A Review of Modern Computational Algorithms for Bayesian Optimal Design

Bayesian experimental design is a fast growing area of research with many real-world applications. As computational power has increased over the years, so has the development of simulation-based design methods, which involve a number of algorithms, such as Markov chain Monte Carlo, sequential Monte...

Full description

Saved in:
Bibliographic Details
Published in:International statistical review Vol. 84; no. 1; pp. 128 - 154
Main Authors: Ryan, Elizabeth G., Drovandi, Christopher C., McGree, James M., Pettitt, Anthony N.
Format: Journal Article
Language:English
Published: Hoboken Blackwell Publishing Ltd 01.04.2016
Blackwell Publishing
John Wiley & Sons, Inc
Subjects:
ISSN:0306-7734, 1751-5823
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Bayesian experimental design is a fast growing area of research with many real-world applications. As computational power has increased over the years, so has the development of simulation-based design methods, which involve a number of algorithms, such as Markov chain Monte Carlo, sequential Monte Carlo and approximate Bayes methods, facilitating more complex design problems to be solved. The Bayesian framework provides a unified approach for incorporating prior information and/or uncertainties regarding the statistical model with a utility function which describes the experimental aims. In this paper, we provide a general overview on the concepts involved in Bayesian experimental design, and focus on describing some of the more commonly used Bayesian utility functions and methods for their estimation, as well as a number of algorithms that are used to search over the design space to find the Bayesian optimal design. We also discuss other computational strategies for further research in Bayesian optimal design.
AbstractList Bayesian experimental design is a fast growing area of research with many real‐world applications. As computational power has increased over the years, so has the development of simulation‐based design methods, which involve a number of algorithms, such as Markov chain Monte Carlo, sequential Monte Carlo and approximate Bayes methods, facilitating more complex design problems to be solved. The Bayesian framework provides a unified approach for incorporating prior information and/or uncertainties regarding the statistical model with a utility function which describes the experimental aims. In this paper, we provide a general overview on the concepts involved in Bayesian experimental design, and focus on describing some of the more commonly used Bayesian utility functions and methods for their estimation, as well as a number of algorithms that are used to search over the design space to find the Bayesian optimal design. We also discuss other computational strategies for further research in Bayesian optimal design.
Summary Bayesian experimental design is a fast growing area of research with many real‐world applications. As computational power has increased over the years, so has the development of simulation‐based design methods, which involve a number of algorithms, such as Markov chain Monte Carlo, sequential Monte Carlo and approximate Bayes methods, facilitating more complex design problems to be solved. The Bayesian framework provides a unified approach for incorporating prior information and/or uncertainties regarding the statistical model with a utility function which describes the experimental aims. In this paper, we provide a general overview on the concepts involved in Bayesian experimental design, and focus on describing some of the more commonly used Bayesian utility functions and methods for their estimation, as well as a number of algorithms that are used to search over the design space to find the Bayesian optimal design. We also discuss other computational strategies for further research in Bayesian optimal design.
Author McGree, James M.
Pettitt, Anthony N.
Drovandi, Christopher C.
Ryan, Elizabeth G.
Author_xml – sequence: 1
  givenname: Elizabeth G.
  surname: Ryan
  fullname: Ryan, Elizabeth G.
  email: elizabeth.ryan@kcl.ac.uk
  organization: School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
– sequence: 2
  givenname: Christopher C.
  surname: Drovandi
  fullname: Drovandi, Christopher C.
  organization: School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
– sequence: 3
  givenname: James M.
  surname: McGree
  fullname: McGree, James M.
  organization: School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
– sequence: 4
  givenname: Anthony N.
  surname: Pettitt
  fullname: Pettitt, Anthony N.
  organization: School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
BookMark eNp9kE1LKzEUhoN4wep1414YcCPC6MnHJJllbb1VtIpfuAzpTEZTp5OaTK_23xsddSFiNofwPs-B866j1cY1BqEtDPs4vgPbBL-PCQaxgnpYZDjNJKGrqAcUeCoEZWtoPYQpAFAiWQ-N-smV-W_Nc-KqZOxK45tk4GbzRatb6xpdJ_363nnbPsxCUjmfHOqlCVY3ycW8tbOYD-P3vvmL_lS6DmbzY26g239HN4Pj9OxidDLon6UFy7lIS8ElkWICpDQVzzWlFKgpy4pzAXSSU8MKgDIvpNQsqwTJS0EqxnOYUJEZTjfQbrd37t3TwoRWzWwoTF3rxrhFUFiCxFjSnER05xs6dQsfT4qUkFkGIHIcKeiowrsQvKlUYbvbW69trTCot2bVW7Pqvdmo7H1T5j5W4Zc_w7iDn21tlr-Q6uT8-urT2e6caWid_3IYw5wwzmKedrkNrXn5yrV_VFzEntTd-UiJ0eXx8JSM1Zi-AiLtom0
CitedBy_id crossref_primary_10_1007_s11831_025_10291_y
crossref_primary_10_1007_s42452_023_05316_9
crossref_primary_10_1016_j_geoderma_2025_117446
crossref_primary_10_1108_COMPEL_02_2017_0099
crossref_primary_10_1007_s00466_023_02335_6
crossref_primary_10_1080_15376494_2023_2242341
crossref_primary_10_1002_sim_8737
crossref_primary_10_1038_s41598_023_44958_y
crossref_primary_10_1371_journal_pone_0321692
crossref_primary_10_1007_s11222_022_10078_2
crossref_primary_10_1007_s11837_019_03549_x
crossref_primary_10_1088_2632_2153_ad020d
crossref_primary_10_3390_e22020258
crossref_primary_10_1088_1361_6633_abb4c7
crossref_primary_10_1214_23_STS915
crossref_primary_10_1029_2022WR033045
crossref_primary_10_1146_annurev_statistics_040120_010730
crossref_primary_10_1371_journal_pcbi_1011342
crossref_primary_10_1016_j_jmapro_2022_09_059
crossref_primary_10_1088_2632_2153_ad113a
crossref_primary_10_1016_j_jprocont_2019_01_010
crossref_primary_10_1016_j_jtbi_2019_110079
crossref_primary_10_1063_5_0251881
crossref_primary_10_1007_s00521_025_11464_3
crossref_primary_10_1007_s42113_020_00079_7
crossref_primary_10_1109_ACCESS_2023_3288997
crossref_primary_10_1109_TRO_2021_3063977
crossref_primary_10_1016_j_cma_2024_117457
crossref_primary_10_1146_annurev_marine_041823_095913
crossref_primary_10_1002_qre_3228
crossref_primary_10_3390_pr11051576
crossref_primary_10_1214_19_BA1144
crossref_primary_10_1214_16_BA1045
crossref_primary_10_1002_esp_70030
crossref_primary_10_1214_21_BA1286
crossref_primary_10_1038_s41534_022_00601_8
crossref_primary_10_1109_TCI_2024_3414273
crossref_primary_10_1214_22_STS865
crossref_primary_10_1016_j_jspi_2021_10_006
crossref_primary_10_1109_ACCESS_2024_3446234
crossref_primary_10_1007_s10651_024_00623_9
crossref_primary_10_1016_j_compchemeng_2024_108746
crossref_primary_10_1061__ASCE_EM_1943_7889_0002162
crossref_primary_10_1080_01621459_2019_1617154
crossref_primary_10_1016_j_ress_2019_106522
crossref_primary_10_1111_jiec_70034
crossref_primary_10_1007_s13253_024_00630_0
crossref_primary_10_1016_j_coisb_2018_02_005
crossref_primary_10_3390_info12040156
crossref_primary_10_1016_j_matdes_2018_10_014
crossref_primary_10_1038_s41467_024_55287_7
crossref_primary_10_3390_s24113382
crossref_primary_10_1080_00401706_2016_1251495
crossref_primary_10_1109_TNET_2024_3405798
crossref_primary_10_1371_journal_pone_0288445
