the data, we show that the perturbed differential measure inclusion has one and only one right continuous solution with bounded variation. The second variant, for which a large analysis is made, concerns a first order sweeping process with velocity in the moving set C ( t ) . This class of problems subsumes as a particular case, the evolution variational inequalities [widely used in applied mathematics and unilateral mechanics (Duvaut and Lions in Inequalities in mechanics and physics. Springer, Berlin, 1976 ]. Assuming that the moving subset C ( t ) has a continuous variation for every t ∈ [ 0 , T ] with C ( 0 ) bounded, we show that the problem has at least a Lipschitz continuous solution. The well-posedness of this class of sweeping process is obtained under the coercivity assumption of the involved operator. We also discuss some applications of the sweeping process to the study of vector hysteresis operators in the elastoplastic model (Krejčı in Eur J Appl Math 2:281–292, 1991 ), to the planning procedure in mathematical economy (Henry in J Math Anal Appl 41:179–186, 1973 and Cornet in J. Math. Anal. Appl. 96:130–147, 1983 ), and to nonregular electrical circuits containing nonsmooth electronic devices like diodes (Acary et al. Nonsmooth modeling and simulation for switched circuits. Lecture notes in electrical engineering. Springer, New York 2011 ). The theoretical results are supported by some numerical simulations to prove the efficiency of the algorithm used in the existence proof. Our methodology is based only on tools from convex analysis. Like other papers in this collection, we show in this presentation how elegant modern convex analysis was influenced by Moreau’s seminal work. |
| Author | Haddad, Tahar Thibault, Lionel Adly, Samir |
| Author_xml | – sequence: 1 givenname: Samir surname: Adly fullname: Adly, Samir email: samir.adly@unilim.fr organization: Laboratoire XLIM, Université de Limoges – sequence: 2 givenname: Tahar surname: Haddad fullname: Haddad, Tahar organization: Laboratoire de Mathmatiques Pures et Appliques, Université de Jijel – sequence: 3 givenname: Lionel surname: Thibault fullname: Thibault, Lionel organization: Département de Mathématiques, Université Montpellier II |
| BackLink | https://hal.science/hal-01313119$$DView record in HAL |
| BookMark | eNp9kU9v1DAQxS1UJLYLH4CbJS5wCIyTiZMcqxXQSitxgbPlOOPWJWtv7WRbvj1OUyFUCeSD_-j3xm_mnbMzHzwx9lbARwHQfEoCBDQFCCygqbHAF2wjsJIFSpRnbANQ1kUtBbxi5yndAoCo2nbD4i74Ez3wdE90dP6aH2MwlBJ3nk83xG3UB7oP8ScPlh9IpzkSH5y1FMlPTo8ZNOOcXPCJaz9wOoVxnvKVn3R0ejk9QnQ369FNjtJr9tLqMdGbp33Lfnz5_H13Wey_fb3aXewLg52cCqFlI0TbWtPXA3W26xGtHKAzGivbllBZo4XGppGWyLaykz1Yslaj7Yeyr7bsw1r3Ro_qGN1Bx18qaKcuL_ZqecsjyEt0J5HZ9yub27-bKU3q4JKhcdSewpyUkFhWUCFiRt89Q2_DHHOTC1VCXXWY2S0TK2ViSCmS_eNAgFoSU2ti2QSqJTG1VG6eaYybHic4Re3G_yrLVZnyL_6a4l-e_in6DUWVrno |
| CODEN | MHPGA4 |
| CitedBy_id | crossref_primary_10_1007_s10957_018_1384_4 crossref_primary_10_1007_s11590_017_1149_2 crossref_primary_10_1007_s40590_023_00545_9 crossref_primary_10_1137_16M1083657 crossref_primary_10_1007_s11228_017_0432_9 crossref_primary_10_1080_00036811_2019_1702166 crossref_primary_10_1137_18M1207120 crossref_primary_10_1134_S0037446625020211 crossref_primary_10_1007_s10957_018_1423_1 crossref_primary_10_1007_s00245_024_10139_0 crossref_primary_10_1137_21M1397635 crossref_primary_10_1017_S0956792518000256 crossref_primary_10_1137_19M1248613 crossref_primary_10_3390_math12060896 crossref_primary_10_1007_s10957_016_0905_2 crossref_primary_10_1007_s10107_021_01666_7 crossref_primary_10_1051_cocv_2025054 crossref_primary_10_1134_S0037446621040170 crossref_primary_10_1080_00036811_2025_2473499 crossref_primary_10_1007_s10231_018_0726_z crossref_primary_10_1007_s10957_025_02610_x crossref_primary_10_1007_s11784_017_0461_x crossref_primary_10_1016_j_nahs_2019_100832 crossref_primary_10_1007_s11228_021_00611_2 crossref_primary_10_1007_s11071_024_10130_y crossref_primary_10_1080_02331934_2019_1686504 crossref_primary_10_1007_s10957_021_01991_z crossref_primary_10_1016_j_jde_2015_09_006 crossref_primary_10_3390_fractalfract8040194 crossref_primary_10_1007_s00028_023_00892_0 crossref_primary_10_1080_02331934_2023_2199032 crossref_primary_10_1007_s00245_021_09780_w crossref_primary_10_1007_s00245_023_09995_z crossref_primary_10_1007_s10957_018_1427_x crossref_primary_10_1007_s11228_015_0323_x crossref_primary_10_1007_s11253_021_01966_3 crossref_primary_10_1137_23M1622118 crossref_primary_10_1016_j_jde_2018_07_066 crossref_primary_10_1016_j_cnsns_2025_109288 crossref_primary_10_1137_18M1201561 crossref_primary_10_1016_j_jde_2020_10_017 crossref_primary_10_1007_s00245_024_10169_8 crossref_primary_10_1080_00036811_2022_2124974 crossref_primary_10_1007_s10473_025_0412_3 crossref_primary_10_1080_02331934_2024_2366832 crossref_primary_10_1007_s00245_024_10108_7 crossref_primary_10_1137_17M1120658 crossref_primary_10_1007_s11228_020_00533_5 crossref_primary_10_3390_math10030317 crossref_primary_10_3390_math8091395 crossref_primary_10_1007_s10957_022_02009_y crossref_primary_10_1137_18M1234795 crossref_primary_10_1080_02331934_2024_2371037 crossref_primary_10_1007_s11590_023_02088_4 crossref_primary_10_1080_02331934_2018_1514039 crossref_primary_10_1007_s00033_019_1084_4 crossref_primary_10_1007_s10957_022_02004_3 crossref_primary_10_1007_s10957_024_02485_4 crossref_primary_10_1016_j_cnsns_2023_107361 crossref_primary_10_1080_00036811_2022_2040994 crossref_primary_10_1080_02331934_2017_1337765 crossref_primary_10_1137_20M1371063 crossref_primary_10_1016_j_jde_2018_10_024 crossref_primary_10_1002_zamm_202400012 |