crossref_primary_10_1080_20550340_2024_2395089
crossref_primary_10_1016_j_geoderma_2023_116571
crossref_primary_10_1214_20_BA1225
crossref_primary_10_1371_journal_pcbi_1007308
crossref_primary_10_1214_22_BA1306
crossref_primary_10_1371_journal_pcbi_1009610
crossref_primary_10_1080_03610918_2016_1271888
crossref_primary_10_1093_restud_rdac083
crossref_primary_10_1016_j_ecolind_2024_111828
crossref_primary_10_1016_j_eswa_2023_122502
crossref_primary_10_1016_j_cma_2023_116428
crossref_primary_10_1371_journal_pcbi_1011806
crossref_primary_10_3390_en14144235
crossref_primary_10_1016_j_cma_2023_116304
crossref_primary_10_1088_1361_6420_ad07fd
crossref_primary_10_1080_01621459_2016_1270051
crossref_primary_10_1007_s10237_020_01318_3
crossref_primary_10_1016_j_spasta_2019_100392
crossref_primary_10_1016_j_microrel_2018_06_005
crossref_primary_10_1038_s41586_019_0917_9
crossref_primary_10_1002_cite_201800100
crossref_primary_10_1002_wsbm_1482
crossref_primary_10_1016_j_scitotenv_2017_07_201
crossref_primary_10_1016_j_procir_2025_02_128
crossref_primary_10_1103_PhysRevApplied_14_054036
crossref_primary_10_1016_j_oceaneng_2025_121084
crossref_primary_10_1016_j_csda_2022_107643
crossref_primary_10_1007_s11166_021_09346_9
crossref_primary_10_1007_s00211_021_01266_9
crossref_primary_10_1103_PhysRevApplied_18_054001
crossref_primary_10_1186_s12859_023_05538_z
crossref_primary_10_1016_j_cma_2018_11_021
crossref_primary_10_1016_j_jece_2023_110593
crossref_primary_10_1016_j_cma_2025_118198
crossref_primary_10_3390_jmse12101829
crossref_primary_10_1002_aaai_12116
crossref_primary_10_1137_23M1624634
crossref_primary_10_1016_j_compchemeng_2019_03_010
crossref_primary_10_1007_s00466_025_02606_4
crossref_primary_10_1007_s11538_024_01301_4
crossref_primary_10_1007_s00362_023_01438_9
crossref_primary_10_12688_wellcomeopenres_22288_1
crossref_primary_10_1007_s11119_022_09921_3
crossref_primary_10_1007_s11538_019_00589_x
crossref_primary_10_1016_j_ces_2018_05_040
crossref_primary_10_1111_ffe_13859
crossref_primary_10_1007_s10928_016_9498_5
crossref_primary_10_1098_rsif_2025_0206
crossref_primary_10_1111_sjos_12699
crossref_primary_10_1002_wics_1608
crossref_primary_10_1088_1361_6420_ad04ec
crossref_primary_10_1214_18_BA1121
crossref_primary_10_1016_j_csda_2016_05_020
crossref_primary_10_1111_ffe_14156
crossref_primary_10_1080_24725854_2024_2312905
crossref_primary_10_1016_j_cma_2023_116182
crossref_primary_10_1016_j_procs_2019_12_142
crossref_primary_10_1088_1361_6420_abe10c
crossref_primary_10_1142_S0217984924502105
crossref_primary_10_2136_sssaj2017_10_0356
crossref_primary_10_7554_eLife_86224
crossref_primary_10_1016_j_soildyn_2024_108640
crossref_primary_10_1111_2041_210X_13002
crossref_primary_10_1016_j_jcp_2025_113976
crossref_primary_10_1109_LSP_2025_3588026
crossref_primary_10_1088_1361_6471_abf1df
crossref_primary_10_1016_j_chemolab_2021_104395
crossref_primary_10_1016_j_firesaf_2025_104538
crossref_primary_10_1016_j_biortech_2025_132729
crossref_primary_10_1016_j_compgeo_2020_103938
crossref_primary_10_1016_j_compchemeng_2020_106774
crossref_primary_10_1016_j_ress_2021_107968
crossref_primary_10_1016_j_ifacol_2020_12_242
crossref_primary_10_1371_journal_pcbi_1005841
crossref_primary_10_1007_s11222_017_9734_x
crossref_primary_10_1515_scid_2018_0005
crossref_primary_10_1080_03610918_2019_1656741
crossref_primary_10_1093_jrsssc_qlad099
crossref_primary_10_1016_j_compchemeng_2022_108083
crossref_primary_10_3389_fevo_2021_740848
crossref_primary_10_1016_j_foodqual_2023_104928
crossref_primary_10_1029_2022MS002997
crossref_primary_10_1109_TAC_2023_3264177
crossref_primary_10_1371_journal_pcbi_1007593
crossref_primary_10_1088_1742_5468_ac3908
crossref_primary_10_1016_j_ttbdis_2024_102329
crossref_primary_10_1103_PhysRevApplied_18_024040
crossref_primary_10_1140_epja_s10050_021_00382_2
crossref_primary_10_1080_01621459_2018_1562932
crossref_primary_10_1002_sta4_70054
crossref_primary_10_1016_j_finel_2025_104315
crossref_primary_10_1137_21M1409330
crossref_primary_10_1007_s11222_015_9596_z
crossref_primary_10_1007_s11043_018_09403_y
crossref_primary_10_3390_buildings13020489
crossref_primary_10_1016_j_cma_2025_118068
crossref_primary_10_3390_e21040351
crossref_primary_10_1111_sjos_12554
crossref_primary_10_1007_s42519_019_0063_6
crossref_primary_10_6028_jres_126_002
crossref_primary_10_1016_j_ymssp_2022_109868
crossref_primary_10_1016_j_jprocont_2022_05_008
crossref_primary_10_1007_s00211_020_01131_1
crossref_primary_10_1002_nme_6367
crossref_primary_10_1080_00401706_2022_2046169
crossref_primary_10_1080_08982112_2016_1246045
crossref_primary_10_1016_j_csda_2018_03_004
crossref_primary_10_1016_j_ijmecsci_2023_108881
Cites_doi 10.1214/aos/1176346407
10.1016/0378-3758(92)90017-M
10.1111/j.2517-6161.1968.tb01505.x
10.1371/journal.pcbi.1002888
10.1002/(SICI)1097-0258(19980730)17:14<1613::AID-SIM867>3.0.CO;2-C
10.1007/978-1-4612-0703-0
10.1093/oso/9780198504856.003.0020
10.1111/j.2517-6161.1996.tb02067.x
10.1111/j.1467-9876.2010.00747.x
10.1214/aos/1176344689
10.1186/1752-0509-8-20
10.1016/j.jspi.2007.05.024
10.1002/cjce.21711
10.1198/tast.2010.09058
10.1214/aos/1176348265
10.1214/10-AOAS445
10.1002/j.1538-7305.1948.tb01338.x
10.1111/j.1541-0420.2010.01410.x
10.1016/j.csda.2009.07.022
10.1080/10543409808835252
10.1111/j.2517-6161.1975.tb01032.x
10.1214/aos/1176348392
10.1198/016214504000001123
10.1002/nav.20046
10.1111/biom.12081
10.1002/sim.4780140904
10.2307/3316023
10.1016/0025-5564(85)90068-9
10.1093/genetics/162.4.2025
10.1111/j.1541-0420.2007.00931.x
10.1109/BMEI.2009.5305435
10.1016/j.cma.2013.02.017
10.1201/b10905-13
10.1111/j.1467-9868.2006.00553.x
10.1080/00401706.1968.10490542
10.1080/10618600.2012.730083
10.1093/oso/9780198522546.001.0001
10.2307/2531909
10.1093/oso/9780198522669.003.0026
10.1111/1467-9876.00179
10.1162/neco.2008.08-07-594
10.1093/biostatistics/kxl031
10.1007/978-94-015-7744-1
10.1080/00401706.1967.10490441
10.1111/j.1467-9469.2005.00469.x
10.1111/1467-9876.00239
10.1214/ss/1177009939
10.1214/aoms/1177729694
10.1016/j.csda.2013.08.017
10.1080/01621459.1995.10476636
10.1162/0899766053723032
10.1109/NSSPW.2006.4378829
10.1214/193940307000000518
10.1111/j.1467-9868.2008.00700.x
10.1080/01621459.1996.10476993
10.1287/mnsc.45.7.995
10.2307/1913710
10.1214/aoms/1177728069
10.1198/1061860032274
10.1139/f95-189
10.1080/00401706.1978.10489611
10.1093/comjnl/7.4.308
10.1093/biomet/89.3.539
10.1198/016214505000001159
10.2307/2348929
10.1214/aoms/1177729586
10.2307/2533849
10.1007/BF00933971
10.1615/Int.J.UncertaintyQuantification.2014006730
10.1016/j.jspi.2011.12.029
10.1016/j.jspi.2009.05.042
10.1002/bimj.200800192
10.1016/j.csda.2015.06.007
10.1214/aos/1176347878
10.3390/e17031063
10.1016/0025-5564(90)90141-K
10.1007/978-1-4757-4286-2
10.1016/j.csda.2012.05.014
10.1111/j.0006-341X.2004.00148.x
10.1016/j.jspi.2009.12.004
10.1080/10543400802677257
10.1080/01621459.1994.10476893
10.1137/1.9781611970654
10.1016/j.jmp.2005.12.005
10.1198/jcgs.2011.10070
10.1198/1061860032012
10.1287/deca.1060.0079
10.1016/j.jcp.2012.08.013
10.1162/neco.2009.02-09-959
10.1093/biostatistics/kxs026
ContentType Journal Article
Copyright 2016 International Statistical Institute
2015 The Authors. International Statistical Review © 2015 International Statistical Institute
Copyright John Wiley & Sons, Inc. Apr 2016
Copyright_xml – notice: 2016 International Statistical Institute
– notice: 2015 The Authors. International Statistical Review © 2015 International Statistical Institute
– notice: Copyright John Wiley & Sons, Inc. Apr 2016
DBID BSCLL
AAYXX
CITATION
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1111/insr.12107
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Aerospace Database

Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1751-5823
EndPage 154
ExternalDocumentID 4040138951
10_1111_insr_12107
INSR12107
44162464
ark_67375_WNG_7GQHDK2M_M
Genre article
Feature
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
29J
31~
33P
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5RE
5VS
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AABCJ
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWIL
AAXRX
AAYCA
AAZKR
ABAWQ
ABBHK
ABCQN
ABCUV
ABDBF
ABEML
ABFAN
ABIVO
ABJNI
ABLJU
ABPVW
ABQDR
ABXSQ
ABYWD
ACAHQ
ACBWZ
ACCZN
ACDIW
ACGFO
ACGFS
ACHJO
ACIWK
ACMTB
ACNCT
ACPOU
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADNMO
ADODI
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AELLO
AENEX
AEUPB
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFVYC
AFWVQ
AFZJQ
AGHNM
AGLNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AIHAF
AITYG
AIURR
AJXKR
AKBRZ
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DU5
EBS
ECEWR
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GIFXF
GODZA
H.T
H.X
HF~
HGD
HGLYW
HQ6
HVGLF
HZ~
H~9
IPSME
IX1
J0M
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K48
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RBU
RNS
ROL
RPE
RX1
SA0
SUPJJ
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
YYP
ZZTAW
~02
~IA
~WT
ALUQN
AAYXX
CITATION
O8X
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c4967-d768287b02def69a33303eddf66703b93e4c00d9c88a45f729d72f4690b375e63
IEDL.DBID DRFUL
ISICitedReferencesCount 213
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374597200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-7734
IngestDate Thu Jul 10 19:06:04 EDT 2025
Fri Jul 25 12:19:39 EDT 2025
Sat Nov 29 01:54:38 EST 2025
Tue Nov 18 22:33:17 EST 2025
Sun Sep 21 06:17:48 EDT 2025
Thu Jul 03 22:18:03 EDT 2025
Tue Nov 11 03:32:13 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4967-d768287b02def69a33303eddf66703b93e4c00d9c88a45f729d72f4690b375e63
Notes istex:34C1AA96AEBFE295756F9E7B8D3A1FD76794CD07
ArticleID:INSR12107
ark:/67375/WNG-7GQHDK2M-M
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://kclpure.kcl.ac.uk/ws/files/47155926/Revised_Manuscript_ISR.pdf
PQID 1785500791
PQPubID 105652
PageCount 27
ParticipantIDs proquest_miscellaneous_1808118392
proquest_journals_1785500791
crossref_citationtrail_10_1111_insr_12107
crossref_primary_10_1111_insr_12107
wiley_primary_10_1111_insr_12107_INSR12107
jstor_primary_44162464
istex_primary_ark_67375_WNG_7GQHDK2M_M
PublicationCentury 2000
PublicationDate April 2016
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: April 2016
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle International statistical review
PublicationTitleAlternate International Statistical Review
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Blackwell Publishing
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell Publishing
– name: John Wiley & Sons, Inc
References Kinas P.. (1996). Bayesian fishery stock assessment and decision making using adaptive importance sampling. Can. J. Fish. Aquat.Sci., 53, 414-423.
Pronzato L., Walter E.. (1985). Robust experimental design via stochastic approximation. Math. Biosci., 75, 103-120.
Müller P., Sansó B., De Iorio M.. (2004). Optimal Bayesian design by inhomogeneous Markov chain simulation. J. Amer. Statist. Assoc., 99(467), 788-798.
Berry D. A., Ho C. -H.. (1988). One-sided sequential stopping boundaries for clinical trials: A decision-theoretic approach. Biometrics, 44, 219-227.
Masoumi S., Duever T. A., Reilly P. M.. (2013). Sequential Markov chain Monte Carlo (MCMC) model discrimination. The Can. J. Chem. Eng., 91(5), 862-869.
Zidek J., Sun W., Le N.. (2000). Designing and integrating composite networks for monitoring multivariate Gaussian pollution fields. Appl. Stat., 49, 63-79.
Kullback S., Leibler R. A.. (1951). On information and sufficiency. Ann. Math. Stat., 22(1), 79-86.
Pilz J.. (1991). Bayesian Estimation and Experimental Design in Linear Regression Models (2nd ed).. New York: Wiley.
Ormerod J., Wand M.. (2010). Explaining variational approximations. J. Amer. Statist. Assoc., 64(2), 140-153.
Box G. E. P., Hill W. J.. (1967). Discrimination among mechanistic models. Technometrics, 9, 57-71.
Atkinson A. C.. (1996). The usefulness of optimum experimental designs. J. R. Stat. Soc. Ser. B., 58, 59-76.
Bornkamp B., Bretz F., Dette H., Pinheiro J.. (2011). Response-adaptive dose-finding under model uncertainty. Ann. Appl. Stat., 5(2B), 1611-1631.
Atkinson A. C. & Donev A. N.. (1992). Optimum Experimental Designs. New York: Oxford University Press.
Ho Y. C., Cao X.. (1983). Perturbation analysis and optimization of queueing networks. J. Optim. Theory Appl., 40, 559-582.
Waterhouse T. H., Eccleston J. A., Duffull S. B. (2009). Optimal design criteria for discrimination and estimation in nonlinear models. J. Biopharm. Stat., 19, 386-402.
Drovandi C., McGree J., Pettitt A.. (2014). A sequential Monte Carlo algorithm to incorporate model uncertainty in Bayesian sequential design. J. Comput. Graph. Statist., 23(1), 3-24.
Lewis R., Berry D. A.. (1994). Group sequential clinical trials: A classical evaluation of Bayesian decision-theoretic designs. J. Amer. Statist. Assoc., 89, 1528-1534.
Ryan K.. (2003). Estimating expected information gains for experimental designs with application to the random fatigue-limit model. J. Comput. Graph. Statist., 12, 585-603.
Hill W. J.. (1978). A review of experimental design procedures for regression model discrimination. Technometerics, 20, 15-21.
Amzal B., Bois F., Parent E. & Robert C. P.. (2006). Bayesian-optimal design via interacting particle systems. J. Amer. Statist. Assoc., 101(474), 773-785.
Shannon C.. (1948). A mathematical theory of communication. Bell Syst. Tech. J., 27, 379-423, 623-656.
Vanlier J., Tiemann C., Hilbers P., van Riel N.. (2014). Optimal experimental design for model selection in biochemical networks. BMC Syst. Biol., 8, 20.
Carlin B., Kadane J., Gelfand A.. (1998). Approaches for optimal sequential decision analysis in clinical trials. Biometrics, 54(3), 964-975.
Lindley D. V.. (1972). Bayesian Statistics-A Review.. Philadelphia: SIAM.
Liepe J., Filippi S., Komorowski M., Stumpf M. P. H.. (2013). Maximising 2013 is not a one-page article please supply the first and last pages for this article. the information content of experiments in systems biology. PLoS Comput. Biol., 1, e1002888. Online ahead of print at DOI doi:10.1371/journal.pcbi.1002888.
Nocedal J., Wright S. J.. (2006). Numerical Optimization 2nd edn. New York: Springer.
Hill W., Hunter W., Wichern D.. (1968). A joint design criterion for the dual problem of model discrimination and parameter estimation. Technometrics, 10(1), 145-160.
Berger J. O.. (1985). Statistical Decision Theory and Bayesian Analysis 2nd edn. New York:Springer-Verlag.
Stroud J., Müller P., Rosner G.. (2001). Optimal sampling times in population pharmacokinetic studies. J. R. Stat. Soc. Ser. C. Appl. Stat., 50(3), 345-359.
D'Argenio D.. (1990). Incorporating prior parameter uncertainty in the design of sampling schedules for pharmacokinetic parameter estimation experiments. Math. Biosci., 99(1), 105-118.
El-Krunz S., Studden W. (1991). Bayesian optimal designs for linear regression models. Ann. Statist., 19, 2183-2208.
Ryan E. G., Drovandi C. C., Thompson M., Pettitt A. N.. (2014). Towards Bayesian experimental design for nonlinear models that require a large number of sampling times. Comput. Stat. Data Anal., 70, 45-60.