| Cites_doi | 10.1007/978-3-662-02796-7 10.1007/s10107-009-0315-4 10.1016/j.jde.2005.12.005 10.1016/0022-1236(87)90029-2 10.1007/s10107-006-0052-x 10.1017/CBO9780511623813 10.1007/978-90-481-9681-4 10.1007/s11228-011-0201-0 10.1007/BF01027688 10.1007/BFb0087685 10.1016/j.nahs.2006.04.001 10.1007/978-3-642-02431-3 10.1006/jdeq.1999.3756 10.1007/978-3-642-66165-5 10.1016/S0022-0396(02)00021-9 10.1142/9789812812827_0002 10.1016/0022-0396(77)90085-7 10.1016/S0045-7825(98)00387-9 10.1137/1.9781611970524 10.1007/3-540-45501-9_1 10.1007/BF01026248 10.1017/S0956792500000541 10.1016/B978-1-4831-9762-3.50004-4 10.1007/s10107-009-0268-7 10.1007/978-1-4612-4048-8 10.24033/bsmf.1625 10.1007/978-3-662-11557-2 10.1007/s11228-013-0236-5 10.1017/CBO9781139087322 10.12775/TMNA.1998.036 10.1007/978-3-0348-7614-8 10.1016/B978-0-12-775850-3.50012-1 10.1016/0362-546X(90)90167-F 10.1016/S0022-0396(03)00129-3 10.1016/0022-247X(83)90032-X 10.1515/9781400873173 10.1007/978-3-662-21569-2 10.1142/5021 10.1023/A:1008774529556 10.2140/pjm.1970.33.209 10.1016/j.crma.2008.10.014 10.1007/s10107-005-0619-y 10.1016/0022-247X(73)90192-3 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014 Attribution |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014 – notice: Attribution |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L.0 L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 1XC VOOES |
| DOI | 10.1007/s10107-014-0754-4 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest ABI/INFORM Global Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Computer and Information Systems Abstracts ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Computer Science |
| EISSN | 1436-4646 |
| EndPage | 47 |
| ExternalDocumentID | oai:HAL:hal-01313119v1 3483187131 10_1007_s10107_014_0754_4 |
| Genre | Feature |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L.0 L7M L~C L~D PKEHL PQEST PQUKI PRINS PUEGO Q9U 1XC VOOES |
| ID | FETCH-LOGICAL-c496t-1a671188fcb5de9f9b44f6d09ca43f8203fca1a4776feef8696b0feffa4fbd2b3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 90 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000344809700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Tue Oct 14 20:46:01 EDT 2025 Thu Sep 04 18:17:23 EDT 2025 Thu Sep 25 00:38:45 EDT 2025 Sat Nov 29 03:33:58 EST 2025 Tue Nov 18 22:05:39 EST 2025 Fri Feb 21 02:32:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | Normal cones 58E35 Convex integral functional 49J53 Evolution variational inequality Differential inclusion Moreau’s sweeping process 34G25 |
| Language | English |
| License | http://www.springer.com/tdm Attribution: http://creativecommons.org/licenses/by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c496t-1a671188fcb5de9f9b44f6d09ca43f8203fca1a4776feef8696b0feffa4fbd2b3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-4375-0106 |
| OpenAccessLink | https://hal.science/hal-01313119 |
| PQID | 1620539442 |
| PQPubID | 25307 |
| PageCount | 43 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01313119v1 proquest_miscellaneous_1642303444 proquest_journals_1620539442 crossref_primary_10_1007_s10107_014_0754_4 crossref_citationtrail_10_1007_s10107_014_0754_4 springer_journals_10_1007_s10107_014_0754_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-12-01 |
| PublicationDateYYYYMMDD | 2014-12-01 |
| PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2014 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Verlag |
| References | KrejčıPVector hysteresis modelsEur. J. Appl. Math.1991228129210.1017/S09567925000005410754.73015 Castaing, C.: Equation différentielle multivoque avec contrainte sur l’état dans les espaces de Banach. Sem. Anal. Convexe Montpellier (1978), Exposé 13 Monteiro Marques, M.D.P.: Perturbations convexes semi-continues supérieurement dans les espaces de Hilbert. Sem. Anal. Convexe Montpellier (1984), Exposé 2 Borwein, J.M., Vanderwerff, J.D.: Convex Functions: Constructions, Characterizations and Counterexamples. Encyclopedia of Mathematics and its Applications, vol. 109, Cambridge University Press, Cambridge (2010) PoliquinRASubgradient monotonicity and convex functionsNonlinear Anal.19901438539810.1016/0362-546X(90)90167-F1040008 BounkhelMThibaultLNonconvex sweeping process and prox-regularity in Hilbert space J. Nonlinear Convex Anal.200563593741086.490162159846 RockafellarRTConvex Analysis1970PrincetonPrinceton University Press0193.18401 Moreau, J.J.: On unilateral constraints, friction and plasticity. In: Capriz, G., Stampacchia, G. (eds.) New Variational Techniques in Mathematical Physics, pp. 173–322. C.I.M.E. II Ciclo 1973, Edizioni Cremonese, Rome (1974) MoreauJJNumerical aspects of the sweeping processComput. Methods Appl. Mech. Eng.199917732934910.1016/S0045-7825(98)00387-90968.700061710456 ZalinescuCConvex Analysis in General Vector Spaces2002River EdgeWorld Scientific10.1142/97898127770961023.46003 Moreau, J.J.: Rafle par un convexe variable II, Sém. Anal. Convexe Montpellier (1972), Exposé 3 RockafellarRTOn the maximal monotonicity of subdifferential mappingsPac. J. Math.19703320921610.2140/pjm.1970.33.2090199.47101262827 Moreau, J.J.: Rafle par un convexe variable I. Sém. Anal. Convexe Montpellier (1971), Exposé 15 BrezisHOperateurs Maximaux Monotones1973AmsterdamNorth Holland0252.47055 Correa, R., Jofre, A., Thibault, L.: Subdifferential characterization of convexity. In: Du, D., Qi, L., Womersley, R. (eds.) Recent Advances in Nonsmooth Optimization, pp. 18–23. World Scientific, Singapore (1995) Monteiro Marques, M.D.P.: Differential Inclusions in Nonsmooth Mechanical Problems, Shocks and Dry Friction. Birkhauser, Basel (1993) Moreau, J.J.: An introduction to unilateral dynamics. In: Frémond, M., Maceri, F. (eds.) Novel Approaches in Civil Engineering. Springer, Berlin (2002) ColomboGGoncharovVVThe sweeping process without convexitySet-Valued Anal.1999735737410.1023/A:10087745295560957.340601756914 Rockafellar, R.T.: Conjugate Duality and Optimization. Conferences Board of Mathematics Sciences Series, vol. 16. SIAM, Philadelphia (1974) CastaingCMonteiro MarquesMDPEvolution problems associated with non-convex closed moving sets with bounded variationPortugaliae Math19965373870848.350521384501 Colombo, G., Thibault, L.: Prox-regular sets and applications. In: Gao, D.Y., Motreanu, D. (eds.) Handbook of Nonconvex Analysis. International Press, Vienna (2010) BenabdellahHExistence of solutions to the nonconvex sweeping processJ. Differ. Equ.200016428529510.1006/jdeq.1999.37561765576 EdmondJFThibaultLRelaxation of an optimal control problem involving a perturbed sweeping processMath. Program.200510434737310.1007/s10107-005-0619-y1124.490102179241 MattilaPGeometry of Sets and Measures in Euclidean Spaces1995LondonCambridge University Press10.1017/CBO97805116238130819.28004 Rockafellar, R.T.: Convex integral functionals and duality. In: Zarantonello, E. (ed.) Contributions to Nonlinear Functional Analysis, pp. 215–236. Academic Press, London (1971) Hiriart-Urruty, J.-B., Lemarechal, C.: Convex Analysis and Minimization Algorithms I & II, Grundlehren der Mathematischen Wissenschaften, vol. 305–306, Springer, New York (1993) BrokateMSprekelsJHysteresis and Phase Transitions, Applied Mathematical Sciences1996BerlinSpringer10.1007/978-1-4612-4048-8 PangJSStewartDEDifferential variational inequalitiesMath. Progam. Ser. A200811334542410.1007/s10107-006-0052-x1139.580112375486 CastaingCValadierMConvex Analysis and Measurable Multifunctions1977BerlinSpringer10.1007/BFb00876850346.46038 Valadier, M.: Rafle et viabilité, Sem. Anal. Convexe Montpellier (1992), Exposé 17 BrogliatoBThibaultLExistence and uniqueness of solutions for non-autonomous complementarity dynamical systemsJ. Convex Anal.2010173–49619901217.340262731287 KunzeM.Monteiro MarquesM.D.P.On parabolic quasi-variational inequalities and state-dependent sweeping processesTopol. Methods Nonlinear Anal.199812179191 MoreauJJSur l’évolution d’un système élastoplastiqueC. R. Acad. Sci. Paris Ser. A–B1971273A118A121284066 MoreauJJValadierMA chain rule involving vector functions of bounded variationJ. Funct. Anal.19877433334510.1016/0022-1236(87)90029-20632.46040904823 Kunze, M., Monteiro Marques, M.D.P.: An introduction to Moreau’s sweeping process. In: Brogliato, B. (ed.) Impacts in Mechanical Systems. Analysis and Modelling, pp. 1–60. Springer, Berlin (2000) CastaingCDuc HaTXValadierMEvolution equations governed by the sweeping processSet-Valued Anal.1993110913910.1007/BF010276880813.340181239400 MauryBVenelJA mathematical framework for a crowd motion modelC. R. Math. Acad. Sci. Paris20083461245125010.1016/j.crma.2008.10.0141168.343332473301 ThibaultLSweeping process with regular and nonregular setsJ. Differ. Equ.200319312610.1016/S0022-0396(03)00129-31037.340071994056 MoreauJ.J.Evolution problem associated with a moving convex set in a Hilbert spaceJ. Differ. Equ.19772347374 CornetBExistence of slow solutions for a class of differential inclusionsJ. Math. Anal. Appl.19839613014710.1016/0022-247X(83)90032-X0558.34011717499 Valadier, M.: Quelques problèmes d’entrainement unilatéral en dimension finie, Sem. Anal. Convexe Montpellier (1988), Exposé 8 HenryCAn existence theorem for a class of differential equations with multivalued