Lindley D.. (1956). On a measure of the information provided by an experiment. Ann. Math. Stat., 27, 986-1005.
Huan X., Marzouk Y. M. (2013). Simulation-based optimal Bayesian experimental design for nonlinear systems. J. Comput. Phys., 232(1), 288-317.
Ryan E. G., Drovandi C. C., Pettitt A. N.. (2015b). Simulation-based fully Bayesian experimental design for mixed effects models.. Comput. Stat. Data Anal. (In press).
Loeppky J., Moore L., Williams B.. (2010). Batch sequential designs for computer experiments. J. Statist. Plann. Inference, 140, 1452-1464.
Bernardo J. M., Smith A. F. M.. (2000). Bayesian Theory 2nd edn. John Wiley & Sons 2000, Nocedal and Wright 2006, Ross 1983 and Sisson and Fan 2011. Chichester, New York:.
Müller P., Parmigiani G.. (1995). Optimal design via curve fitting of Monte Carlo experiments. J. Amer. Statist. Assoc., 90(432), 1322-1330.
Nelder J. A., Mead R.. (1965). A simplex method for function minimization. The Comput. J., 7(4), 308-313.
Long Q., Scavino M, Tempone R., Wang S.. (2013). Fast estimation of expected information gains for Bayesian experimental designs based on Laplace approximations. Comput. Methods Appl. Mech. Engrg., 259, 24-39.
Ross S.. (1983). Introduction to Stochastic Dynamic Programming.. Orlando, Florida: Academic Press.
DasGupta A., Mukhopadhyay S., Studden W.. (1992). Compromise designs in heteroscedastic linear models. J. Statist. Plann. Inference, 32, 363-384.
Drovandi C. C., Pettitt A. N.. (2013). Bayesian experimental design for models with intractable likelihoods. Biometrics, 69(4), 937-948.
McGree J., Drovandi C. C., Thompson H., Eccleston J., Duffull S., Mengersen K., Pettitt A. N., Goggin T.. (2012b). Adaptive Bayesian compound designs for dose finding studies. J. Statist. Plann. Inference, 142(6), 1480-1492.
Sisson S. A., Fan Y.. (2011). Handbook of Markov Chain Monte Carlo., 313-335, Boca Raton, Florida: Chapman & Hall.
Dette H.. (1990). A generalization of D-and D1-optimal designs in polynomial regression. The Ann. Statist., 18, 1784-1804.
Van Laarhoven P., Aarts E.. (1987). Simulated Annealing: Theory and Applications.. Dordrecht: Reider.
Whitehead J., Brunier H.. (1995). Bayesian decision procedures for dose determining experiments. Stat. Med., 14, 885-893.
Fedorov V. V.. (1972). Theory of Optimal Experiments.. New York: Academic Press.
Christen J., Müller P., Wathen K., Wolf J.. (2004). Bayesian randomized clinical trials: A decision-theoretic sequential design. Canad. J. Statist., 32(4), 387-402.
Drovandi C. C., Pettitt A. N.. (2011). Estimation of parameters for macroparasite population evolution using approximate Bayesian computation. Biometrics, 67(1), 225-233.
Liu G., Rosenberger W. F., Haines L. M.. (2009). Sequential designs for ordinal phase I clinical trials. Biom. J., 51(2), 335-347.
Verdinelli I.. (1992). Bayesian Statistics 4, 467-481, Advances in Bayesian Experimental Design (with Discussion), vol. 4, Oxford: Oxford University Press.
Drovandi C. C., Pettitt A. N., Faddy M. J.. (2011). Approximate Bayesian computation using indirect inference. J. R. Stat. Soc. Ser. C. Appl. Stat., 60(3), 503-524.
Atkinson A. C.. (2008). DT-optimum designs for model discrimination and parameter estimation. J. Statist. Plann. Inference, 138, 56-64.
Rue H., Martino S., Chopin N.. (2009). Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations (with discussion). J. R. Stat. Soc. Ser. B., 71(2), 319-392.
Clyde M., Chaloner K.. (1996). The equivalence of constrained and weighted designs in multiple objective design problems. J. Amer. Statist. Assoc., 91, 1236-1244.
Bernardo J. M.. (1979). Expected information as expected utility. Ann. Statist., 7(3), 686-690.
Robbins H., Monro S.. (1951). A stochastic approximation method. Ann. Math. Stat., 22(3), 400-407.
Pukelsheim F., Torsney B.. (1991). Optimal weights for experimental designs on linearly independent support points. The Ann. Statist., 19(3), 1614-1625.
Tommasi C., López-Fidalgo J.. (2010). Bayesian optimum designs for discriminiating between models with any distribution. Comput. Stat. Data Anal., 54, 143-150.
Rossell D., Müller P.. (2013). Sequential stopping for high-throughput experiments. Biostat., 14(1), 75-86.
Chopin N.. (2002). A sequential particle filter method for static models. Biometrika, 89(3), 539-552.
Han C., Chaloner K.. (2004). Bayesian experimental design for nonlinear mixed-effects models with application to HIV dynamics. Biometrics, 60, 25-33.
Spall J. C.. (1998). An overview of the simultaneous perturbation method for efficient optimization. Johns Hopkins APL Tech. Dig., 19(4), 482-492.
Bielza C., Müller P., Insua D. R.. (1999). Decision analysis by augmented probability simulation. Manag. Sci., 45(7), 995-1007.
Ryan E. G., Drovandi C. C., Pettitt A. N.. (2015a). Fully Bayesian experimental design for pharmacokinetic studies. Entropy, 17, 1063-1089.
Kujala J. V., Lukka T. J.. (2006). Bayesian adaptive estimation: The next dimension. J. Math. Psych., 50(4), 369-389.
Whitehead J., Williamson D.. (1998). Bayesian decision procedures based on logisic regression models for dose-finding studies. J. Biopharm. Stat., 8, 445-467.
Beaumont M. A., Zhang W., Balding D. J.. (2002). Approximate Bayesian computation in population genetics. Genet., 162(4), 2025-2035.
Kuo L., Soyer R. & Wang F.. (1999). Bayesian Statistics VI. New York: Oxford University Press.
Rossell D., Müller P., Rosner G. L.. (2007). Screening designs for drug
1991; 19
2001; 50
2013; 69
2013; 1
2006; 33
2011; 60
2004; 25
1999; 45
1972
1970
2015b
2014; 23
2004; 32
2010; 22
1998; 19
2002; 89
1965; 7
2007; 8
1987
2013; 232
1985
1983
2011; 67
2009; 19
2012; 21
1979; 7
2012b; 142
2006; 50
1988; 17
1994; 89
2013; 91
1997
1975; 37
1996
1995
1992
1996; 91
1991
1992; 32
2011; 5
1999
1967; 9
2004; 51
2009; 71
1956; 27
2008; 138
1989; 57
2005; 17
1985; 75
2006; 101
1998; 8
2010; 54
1990; 99
2014; 70
2000; 49
2004; 60
1990; 18
1951; 22
2010; 140
2003; 12
2010; 64
2014; 4
2009; 51
2013; 14
2000
2006; 68
1978; 20
1984; 12
1988; 44
2014; 57
2012a
2008; 64
2014; 8
1998; 54
1968; 10
1948; 27
2009; 21
1995; 90
2011
1995; 14
1995; 10
2009
2008
2006
2006; 3
2004
1996; 58
1999; 6
1996; 53
1994; 43
2009; 139
2015a; 17
2004; 99
2002; 162
2013; 259
2001; 8
1965
1983; 40
2014
2013
1968; 30
e_1_2_9_75_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_107_1
e_1_2_9_14_1
e_1_2_9_37_1
Müller P. (e_1_2_9_72_1) 1999; 6
e_1_2_9_18_1
Pilz J. (e_1_2_9_83_1) 1991
Wolfson L. (e_1_2_9_113_1) 1996
e_1_2_9_64_1
e_1_2_9_87_1
Atkinson A. C. (e_1_2_9_5_1) 1992
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
Bernardo J. M. (e_1_2_9_10_1) 2000
e_1_2_9_60_1
e_1_2_9_2_1
Nocedal J. (e_1_2_9_78_1) 2006
e_1_2_9_111_1
e_1_2_9_26_1
e_1_2_9_49_1
Maryak J. (e_1_2_9_67_1) 2004; 25
Clyde M. (e_1_2_9_24_1) 2001; 8
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
Berry D. (e_1_2_9_11_1) 2000
e_1_2_9_34_1
e_1_2_9_57_1
Verdinelli I. (e_1_2_9_108_1) 1992
Lindley D. (e_1_2_9_61_1) 1968; 30
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
Fedorov V. V. (e_1_2_9_42_1) 1997
e_1_2_9_102_1
e_1_2_9_106_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_19_1
DeGroot M. H. (e_1_2_9_31_1) 1970
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_114_1
Atkinson A. C. (e_1_2_9_3_1) 1996; 58
e_1_2_9_9_1
Pennanen T. (e_1_2_9_82_1) 2006
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
Spall J. C. (e_1_2_9_100_1) 1998; 19
e_1_2_9_12_1
e_1_2_9_54_1
Spiegelhalter D. J. (e_1_2_9_101_1) 1996
Ross S. (e_1_2_9_88_1) 1983
e_1_2_9_92_1
e_1_2_9_109_1
Clyde M. (e_1_2_9_25_1) 1996; 91
e_1_2_9_105_1
Kuo L. (e_1_2_9_56_1) 1999
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_70_1
Fedorov V. V. (e_1_2_9_41_1) 1972
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
Beaumont M. A. (e_1_2_9_6_1) 2002; 162
e_1_2_9_63_1
e_1_2_9_40_1
Sisson S. A. (e_1_2_9_98_1) 2011
e_1_2_9_21_1
e_1_2_9_44_1
e_1_2_9_7_1
Pronzato L. (e_1_2_9_84_1) 1985; 75
e_1_2_9_112_1
Rios Insua D. (e_1_2_9_86_1) 2000
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – reference: Atkinson A. C.. (1996). The usefulness of optimum experimental designs. J. R. Stat. Soc. Ser. B., 58, 59-76.