right-hand sideJ. Math. Anal. Appl.19734117918610.1016/0022-247X(73)90192-30262.49019335906 CastaingCMonteiro MarquesMDPBV periodic solutions of an evolution problem associated with continuous moving convex setsSet-Valued Anal.1995338139910.1007/BF010262480845.351421372875 AdlySGoelevenDLeBKStability analysis and attractivity results of a DC–DC buck converterSet Valued Var. Anal.20122033135310.1007/s11228-011-0201-01279.340582949631 AdlySOutrataJQualitative stability of a class of non-monotone variational inclusionsJ .Convex Anal. Appl. Electron.20132013086440 VisintinADifferential Models of Hysteresis. Applied Mathematical Sciences1994BerlinSpringer10.1007/978-3-662-11557-2 AddiKAdlySBrogliatoBGoelevenDA method using the approach of Moreau and Panagiotopoulos for the mathematical formulation of non-regular circuits in electronicsNonlinear Anal. Hybrid Syst.200711304310.1016/j.nahs.2006.04.0011172.946502340260 DinculeanuNVector Measures1967OxfordPergamon DuvautDLionsJLInequalities in Mechanics and Physics1976BerlinSpringer10.1007/978-3-642-66165-50331.35002 EdmondJFThibaultLBV solutions of nonconvex sweeping process differential inclusions with perturbationJ. Differ. Equ.200622613517910.1016/j.jde.2005.12.0051110.340382232433 Moreau, J.J.: Sur les mesures différentielles des fonctions vectorielles à variation bornée. Sem. Anal. Convexe Montpellier (1975), Exposé 17 Phelps, R.R.: Convex Functions. Monotone Operators and Differentiability. Lecture Notes in Mathematics. Springer, Berlin (1989) AddiK.BrogliatoB.GoelevenD.A qualitative mathematical analysis of a class of linear variational inequalities via semi-complementarity problemsAppl. Electron. Math. Program.201112613167 MoreauJJProximité et dualité dans un espace hilbertienBull. Soc. Math. France1965932732990136.12101201952 HaddadTThibaultLMixed semicontinuous perturbations of nonconvex sweeping processesMath. Program. Ser. B.201012322524010.1007/s10107-009-0315-41195.340242577329 Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, Grundlehren der Mathematischen Wissenschaften, vol. 317. Springer, New York (1998) KunzeMMonteiro MarquesMDPPortugaliae Math.On the discretization of degenerate sweeping process1998552192320923.340171629634 Acary, V., Bonnefon, O., Brogliato, B.: Nonsmooth Modeling and Simulation for Switched Circuits. Lecture Notes in Electrical Engineering, vol. 69. Springer, Dordrecht (2011). ISBN 978-90-481-9680-7 Moreau, J.J.: Fonctionnelles Convexes. Edizioni del Dipartimento di Ingegneria Civile dell’Università di Roma (2003) HaddadTJouraniAThibaultLReduction of sweeping process to unconstrained differential inclusionPac. J. Optim.200844935121185.340182541259 Adly, S., Cibulka, R., Massias, H.: Variational analysis and generalized equations in electronics. Set-valued Var. Anal. (2013) (to appear) ColomboGMonteiroMDPMarques, sweeping by a continuous prox-regular setJ. Differ. Equ.2003187466210.1016/S0022-0396(02)00021-91029.34052 C Henry (754_CR29) 1973; 41 RT Rockafellar (754_CR54) 1970 754_CR1 754_CR2 754_CR4 P Krejčı (754_CR31) 1991; 2 G Colombo (754_CR19) 2003; 187 M Kunze (754_CR33) 1998; 55 JS Pang (754_CR50) 2008; 113 RT Rockafellar (754_CR53) 1970; 33 JF Edmond (754_CR25) 2005; 104 754_CR41 M Bounkhel (754_CR9) 2005; 6 754_CR43 754_CR42 S Adly (754_CR6) 2013; 20 754_CR45 754_CR44 754_CR47 B Brogliato (754_CR12) 2010; 17 754_CR48 C Castaing (754_CR16) 1996; 53 P Mattila (754_CR35) 1995 B Maury (754_CR36) 2008; 346 JF Edmond (754_CR26) 2006; 226 C Castaing (754_CR15) 1995; 3 754_CR30 754_CR32 754_CR34 JJ Moreau (754_CR40) 1971; 273 M Brokate (754_CR11) 1996 754_CR38 754_CR37 C Castaing (754_CR14) 1993; 1 H Brezis (754_CR10) 1973 H Benabdellah (754_CR7) 2000; 164 N Dinculeanu (754_CR23) 1967 S Adly (754_CR5) 2012; 20 B Cornet (754_CR21) 1983; 96 RA Poliquin (754_CR52) 1990; 14 C Zalinescu (754_CR62) 2002 K Addi (754_CR3) 2007; 1 JJ Moreau (754_CR46) 1999; 177 754_CR60 A Visintin (754_CR61) 1994 754_CR20 754_CR22 T Haddad (754_CR27) 2008; 4 JJ Moreau (754_CR39) 1965; 93 L Thibault (754_CR58) 2003; 193 754_CR8 JJ Moreau (754_CR49) 1987; 74 754_CR51 754_CR56 754_CR55 754_CR13 G Colombo (754_CR18) 1999; 7 T Haddad (754_CR28) 2010; 123 754_CR57 C Castaing (754_CR17) 1977 D Duvaut (754_CR24) 1976 754_CR59 |