– reference: Paninski L.. (2005). Asymptotic theory of information-theoretic experimental design. Neural Comput., 17, 1480-1507.
– reference: Fedorov V. V.. (1972). Theory of Optimal Experiments.. New York: Academic Press.
– reference: Liu G., Rosenberger W. F., Haines L. M.. (2009). Sequential designs for ordinal phase I clinical trials. Biom. J., 51(2), 335-347.
– reference: Lindley D.. (1968). The choice of variables in multiple regression. J. R. Stat. Soc. Ser. B., 30, 31-53.
– reference: Kuo L., Soyer R. & Wang F.. (1999). Bayesian Statistics VI. New York: Oxford University Press.
– reference: Ryan E. G., Drovandi C. C., Pettitt A. N.. (2015a). Fully Bayesian experimental design for pharmacokinetic studies. Entropy, 17, 1063-1089.
– reference: Box G. E. P., Hill W. J.. (1967). Discrimination among mechanistic models. Technometrics, 9, 57-71.
– reference: Robbins H., Monro S.. (1951). A stochastic approximation method. Ann. Math. Stat., 22(3), 400-407.
– reference: Fedorov V. V., Hackl P.. (1997). Model-Oriented Design of Experiments.. Berlin: Springer-Verlag.
– reference: Chopin N.. (2002). A sequential particle filter method for static models. Biometrika, 89(3), 539-552.
– reference: Pronzato L., Walter E.. (1985). Robust experimental design via stochastic approximation. Math. Biosci., 75, 103-120.
– reference: Carlin B., Kadane J., Gelfand A.. (1998). Approaches for optimal sequential decision analysis in clinical trials. Biometrics, 54(3), 964-975.
– reference: Sisson S. A., Fan Y.. (2011). Handbook of Markov Chain Monte Carlo., 313-335, Boca Raton, Florida: Chapman & Hall.
– reference: Huan X., Marzouk Y. M.. (2014). Gradient-based stochastic optimization methods in Bayesian experimental design. Int. J. Uncertain. Quantif., 4(6), 479-510.
– reference: Müller P., Sansó B., De Iorio M.. (2004). Optimal Bayesian design by inhomogeneous Markov chain simulation. J. Amer. Statist. Assoc., 99(467), 788-798.
– reference: Drovandi C. C., McGree J. M., Pettitt A. N.. (2014). Sequential Monte Carlo for Bayesian sequential design. Comput. Stat. Data Anal., 57(1), 320-335.
– reference: Brockwell A. E., Kadane J. B.. (2003). A gridding method for Bayesian sequential decision problems. J. Comput. Graph. Statist., 12(3), 566-584.
– reference: Bernardo J. M., Smith A. F. M.. (2000). Bayesian Theory 2nd edn. John Wiley & Sons 2000, Nocedal and Wright 2006, Ross 1983 and Sisson and Fan 2011. Chichester, New York:.
– reference: Berry D., Müller P., Grieve A., Smith M., Parke T., Blazek R., Mitchard N. & Krams M.. (2000). Case Studies in Bayesian Statistics. New York: Springer.
– reference: Kullback S., Leibler R. A.. (1951). On information and sufficiency. Ann. Math. Stat., 22(1), 79-86.
– reference: Chaloner K., Verdinelli I.. (1995). Bayesian experimental design: A review. Stat. Sci., 10, 273-304.
– reference: Stroud J., Müller P., Rosner G.. (2001). Optimal sampling times in population pharmacokinetic studies. J. R. Stat. Soc. Ser. C. Appl. Stat., 50(3), 345-359.
– reference: Solonen A., Haario H., Laine M.. (2012). Simulation-based optimal design using a response variance criterion. J. Comput. Graph. Statist., 21(1), 234-252.
– reference: Müller P.. (1999). Simulation-based optimal design. Bayesian Stat., 6, 459-474.
– reference: Geweke J.. (1989). Bayesian inference in econometric models using Monte Carlo integration. Econom., 57(6), 1317-1339.
– reference: Ng S. H., Chick S. E.. (2004). Design of follow-up experiments for improving model discrimination and parameter estimation. Naval Res. Logist., 51, 1129-1148.
– reference: Rue H., Martino S., Chopin N.. (2009). Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations (with discussion). J. R. Stat. Soc. Ser. B., 71(2), 319-392.
– reference: Liepe J., Filippi S., Komorowski M., Stumpf M. P. H.. (2013). Maximising 2013 is not a one-page article please supply the first and last pages for this article. the information content of experiments in systems biology. PLoS Comput. Biol., 1, e1002888. Online ahead of print at DOI doi:10.1371/journal.pcbi.1002888.
– reference: Drovandi C. C., Pettitt A. N., Faddy M. J.. (2011). Approximate Bayesian computation using indirect inference. J. R. Stat. Soc. Ser. C. Appl. Stat., 60(3), 503-524.
– reference: Whitehead J., Williamson D.. (1998). Bayesian decision procedures based on logisic regression models for dose-finding studies. J. Biopharm. Stat., 8, 445-467.
– reference: Cavagnaro D. R., Myung J. I., Pitt M. A., Kujala J. V.. (2010). Adaptive design optimization: A mutual information-based approach to model discrimination in cognitive science. Neural Comput., 22(4), 887-905.
– reference: Lewis R., Berry D. A.. (1994). Group sequential clinical trials: A classical evaluation of Bayesian decision-theoretic designs. J. Amer. Statist. Assoc., 89, 1528-1534.
– reference: Zidek J., Sun W., Le N.. (2000). Designing and integrating composite networks for monitoring multivariate Gaussian pollution fields. Appl. Stat., 49, 63-79.
– reference: Del Moral P., Doucet A., Jasra A.. (2006). Sequential Monte Carlo samplers. J. R. Stat. Soc. Ser. B. Stat. Methodol., 68(3), 411-436.
– reference: Atkinson A. C.. (2008). DT-optimum designs for model discrimination and parameter estimation. J. Statist. Plann. Inference, 138, 56-64.
– reference: Chaloner K.. (1984). Optimal Bayesian experimental designs for linear models. Ann. Statist., 12, 283-300.
– reference: Amzal B., Bois F., Parent E. & Robert C. P.. (2006). Bayesian-optimal design via interacting particle systems. J. Amer. Statist. Assoc., 101(474), 773-785.
– reference: Christen J., Müller P., Wathen K., Wolf J.. (2004). Bayesian randomized clinical trials: A decision-theoretic sequential design. Canad. J. Statist., 32(4), 387-402.
– reference: Bernardo J. M.. (1979). Expected information as expected utility. Ann. Statist., 7(3), 686-690.
– reference: Atkinson A. C. & Donev A. N.. (1992). Optimum Experimental Designs. New York: Oxford University Press.
– reference: Tommasi C., López-Fidalgo J.. (2010). Bayesian optimum designs for discriminiating between models with any distribution. Comput. Stat. Data Anal., 54, 143-150.
– reference: Van Laarhoven P., Aarts E.. (1987). Simulated Annealing: Theory and Applications.. Dordrecht: Reider.
– reference: Ross S.. (1983). Introduction to Stochastic Dynamic Programming.. Orlando, Florida: Academic Press.
– reference: Rossell D., Müller P.. (2013). Sequential stopping for high-throughput experiments. Biostat., 14(1), 75-86.
– reference: Dette H.. (1990). A generalization of D-and D1-optimal designs in polynomial regression. The Ann. Statist., 18, 1784-1804.