| References_xml | – reference: Valadier, M.: Quelques problèmes d’entrainement unilatéral en dimension finie, Sem. Anal. Convexe Montpellier (1988), Exposé 8 – reference: Rockafellar, R.T.: Convex integral functionals and duality. In: Zarantonello, E. (ed.) Contributions to Nonlinear Functional Analysis, pp. 215–236. Academic Press, London (1971) – reference: BrogliatoBThibaultLExistence and uniqueness of solutions for non-autonomous complementarity dynamical systemsJ. Convex Anal.2010173–49619901217.340262731287 – reference: KunzeMMonteiro MarquesMDPPortugaliae Math.On the discretization of degenerate sweeping process1998552192320923.340171629634 – reference: Monteiro Marques, M.D.P.: Perturbations convexes semi-continues supérieurement dans les espaces de Hilbert. Sem. Anal. Convexe Montpellier (1984), Exposé 2 – reference: Adly, S., Cibulka, R., Massias, H.: Variational analysis and generalized equations in electronics. Set-valued Var. Anal. (2013) (to appear) – reference: AdlySGoelevenDLeBKStability analysis and attractivity results of a DC–DC buck converterSet Valued Var. Anal.20122033135310.1007/s11228-011-0201-01279.340582949631 – reference: MoreauJJProximité et dualité dans un espace hilbertienBull. Soc. Math. France1965932732990136.12101201952 – reference: Moreau, J.J.: Sur les mesures différentielles des fonctions vectorielles à variation bornée. Sem. Anal. Convexe Montpellier (1975), Exposé 17 – reference: Castaing, C.: Equation différentielle multivoque avec contrainte sur l’état dans les espaces de Banach. Sem. Anal. Convexe Montpellier (1978), Exposé 13 – reference: CastaingCMonteiro MarquesMDPBV periodic solutions of an evolution problem associated with continuous moving convex setsSet-Valued Anal.1995338139910.1007/BF010262480845.351421372875 – reference: ColomboGMonteiroMDPMarques, sweeping by a continuous prox-regular setJ. Differ. Equ.2003187466210.1016/S0022-0396(02)00021-91029.34052 – reference: CornetBExistence of slow solutions for a class of differential inclusionsJ. Math. Anal. Appl.19839613014710.1016/0022-247X(83)90032-X0558.34011717499 – reference: HaddadTJouraniAThibaultLReduction of sweeping process to unconstrained differential inclusionPac. J. Optim.200844935121185.340182541259 – reference: MoreauJJValadierMA chain rule involving vector functions of bounded variationJ. Funct. Anal.19877433334510.1016/0022-1236(87)90029-20632.46040904823 – reference: Moreau, J.J.: On unilateral constraints, friction and plasticity. In: Capriz, G., Stampacchia, G. (eds.) New Variational Techniques in Mathematical Physics, pp. 173–322. C.I.M.E. II Ciclo 1973, Edizioni Cremonese, Rome (1974) – reference: DuvautDLionsJLInequalities in Mechanics and Physics1976BerlinSpringer10.1007/978-3-642-66165-50331.35002 – reference: HaddadTThibaultLMixed semicontinuous perturbations of nonconvex sweeping processesMath. Program. Ser. B.201012322524010.1007/s10107-009-0315-41195.340242577329 – reference: Moreau, J.J.: Rafle par un convexe variable I. Sém. Anal. Convexe Montpellier (1971), Exposé 15 – reference: MoreauJJNumerical aspects of the sweeping processComput. Methods Appl. Mech. Eng.199917732934910.1016/S0045-7825(98)00387-90968.700061710456 – reference: Rockafellar, R.T.: Conjugate Duality and Optimization. Conferences Board of Mathematics Sciences Series, vol. 16. SIAM, Philadelphia (1974) – reference: CastaingCDuc HaTXValadierMEvolution equations governed by the sweeping processSet-Valued Anal.1993110913910.1007/BF010276880813.340181239400 – reference: ZalinescuCConvex Analysis in General Vector Spaces2002River EdgeWorld Scientific10.1142/97898127770961023.46003 – reference: Correa, R., Jofre, A., Thibault, L.: Subdifferential characterization of convexity. In: Du, D., Qi, L., Womersley, R. (eds.) Recent Advances in Nonsmooth Optimization, pp. 18–23. World Scientific, Singapore (1995) – reference: Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, Grundlehren der Mathematischen Wissenschaften, vol. 317. Springer, New York (1998) – reference: Phelps, R.R.: Convex Functions. Monotone Operators and Differentiability. Lecture Notes in Mathematics. Springer, Berlin (1989) – reference: Acary, V., Bonnefon, O., Brogliato, B.: Nonsmooth Modeling and Simulation for Switched Circuits. Lecture Notes in Electrical Engineering, vol. 69. Springer, Dordrecht (2011). ISBN 978-90-481-9680-7 – reference: BrezisHOperateurs Maximaux Monotones1973AmsterdamNorth Holland0252.47055 – reference: Borwein, J.M., Vanderwerff, J.D.: Convex Functions: Constructions, Characterizations and Counterexamples. Encyclopedia of Mathematics and its Applications, vol. 109, Cambridge University Press, Cambridge (2010) – reference: PoliquinRASubgradient monotonicity and convex functionsNonlinear Anal.19901438539810.1016/0362-546X(90)90167-F1040008 – reference: Moreau, J.J.: An introduction to unilateral dynamics. In: Frémond, M., Maceri, F. (eds.) Novel Approaches in Civil Engineering. Springer, Berlin (2002) – reference: MoreauJJSur l’évolution d’un système élastoplastiqueC. R. Acad. Sci. Paris Ser. A–B1971273A118A121284066 – reference: BrokateMSprekelsJHysteresis and Phase Transitions, Applied Mathematical Sciences1996BerlinSpringer10.1007/978-1-4612-4048-8 – reference: Hiriart-Urruty, J.-B., Lemarechal, C.: Convex Analysis and Minimization Algorithms I & II, Grundlehren der Mathematischen Wissenschaften, vol. 305–306, Springer, New York (1993) – reference: DinculeanuNVector Measures1967OxfordPergamon – reference: Kunze, M., Monteiro Marques, M.D.P.: An introduction to Moreau’s sweeping process. In: Brogliato, B. (ed.) Impacts in Mechanical Systems. Analysis and Modelling, pp. 1–60. Springer, Berlin (2000) – reference: RockafellarRTConvex Analysis1970PrincetonPrinceton University Press0193.18401 – reference: Valadier, M.: Rafle et viabilité, Sem. Anal. Convexe Montpellier (1992), Exposé 17 – reference: CastaingCMonteiro MarquesMDPEvolution problems associated with non-convex closed moving sets with bounded variationPortugaliae Math19965373870848.350521384501 – reference: MauryBVenelJA mathematical framework for a crowd motion modelC. R. Math. Acad. Sci. Paris20083461245125010.1016/j.crma.2008.10.0141168.343332473301 – reference: Moreau, J.J.: Fonctionnelles Convexes. Edizioni del Dipartimento di Ingegneria Civile dell’Università di Roma (2003) – reference: AddiK.BrogliatoB.GoelevenD.A qualitative mathematical analysis of a class of linear variational inequalities via semi-complementarity problemsAppl. Electron. Math. Program.201112613167 – reference: EdmondJFThibaultLRelaxation of an optimal control problem involving a perturbed sweeping processMath. Program.200510434737310.1007/s10107-005-0619-y1124.490102179241 – reference: AddiKAdlySBrogliatoBGoelevenDA method using the approach of Moreau and Panagiotopoulos for the mathematical formulation of non-regular circuits in electronicsNonlinear Anal. Hybrid Syst.200711304310.1016/j.nahs.2006.04.0011172.946502340260 – reference: BenabdellahHExistence of solutions to the nonconvex sweeping processJ. Differ. Equ.200016428529510.1006/jdeq.1999.37561765576 – reference: BounkhelMThibaultLNonconvex sweeping process and prox-regularity in Hilbert space J. Nonlinear Convex Anal.200563593741086.490162159846 – reference: HenryCAn existence theorem for a class of differential equations with multivalued right-hand sideJ. Math. Anal. Appl.19734117918610.1016/0022-247X(73)90192-30262.49019335906 – reference: AdlySOutrataJQualitative stability of a class of non-monotone variational inclusionsJ .Convex Anal. Appl. Electron.20132013086440 – reference: KrejčıPVector hysteresis modelsEur. J. Appl. Math.1991228129210.1017/S09567925000005410754.73015 – reference: Colombo, G., Thibault, L.: Prox-regular sets and applications. In: Gao, D.Y., Motreanu, D. (eds.) Handbook of Nonconvex Analysis. International Press, Vienna (2010) – reference: ThibaultLSweeping process with regular and nonregular setsJ. Differ. Equ.200319312610.1016/S0022-0396(03)00129-31037.340071994056 – reference: MattilaPGeometry of Sets and Measures in Euclidean Spaces1995LondonCambridge University Press10.1017/CBO97805116238130819.28004 – reference: MoreauJ.J.Evolution problem associated with a moving convex set in a Hilbert spaceJ. Differ. Equ.19772347374 – reference: EdmondJFThibaultLBV solutions of nonconvex sweeping process differential inclusions with perturbationJ. Differ. Equ.200622613517910.1016/j.jde.2005.12.0051110.340382232433 – reference: KunzeM.Monteiro MarquesM.D.P.On parabolic quasi-variational inequalities and state-dependent sweeping processesTopol. Methods Nonlinear Anal.199812179191 – reference: VisintinADifferential Models of Hysteresis. Applied Mathematical Sciences1994BerlinSpringer10.1007/978-3-662-11557-2 – reference: Monteiro Marques, M.D.P.: Differential Inclusions in Nonsmooth Mechanical Problems, Shocks and Dry Friction. Birkhauser, Basel (1993) – reference: CastaingCValadierMConvex Analysis and Measurable Multifunctions1977BerlinSpringer10.1007/BFb00876850346.46038 – reference: ColomboGGoncharovVVThe sweeping process without convexitySet-Valued Anal.1999735737410.1023/A:10087745295560957.340601756914 – reference: RockafellarRTOn the maximal monotonicity of subdifferential mappingsPac. J. Math.19703320921610.2140/pjm.1970.33.2090199.47101262827 – reference: PangJSStewartDEDifferential variational inequalitiesMath. Progam. Ser. A200811334542410.1007/s10107-006-0052-x1139.580112375486 – reference: Moreau, J.J.: Rafle par un convexe variable II, Sém. Anal. Convexe Montpellier (1972), Exposé 3 – ident: 754_CR13 – ident: 754_CR42 – ident: 754_CR30 doi: 10.1007/978-3-662-02796-7 – volume: 17 start-page: 961 issue: 3–4 year: 2010 ident: 754_CR12 publication-title: J. Convex Anal. – volume: 123 start-page: 225 year: 2010 ident: 754_CR28 publication-title: Math. Program. Ser. B. doi: 10.1007/s10107-009-0315-4 – volume: 20 start-page: 1 year: 2013 ident: 754_CR6 publication-title: J .Convex Anal. Appl. Electron. – volume: 226 start-page: 135 year: 2006 ident: 754_CR26 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2005.12.005 – volume: 74 start-page: 333 year: 1987 ident: 754_CR49 publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(87)90029-2 – volume: 113 start-page: 345 year: 2008 ident: 754_CR50 publication-title: Math. Progam. Ser. A doi: 10.1007/s10107-006-0052-x – volume-title: Geometry of Sets and Measures in Euclidean Spaces year: 1995 ident: 754_CR35 doi: 10.1017/CBO9780511623813 – ident: 754_CR1 doi: 10.1007/978-90-481-9681-4 – volume: 20 start-page: 331 year: 2012 ident: 754_CR5 