– reference: Ryan E. G., Drovandi C. C., Pettitt A. N.. (2015b). Simulation-based fully Bayesian experimental design for mixed effects models.. Comput. Stat. Data Anal. (In press).
– reference: Drovandi C. C., Pettitt A. N.. (2013). Bayesian experimental design for models with intractable likelihoods. Biometrics, 69(4), 937-948.
– reference: Ormerod J., Wand M.. (2010). Explaining variational approximations. J. Amer. Statist. Assoc., 64(2), 140-153.
– reference: Ryan K.. (2003). Estimating expected information gains for experimental designs with application to the random fatigue-limit model. J. Comput. Graph. Statist., 12, 585-603.
– reference: Vanlier J., Tiemann C., Hilbers P., van Riel N.. (2014). Optimal experimental design for model selection in biochemical networks. BMC Syst. Biol., 8, 20.
– reference: D'Argenio D.. (1990). Incorporating prior parameter uncertainty in the design of sampling schedules for pharmacokinetic parameter estimation experiments. Math. Biosci., 99(1), 105-118.
– reference: Lindley D.. (1956). On a measure of the information provided by an experiment. Ann. Math. Stat., 27, 986-1005.
– reference: Ryan E. G., Drovandi C. C., Thompson M., Pettitt A. N.. (2014). Towards Bayesian experimental design for nonlinear models that require a large number of sampling times. Comput. Stat. Data Anal., 70, 45-60.
– reference: Maryak J., Chin D.. (2004). Global random optimization by simultaneous perturbation stochastic approximation. Johns Hopkins APL Tech. Dig., 25(2), 91-100.
– reference: Huan X., Marzouk Y. M. (2013). Simulation-based optimal Bayesian experimental design for nonlinear systems. J. Comput. Phys., 232(1), 288-317.
– reference: Spall J. C.. (1998). An overview of the simultaneous perturbation method for efficient optimization. Johns Hopkins APL Tech. Dig., 19(4), 482-492.
– reference: Kinas P.. (1996). Bayesian fishery stock assessment and decision making using adaptive importance sampling. Can. J. Fish. Aquat.Sci., 53, 414-423.
– reference: Pilz J.. (1991). Bayesian Estimation and Experimental Design in Linear Regression Models (2nd ed).. New York: Wiley.
– reference: Berger J. O.. (1985). Statistical Decision Theory and Bayesian Analysis 2nd edn. New York:Springer-Verlag.
– reference: Clyde M., Chaloner K.. (1996). The equivalence of constrained and weighted designs in multiple objective design problems. J. Amer. Statist. Assoc., 91, 1236-1244.
– reference: Tommasi C.. (2009). Optimal designs for both model discrimination and parameter estimation. J. Statist. Plann. Inference, 139, 4123-4132.
– reference: Lewi J., Butera R., Paninski L.. (2009). Sequential optimal design of neurophysiology experiments. Neural Comput., 21, 619-687.
– reference: Beaumont M. A., Zhang W., Balding D. J.. (2002). Approximate Bayesian computation in population genetics. Genet., 162(4), 2025-2035.
– reference: Diggle P., Lophaven S.. (2006). Bayesian geostatistical design. Scand. J. Stat., 33(1), 53-64.
– reference: Lindley D. V.. (1972). Bayesian Statistics-A Review.. Philadelphia: SIAM.
– reference: Cook A., Gibson G., Gilligan C.. (2008). Optimal observation times in experimental epidemic processes. Biometrics, 64(3), 860-868.
– reference: Drovandi C., McGree J., Pettitt A.. (2014). A sequential Monte Carlo algorithm to incorporate model uncertainty in Bayesian sequential design. J. Comput. Graph. Statist., 23(1), 3-24.
– reference: Kujala J. V., Lukka T. J.. (2006). Bayesian adaptive estimation: The next dimension. J. Math. Psych., 50(4), 369-389.
– reference: Müller P., Parmigiani G.. (1995). Optimal design via curve fitting of Monte Carlo experiments. J. Amer. Statist. Assoc., 90(432), 1322-1330.
– reference: Long Q., Scavino M, Tempone R., Wang S.. (2013). Fast estimation of expected information gains for Bayesian experimental designs based on Laplace approximations. Comput. Methods Appl. Mech. Engrg., 259, 24-39.
– reference: Rossell D., Müller P., Rosner G. L.. (2007). Screening designs for drug development. Biostat., 8(3), 595-608.
– reference: Berry D. A., Ho C. -H.. (1988). One-sided sequential stopping boundaries for clinical trials: A decision-theoretic approach. Biometrics, 44, 219-227.
– reference: Drovandi C. C., Pettitt A. N.. (2011). Estimation of parameters for macroparasite population evolution using approximate Bayesian computation. Biometrics, 67(1), 225-233.
– reference: Bielza C., Müller P., Insua D. R.. (1999). Decision analysis by augmented probability simulation. Manag. Sci., 45(7), 995-1007.
– reference: DasGupta A., Mukhopadhyay S., Studden W.. (1992). Compromise designs in heteroscedastic linear models. J. Statist. Plann. Inference, 32, 363-384.
– reference: McGree J., Drovandi C. C., Thompson H., Eccleston J., Duffull S., Mengersen K., Pettitt A. N., Goggin T.. (2012b). Adaptive Bayesian compound designs for dose finding studies. J. Statist. Plann. Inference, 142(6), 1480-1492.
– reference: Müller P., Berry D. A., Grieve A. P., Krams M. (2006). A Bayesian decision-theoretic dose-finding trial. Decis. Anal., 3(4), 197-207.
– reference: Wakefield J.. (1994). An expected loss approach to the design of dosage regimens via sampling-based methods. J. R. Stat. Soc. Ser. D (The Statistician), 43(1), 13-29.
– reference: DeGroot M. H.. (1970). Optimal Statistical Decisions. New York: McGrawHill.
– reference: Loeppky J., Moore L., Williams B.. (2010). Batch sequential designs for computer experiments. J. Statist. Plann. Inference, 140, 1452-1464.
– reference: Hill W., Hunter W., Wichern D.. (1968). A joint design criterion for the dual problem of model discrimination and parameter estimation. Technometrics, 10(1), 145-160.
– reference: Ho Y. C., Cao X.. (1983). Perturbation analysis and optimization of queueing networks. J. Optim. Theory Appl., 40, 559-582.
– reference: Nocedal J., Wright S. J.. (2006). Numerical Optimization 2nd edn. New York: Springer.
– reference: Bornkamp B., Bretz F., Dette H., Pinheiro J.. (2011). Response-adaptive dose-finding under model uncertainty. Ann. Appl. Stat., 5(2B), 1611-1631.
– reference: Han C., Chaloner K.. (2004). Bayesian experimental design for nonlinear mixed-effects models with application to HIV dynamics. Biometrics, 60, 25-33.
– reference: El-Krunz S., Studden W. (1991). Bayesian optimal designs for linear regression models. Ann. Statist., 19, 2183-2208.
– reference: Clyde M.. (2001). Experimental design: A Bayesian perspective. IESBS, 8, 5075-5081.
– reference: Palmer J., Müller P..(1988) Bayesian optimal design in population models for haematologic data. Stat. Med., 17, 1613-1622.
– reference: Borth D. M.. (1975). A total entropy criterion for the dual problem of model discrimination and parameter estimation. J. R. Stat. Soc. Ser. B. Stat. Methodol., 37, 77-87.
– reference: Waterhouse T. H., Eccleston J. A., Duffull S. B. (2009). Optimal design criteria for discrimination and estimation in nonlinear models. J. Biopharm. Stat., 19, 386-402.
– reference: Nelder J. A., Mead R.. (1965). A simplex method for function minimization. The Comput. J., 7(4), 308-313.
– reference: Shannon C.. (1948). A mathematical theory of communication. Bell Syst. Tech. J., 27, 379-423, 623-656.
– reference: Whitehead J., Brunier H.. (1995). Bayesian decision procedures for dose determining experiments. Stat. Med., 14, 885-893.
– reference: Masoumi S., Duever T. A., Reilly P. M.. (2013). Sequential Markov chain Monte Carlo (MCMC) model discrimination. The Can. J. Chem. Eng., 91(5), 862-869.
– reference: Rios Insua D., Ruggeri F.. (2000). Robust Bayesian Analysis.. New York: Springer Verlag.
– reference: Pukelsheim F., Torsney B.. (1991). Optimal weights for experimental designs on linearly independent support points. The Ann. Statist., 19(3), 1614-1625.
– reference: Hill W. J.. (1978). A review of experimental design procedures for regression model discrimination. Technometerics, 20, 15-21.