publication-title: Set Valued Var. Anal. doi: 10.1007/s11228-011-0201-0 – volume: 1 start-page: 109 year: 1993 ident: 754_CR14 publication-title: Set-Valued Anal. doi: 10.1007/BF01027688 – ident: 754_CR59 – volume-title: Convex Analysis and Measurable Multifunctions year: 1977 ident: 754_CR17 doi: 10.1007/BFb0087685 – volume: 1 start-page: 30 issue: 1 year: 2007 ident: 754_CR3 publication-title: Nonlinear Anal. Hybrid Syst. doi: 10.1016/j.nahs.2006.04.001 – ident: 754_CR57 doi: 10.1007/978-3-642-02431-3 – volume: 164 start-page: 285 year: 2000 ident: 754_CR7 publication-title: J. Differ. Equ. doi: 10.1006/jdeq.1999.3756 – volume-title: Inequalities in Mechanics and Physics year: 1976 ident: 754_CR24 doi: 10.1007/978-3-642-66165-5 – volume: 187 start-page: 46 year: 2003 ident: 754_CR19 publication-title: J. Differ. Equ. doi: 10.1016/S0022-0396(02)00021-9 – volume: 4 start-page: 493 year: 2008 ident: 754_CR27 publication-title: Pac. J. Optim. – ident: 754_CR22 doi: 10.1142/9789812812827_0002 – ident: 754_CR45 doi: 10.1016/0022-0396(77)90085-7 – volume: 177 start-page: 329 year: 1999 ident: 754_CR46 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(98)00387-9 – ident: 754_CR43 – volume-title: Operateurs Maximaux Monotones year: 1973 ident: 754_CR10 – ident: 754_CR47 – ident: 754_CR60 – ident: 754_CR56 doi: 10.1137/1.9781611970524 – volume: 55 start-page: 219 year: 1998 ident: 754_CR33 publication-title: On the discretization of degenerate sweeping process – volume: 6 start-page: 359 year: 2005 ident: 754_CR9 publication-title: J. Nonlinear Convex Anal. – ident: 754_CR34 doi: 10.1007/3-540-45501-9_1 – volume: 3 start-page: 381 year: 1995 ident: 754_CR15 publication-title: Set-Valued Anal. doi: 10.1007/BF01026248 – volume: 2 start-page: 281 year: 1991 ident: 754_CR31 publication-title: Eur. J. Appl. Math. doi: 10.1017/S0956792500000541 – volume-title: Vector Measures year: 1967 ident: 754_CR23 doi: 10.1016/B978-1-4831-9762-3.50004-4 – volume: 53 start-page: 73 year: 1996 ident: 754_CR16 publication-title: Portugaliae Math – ident: 754_CR37 – ident: 754_CR2 doi: 10.1007/s10107-009-0268-7 – volume-title: Hysteresis and Phase Transitions, Applied Mathematical Sciences year: 1996 ident: 754_CR11 doi: 10.1007/978-1-4612-4048-8 – volume: 93 start-page: 273 year: 1965 ident: 754_CR39 publication-title: Bull. Soc. Math. France doi: 10.24033/bsmf.1625 – ident: 754_CR48 – volume-title: Differential Models of Hysteresis. Applied Mathematical Sciences year: 1994 ident: 754_CR61 doi: 10.1007/978-3-662-11557-2 – ident: 754_CR44 – ident: 754_CR4 doi: 10.1007/s11228-013-0236-5 – ident: 754_CR8 doi: 10.1017/CBO9781139087322 – ident: 754_CR32 doi: 10.12775/TMNA.1998.036 – volume: 273 start-page: A118 year: 1971 ident: 754_CR40 publication-title: C. R. Acad. Sci. Paris Ser. A–B – ident: 754_CR38 doi: 10.1007/978-3-0348-7614-8 – ident: 754_CR55 doi: 10.1016/B978-0-12-775850-3.50012-1 – ident: 754_CR41 – volume: 14 start-page: 385 year: 1990 ident: 754_CR52 publication-title: Nonlinear Anal. doi: 10.1016/0362-546X(90)90167-F – ident: 754_CR20 – volume: 193 start-page: 1 year: 2003 ident: 754_CR58 publication-title: J. Differ. Equ. doi: 10.1016/S0022-0396(03)00129-3 – volume: 96 start-page: 130 year: 1983 ident: 754_CR21 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(83)90032-X – volume-title: Convex Analysis year: 1970 ident: 754_CR54 doi: 10.1515/9781400873173 – ident: 754_CR51 doi: 10.1007/978-3-662-21569-2 – volume-title: Convex Analysis in General Vector Spaces year: 2002 ident: 754_CR62 doi: 10.1142/5021 – volume: 7 start-page: 357 year: 1999 ident: 754_CR18 publication-title: Set-Valued Anal. doi: 10.1023/A:1008774529556 – volume: 33 start-page: 209 year: 1970 ident: 754_CR53 publication-title: Pac. J. Math. doi: 10.2140/pjm.1970.33.209 – volume: 346 start-page: 1245 year: 2008 ident: 754_CR36 publication-title: C. R. Math. Acad. Sci. Paris doi: 10.1016/j.crma.2008.10.014 – volume: 104 start-page: 347 year: 2005 ident: 754_CR25 publication-title: Math. Program. doi: 10.1007/s10107-005-0619-y – volume: 41 start-page: 179 year: 1973 ident: 754_CR29 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(73)90192-3 |
| SSID | ssj0001388 |
| Score | 2.459282 |
| Snippet | In this paper, we analyze and discuss the well-posedness of two new variants of the so-called sweeping process, introduced by Moreau in the early 70s (Moreau... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) Issue Title: Modern Convex Analysis In this paper, we analyze and discuss the... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).In this paper, we analyze and discuss the well-posedness of two new variants of the... In this paper, we analyze and discuss the well-posedness of two new variants of the so-called sweeping process, introduced by Moreau in the early 70s with... |
| SourceID | hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5 |