– reference: Verdinelli I.. (1992). Bayesian Statistics 4, 467-481, Advances in Bayesian Experimental Design (with Discussion), vol. 4, Oxford: Oxford University Press.
– volume: 37
  start-page: 77
  year: 1975
  end-page: 87
  article-title: A total entropy criterion for the dual problem of model discrimination and parameter estimation
  publication-title: J. R. Stat. Soc. Ser. B. Stat. Methodol.
– volume: 21
  start-page: 619
  year: 2009
  end-page: 687
  article-title: Sequential optimal design of neurophysiology experiments
  publication-title: Neural Comput.
– volume: 50
  start-page: 345
  issue: 3
  year: 2001
  end-page: 359
  article-title: Optimal sampling times in population pharmacokinetic studies
  publication-title: J. R. Stat. Soc. Ser. C. Appl. Stat.
– volume: 57
  start-page: 1317
  issue: 6
  year: 1989
  end-page: 1339
  article-title: Bayesian inference in econometric models using Monte Carlo integration
  publication-title: Econom.
– volume: 51
  start-page: 1129
  year: 2004
  end-page: 1148
  article-title: Design of follow‐up experiments for improving model discrimination and parameter estimation
  publication-title: Naval Res. Logist.
– volume: 75
  start-page: 103
  year: 1985
  end-page: 120
  article-title: Robust experimental design via stochastic approximation
  publication-title: Math. Biosci.
– volume: 50
  start-page: 369
  issue: 4
  year: 2006
  end-page: 389
  article-title: Bayesian adaptive estimation: The next dimension
  publication-title: J. Math. Psych.
– year: 2014
– volume: 7
  start-page: 308
  issue: 4
  year: 1965
  end-page: 313
  article-title: A simplex method for function minimization
  publication-title: The Comput. J.
– volume: 8
  start-page: 595
  issue: 3
  year: 2007
  end-page: 608
  article-title: Screening designs for drug development
  publication-title: Biostat.
– volume: 57
  start-page: 320
  issue: 1
  year: 2014
  end-page: 335
  article-title: Sequential Monte Carlo for Bayesian sequential design
  publication-title: Comput. Stat. Data Anal.
– volume: 99
  start-page: 105
  issue: 1
  year: 1990
  end-page: 118
  article-title: Incorporating prior parameter uncertainty in the design of sampling schedules for pharmacokinetic parameter estimation experiments
  publication-title: Math. Biosci.
– volume: 90
  start-page: 1322
  issue: 432
  year: 1995
  end-page: 1330
  article-title: Optimal design via curve fitting of Monte Carlo experiments
  publication-title: J. Amer. Statist. Assoc.
– year: 2008
– volume: 6
  start-page: 459
  year: 1999
  end-page: 474
  article-title: Simulation‐based optimal design
  publication-title: Bayesian Stat.
– year: 1972
– volume: 142
  start-page: 1480
  issue: 6
  year: 2012b
  end-page: 1492
  article-title: Adaptive Bayesian compound designs for dose finding studies
  publication-title: J. Statist. Plann. Inference
– volume: 8
  start-page: 20
  year: 2014
  article-title: Optimal experimental design for model selection in biochemical networks
  publication-title: BMC Syst. Biol.
– volume: 22
  start-page: 887
  issue: 4
  year: 2010
  end-page: 905
  article-title: Adaptive design optimization: A mutual information‐based approach to model discrimination in cognitive science
  publication-title: Neural Comput.
– volume: 10
  start-page: 145
  issue: 1
  year: 1968
  end-page: 160
  article-title: A joint design criterion for the dual problem of model discrimination and parameter estimation
  publication-title: Technometrics
– volume: 22
  start-page: 79
  issue: 1
  year: 1951
  end-page: 86
  article-title: On information and sufficiency
  publication-title: Ann. Math. Stat.
– volume: 45
  start-page: 995
  issue: 7
  year: 1999
  end-page: 1007
  article-title: Decision analysis by augmented probability simulation
  publication-title: Manag. Sci.
– volume: 139
  start-page: 4123
  year: 2009
  end-page: 4132
  article-title: Optimal designs for both model discrimination and parameter estimation
  publication-title: J. Statist. Plann. Inference
– volume: 64
  start-page: 140
  issue: 2
  year: 2010
  end-page: 153
  article-title: Explaining variational approximations
  publication-title: J. Amer. Statist. Assoc.
– volume: 33
  start-page: 53
  issue: 1
  year: 2006
  end-page: 64
  article-title: Bayesian geostatistical design
  publication-title: Scand. J. Stat.
– year: 1987
– volume: 17
  start-page: 1613
  year: 1988
  end-page: 1622
  article-title: Bayesian optimal design in population models for haematologic data
  publication-title: Stat. Med.
– volume: 67
  start-page: 225
  issue: 1
  year: 2011
  end-page: 233
  article-title: Estimation of parameters for macroparasite population evolution using approximate Bayesian computation
  publication-title: Biometrics
– volume: 4
  start-page: 479
  issue: 6
  year: 2014
  end-page: 510
  article-title: Gradient‐based stochastic optimization methods in Bayesian experimental design
  publication-title: Int. J. Uncertain. Quantif.
– volume: 10
  start-page: 273
  year: 1995
  end-page: 304
  article-title: Bayesian experimental design: A review
  publication-title: Stat. Sci.
– volume: 22
  start-page: 400
  issue: 3
  year: 1951
  end-page: 407
  article-title: A stochastic approximation method
  publication-title: Ann. Math. Stat.
– volume: 99
  start-page: 788
  issue: 467
  year: 2004
  end-page: 798
  article-title: Optimal Bayesian design by inhomogeneous Markov chain simulation
  publication-title: J. Amer. Statist. Assoc.
– year: 1992
– volume: 27
  start-page: 379
  year: 1948
  end-page: 423, 623–656
  article-title: A mathematical theory of communication
  publication-title: Bell Syst. Tech. J.
– volume: 14
  start-page: 75
  issue: 1
  year: 2013
  end-page: 86
  article-title: Sequential stopping for high‐throughput experiments
  publication-title: Biostat.
– volume: 43
  start-page: 13
  issue: 1
  year: 1994
  end-page: 29
  article-title: An expected loss approach to the design of dosage regimens via sampling‐based methods
  publication-title: J. R. Stat. Soc. Ser. D (The Statistician)
– volume: 9
  start-page: 57
  year: 1967
  end-page: 71
  article-title: Discrimination among mechanistic models
  publication-title: Technometrics
– volume: 12
  start-page: 566
  issue: 3
  year: 2003
  end-page: 584
  article-title: A gridding method for Bayesian sequential decision problems
  publication-title: J. Comput. Graph. Statist.
– year: 1995
– year: 1970
– volume: 60
  start-page: 503
  issue: 3
  year: 2011
  end-page: 524
  article-title: Approximate Bayesian computation using indirect inference
  publication-title: J. R. Stat. Soc. Ser. C. Appl. Stat.
– volume: 140
  start-page: 1452
  year: 2010
  end-page: 1464
  article-title: Batch sequential designs for computer experiments
  publication-title: J. Statist. Plann. Inference
– volume: 14
  start-page: 885
  year: 1995
  end-page: 893
  article-title: Bayesian decision procedures for dose determining experiments
  publication-title: Stat. Med.
– volume: 138
  start-page: 56
  year: 2008
  end-page: 64
  article-title: DT‐optimum designs for model discrimination and parameter estimation
  publication-title: J. Statist. Plann. Inference
– year: 2013
– year: 1985
– volume: 32
  start-page: 363
  year: 1992
  end-page: 384
  article-title: Compromise designs in heteroscedastic linear models
  publication-title: J. Statist. Plann. Inference
– volume: 232
  start-page: 288
  issue: 1
  year: 2013
  end-page: 317
  article-title: Simulation‐based optimal Bayesian experimental design for nonlinear systems
  publication-title: J. Comput. Phys.
– year: 2009
– volume: 19
  start-page: 482
  issue: 4
  year: 1998
  end-page: 492
  article-title: An overview of the simultaneous perturbation method for efficient optimization
  publication-title: Johns Hopkins APL Tech. Dig.
– volume: 70
  start-page: 45
  year: 2014
  end-page: 60
  article-title: Towards Bayesian experimental design for nonlinear models that require a large number of sampling times
  publication-title: Comput. Stat. Data Anal.
– volume: 68
  start-page: 411
  issue: 3
  year: 2006
  end-page: 436
  article-title: Sequential Monte Carlo samplers
  publication-title: J. R. Stat. Soc. Ser. B. Stat. Methodol.
– volume: 259
  start-page: 24
  year: 2013
  end-page: 39
  article-title: Fast estimation of expected information gains for Bayesian experimental designs based on Laplace approximations
  publication-title: Comput. Methods Appl. Mech. Engrg.
– start-page: 467
  year: 1992
  end-page: 481
– volume: 8
  start-page: 5075
  year: 2001
  end-page: 5081
  article-title: Experimental design: A Bayesian perspective
  publication-title: IESBS
– volume: 58
  start-page: 59
  year: 1996
  end-page: 76
  article-title: The usefulness of optimum experimental designs
  publication-title: J. R. Stat. Soc. Ser. B.
– volume: 19
  start-page: 386
  year: 2009
  end-page: 402
  article-title: Optimal design criteria for discrimination and estimation in nonlinear models
  publication-title: J. Biopharm. Stat.
– volume: 32
  start-page: 387
  issue: 4
  year: 2004
  end-page: 402
  article-title: Bayesian randomized clinical trials: A decision‐theoretic sequential design
  publication-title: Canad. J. Statist.
– volume: 25
  start-page: 91
  issue: 2
  year: 2004
  end-page: 100
  article-title: Global random optimization by simultaneous perturbation stochastic approximation
  publication-title: Johns Hopkins APL Tech. Dig.
– volume: 1
  start-page: e1002888
  year: 2013
  article-title: Maximising 2013 is not a one‐page article please supply the first and last pages for this article. the information content of experiments in systems biology
  publication-title: PLoS Comput. Biol.
– volume: 20
  start-page: 15
  year: 1978
  end-page: 21
  article-title: A review of experimental design procedures for regression model discrimination
  publication-title: Technometerics
– volume: 53
  start-page: 414
  year: 1996
  end-page: 423
  article-title: Bayesian fishery stock assessment and decision making using adaptive importance sampling
  publication-title: Can. J. Fish. Aquat.Sci.
– volume: 64
  start-page: 860
  issue: 3
  year: 2008
  end-page: 868
  article-title: Optimal observation times in experimental epidemic processes
  publication-title: Biometrics
– volume: 162
  start-page: 2025
  issue: 4
  year: 2002
  end-page: 2035
  article-title: Approximate Bayesian computation in population genetics
  publication-title: Genet.
– volume: 5
  start-page: 1611
  issue: 2B
  year: 2011
  end-page: 1631
  article-title: Response‐adaptive dose‐finding under model uncertainty
  publication-title: Ann. Appl. Stat.
– volume: 19
  start-page: 1614
  issue: 3
  year: 1991
  end-page: 1625
  article-title: Optimal weights for experimental designs on linearly independent support points
  publication-title: The Ann. Statist.
– year: 1965
– volume: 89
  start-page: 1528
  year: 1994
  end-page: 1534
  article-title: Group sequential clinical trials: A classical evaluation of Bayesian decision‐theoretic designs
  publication-title: J. Amer. Statist. Assoc.
– volume: 60
  start-page: 25
  year: 2004
  end-page: 33
  article-title: Bayesian experimental design for nonlinear mixed‐effects models with application to HIV dynamics
  publication-title: Biometrics
– volume: 19
  start-page: 2183
  year: 1991
  end-page: 2208
  article-title: Bayesian optimal designs for linear regression models
  publication-title: Ann. Statist.
– volume: 51
  start-page: 335
  issue: 2
  year: 2009
  end-page: 347
  article-title: Sequential designs for ordinal phase I clinical trials
  publication-title: Biom. J.
– year: 2004
– volume: 12
  start-page: 283
  year: 1984
  end-page: 300
  article-title: Optimal Bayesian experimental designs for linear models
  publication-title: Ann. Statist.
– year: 1997
– volume: 21
  start-page: 234
  issue: 1
  year: 2012
  end-page: 252
  article-title: Simulation‐based optimal design using a response variance criterion
  publication-title: J. Comput. Graph. Statist.
– volume: 44
  start-page: 219
  year: 1988
  end-page: 227
  article-title: One‐sided sequential stopping boundaries for clinical trials: A decision‐theoretic approach
  publication-title: Biometrics
– volume: 17
  start-page: 1063
  year: 2015a
  end-page: 1089
  article-title: Fully Bayesian experimental design for pharmacokinetic studies
  publication-title: Entropy
– year: 2015b
  article-title: Simulation‐based fully Bayesian experimental design for mixed effects models.
  publication-title: Comput. Stat. Data Anal.
– volume: 7
  start-page: 686
  issue: 3
  year: 1979
  end-page: 690
  article-title: Expected information as expected utility
  publication-title: Ann. Statist.
– year: 1983
– volume: 49
  start-page: 63
  year: 2000
  end-page: 79
  article-title: Designing and integrating composite networks for monitoring multivariate Gaussian pollution fields
  publication-title: Appl. Stat.
– volume: 17
  start-page: 1480
  year: 2005
  end-page: 1507
  article-title: Asymptotic theory of information‐theoretic experimental design
  publication-title: Neural Comput.
– year: 2000
– year: 1996
– volume: 91
  start-page: 1236
  year: 1996
  end-page: 1244
  article-title: The equivalence of constrained and weighted designs in multiple objective design problems
  publication-title: J. Amer. Statist. Assoc.
– volume: 54
  start-page: 964
  issue: 3
  year: 1998
  end-page: 975
  article-title: Approaches for optimal sequential decision analysis in clinical trials
  publication-title: Biometrics
– volume: 23
  start-page: 3
  issue: 1
  year: 2014
  end-page: 24
  article-title: A sequential Monte Carlo algorithm to incorporate model uncertainty in Bayesian sequential design
  publication-title: J. Comput. Graph. Statist.
– volume: 12
  start-page: 585
  year: 2003
  end-page: 603
  article-title: Estimating expected information gains for experimental designs with application to the random fatigue‐limit model
  publication-title: J. Comput. Graph. Statist.
– volume: 89
  start-page: 539
  issue: 3
  year: 2002
  end-page: 552
  article-title: A sequential particle filter method for static models
  publication-title: Biometrika
– volume: 40
  start-page: 559
  year: 1983
  end-page: 582
  article-title: Perturbation analysis and optimization of queueing networks
  publication-title: J. Optim. Theory Appl.
– volume: 91
  start-page: 862
  issue: 5
  year: 2013
  end-page: 869
  article-title: Sequential Markov chain Monte Carlo (MCMC) model discrimination
  publication-title: The Can. J. Chem. Eng.
– volume: 54
  start-page: 143
  year: 2010
  end-page: 150
  article-title: Bayesian optimum designs for discriminiating between models with any distribution
  publication-title: Comput. Stat. Data Anal.
– volume: 8
  start-page: 445
  year: 1998
  end-page: 467
  article-title: Bayesian decision procedures based on logisic regression models for dose‐finding studies
  publication-title: J. Biopharm. Stat.
– year: 2012a
– year: 2006
– volume: 71
  start-page: 319
  issue: 2
  year: 2009
  end-page: 392
  article-title: Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations (with discussion)
  publication-title: J. R. Stat. Soc. Ser. B.
– volume: 69
  start-page: 937
  issue: 4
  year: 2013
  end-page: 948
  article-title: Bayesian experimental design for models with intractable likelihoods
  publication-title: Biometrics
– volume: 30
  start-page: 31
  year: 1968
  end-page: 53
  article-title: The choice of variables in multiple regression
  publication-title: J. R. Stat. Soc. Ser. B.
– volume: 101
  start-page: 773
  issue: 474
  year: 2006
  end-page: 785
  article-title: Bayesian‐optimal design via interacting particle systems
  publication-title: J. Amer. Statist. Assoc.
– volume: 3
  start-page: 197
  issue: 4
  year: 2006
  end-page: 207
  article-title: A Bayesian decision‐theoretic dose‐finding trial
  publication-title: Decis. Anal.
– year: 1991
– volume: 27
  start-page: 986
  year: 1956
  end-page: 1005
  article-title: On a measure of the information provided by an experiment
  publication-title: Ann. Math. Stat.
– start-page: 313
  year: 2011
  end-page: 335
– volume: 18
  start-page: 1784
  year: 1990
  end-page: 1804
  article-title: A generalization of D‐and D1‐optimal designs in polynomial regression
  publication-title: The Ann. Statist.
– year: 1999
– ident: e_1_2_9_20_1
  doi: 10.1214/aos/1176346407
– ident: e_1_2_9_30_1
  doi: 10.1016/0378-3758(92)90017-M
– volume: 30
  start-page: 31
  year: 1968
  ident: e_1_2_9_61_1
  article-title: The choice of variables in multiple regression
  publication-title: J. R. Stat. Soc. Ser. B.
  doi: 10.1111/j.2517-6161.1968.tb01505.x
– ident: e_1_2_9_59_1
  doi: 10.1371/journal.pcbi.1002888
– ident: e_1_2_9_80_1
  doi: 10.1002/(SICI)1097-0258(19980730)17:14