| SubjectTerms | Analysis Applied mathematics Approximation Calculus of Variations and Optimal Control; Optimization Combinatorics Computer engineering Computer science Computer simulation Convex analysis Differential equations Evolution Full Length Paper Inclusions Inequalities Integrals Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics Mathematical models Mathematical programming Mathematics Mathematics and Statistics Mathematics of Computing Mechanics Numerical Analysis Operators Optimization and Control Ordinary differential equations Studies Sweeping Theoretical |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0OqDAxzaUkBsWyqDOIEs1onXiU9VVVFVAioOIPUW2c5YVFqyy2Z34fOZSex0QaIXLpGSTGJL8x7Pg7HX6FQUDrQSdY4XNcmNcKilBJgatX1dSKf7YRPF9XV5c2M-x4BbG9Mqk0zsBHU98xQjfyd1hvRilMrO5j8ETY2i09U4QmOb7cosk0TnHwoxSGKZl2Ua2Up2QjrV7EvnZJd0qQQqTdzlH3pp-xtlRW6YnH-dknbK53L_f7d9wPai2cnPezp5zLagOWT7aaQDjxx-yB5t9CfEu09DU9f2CVtcUIb6L97-BKAqKz7viwz4bcMRjIeU58VngX_vY488DWBBQTJFQD9dUXiu5bapOawj3fM1euwxKolA0Fd6og__lH29fP_l4krEkQ3CK6OXQlpdoMtSBu8mNZhgnFJB12PjrcoDWht58FZaVRQ6AIRSG-3GAUKwKrg6c_kzttPMGnjOuHTg1MSXygZQalLgn2zmwOpgchQycsTGCWGVj_3MaazGtLrrxEw4rhDHFeG4UiP2Zvhk3jfzuA_4FVLBAEdtuK_OP1b0jHoU5VKaNW7iJKG9iszfVnc4H7GXw2tkWzqLsQ3MVgSDdiy1W8R13ibi2vjFv3Z1dP-Cx-xhRjTd5ducsJ3lYgUv2AO_Xt62i9OOO34DNTYV1Q priority: 102 providerName: ProQuest |
| Title | Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities |
| URI | https://link.springer.com/article/10.1007/s10107-014-0754-4 https://www.proquest.com/docview/1620539442 https://www.proquest.com/docview/1642303444 https://hal.science/hal-01313119 |
| Volume | 148 |
| WOSCitedRecordID | wos000344809700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: 7WY dateStart: 20011001 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global (OCUL) customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M0C dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: P5Z dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: K7- dateStart: 20011001 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M7S dateStart: 20011001 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: BENPR dateStart: 20011001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M2P dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw8EQ3HuBhfE50jMognkCR6sSx48dRbZoEq6qNj8FLZCe2mFTSqWkLP5-7JA4FARK8nOTk4lj2-T7s-wB4jkaFsk6KqEwQiDTRkUUpFTldorQvFbeyLTahptPs8lLPujjuOni7hyvJhlNvBbvxxk1SRCjmsN8B7KK0y2g3nl-879kvT7Is1Gkl5SBcZf6ui5-E0eAzuUJu6Zm_XI02Eufkzn-N9S7sdQomO2op4h7ccNV9uL2VdhBbZ32u1voBLCfkeP6N1V-do-Apdt3GDrCriiEa88F9iy08-9IeKbJQVwX5wxwRi_maTt1qZqqSuU1HzmyDhnh32IhIrg3gRNP8Ibw7OX47OY26SgxRIbRcRdxIhZZI5gublk57bYXwshzrwojEoxKR-MJwI5SS3jmfSS3t2DvvjfC2jG2yDzvVonKPgHHrrEiLTBjvhEgV9mRi64z0OkHewYcwDkuSF12acqqWMc9_JFimyc1xcnOa3FwM4UX_yXWbo-NvyM9wnXs8yq59evQmp2eUeijhXG9wEIeBDPJuT9c5lzFyLC1EPISn_WvcjXTFYiq3WBMOqqeURRH_8zKQxlYXfxrVwT9hP4ZbMdFW41VzCDur5do9gZvFZnVVL0cwUB8-jmD31fF0do6t1ypCeDaeEIxnBNUFwln6adRsne8U-Axt |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH_aBhJwYDBAlA0wCC6gaHXiOvEBoakwdVpXcRjSbsFObK1SSUvTdvBP8TfuvSTOChK77cAlUpIX23J-78P2-wB4g4uK2FgpgjzCi-hFKjCopQKrctT2ecyNrItNxKNRcnamvmzAbx8LQ26VXiZWgjqfZrRHvs9liHhRQoQfZz8CqhpFp6u-hEYNi2P76wKXbOWHo0_4f9-G4eHn0_4gaKoKBJlQchFwLWO0qhOXmV5ulVNGCCfzrsq0iBwqxMhlmmsRx9JZ6xKppOk665wWzuShibDdTbglBLIDuQp2-63k51GS-BKxZJf4U9Q6VI9XTp4iQCWNs_KHHtw8Jy_MNRP3r1PZStkdbv9v0_QA7jdmNTuo-eAhbNhiB7Z9yQrWSLAduLeWfxHvTtqkteUjmPfJA_8nKy-spSgyNquDKNi4YEjGnPdjY1PHvtd7q8wXmEFBOUHCbLKk7ceS6SJndtXwNVvp-bjZdUUiW0eyjm35GL7eyKw8ga1iWtinwLixRvSyRGhnhejF2JIOjdXSqQiFKO9A1wMkzZp87VQ2ZJJeZZomTKWIqZQwlYoOvGs_mdXJSq4jfo2oa-kozfjgYJjSM8rBFHGuVjiIPQ-ztBFuZXqFsQ68al-jWKKzJl3Y6ZJo0E6ndJLYz3sP5rUm_jWqZ9d3-BLuDE5PhunwaHS8C3dD4qfKt2gPthbzpX0Ot7PVYlzOX1ScyeDbTWP8EmnndtE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xgRB74HNohQEG8QSKVidXJ36cBtUQo5rEh_Zm2YktJpW0atrCn89dE4eCAAnxEinJxbacs-_Od_c7gOdkVOTOK0yqjC44ynTiSEolXlck7atcOtUWm8gnk-LiQp93dU6bGO0eXZJtTgOjNNXLo3kVjrYS3-QmZBITEnnUxw5cRa4ZxOb6-0_9Viyzoog1W1lRiG7N3zXxk2Da-cxhkVs65y9u0o30Gd_673Hfhpud4imOW065A1d8fRf2tuAI6e5dj-Ha3IPFCQekfxPNV-85qUrM25wCcVkLIhMhhnWJWRBf2qNGEeut0L4xJcJyuuLTuEbYuhJ-3bG5WJOB3h1CEpFvEzvJZN-Hj-PXH05Ok65CQ1KiVstEWpWThVKE0o0qr4N2iEFVQ11azAIpF1korbSY5yp4HwqllRsGH4LF4KrUZfdht57V_gCEdN7hqCzQBo84yqklmzpvVdAZ7SlyAMP4e0zZwZdzFY2p-QG8zJNraHINT67BAbzoP5m32B1_I35G_7ynY9Tt0-Mzw88YkiiTUq9pEIeRJUy31hsjVUo7mUZMB_C0f02rlF0vtvazFdOQ2sroitTPy8gmW038aVQP_on6CVw_fzU2Z28mbx_CjZTZbBN4cwi7y8XKP4Jr5Xp52Sweb1bJdynUEPo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convex+sweeping+process+in+the+framework+of+measure+differential+inclusions+and+evolution+variational+inequalities&rft.jtitle=Mathematical+programming&rft.au=Adly%2C+Samir&rft.au=Haddad%2C+Tahar&rft.au=Thibault%2C+Lionel&rft.date=2014-12-01&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=148&rft.issue=1-2&rft.spage=5&rft.epage=47&rft_id=info:doi/10.1007%2Fs10107-014-0754-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10107_014_0754_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |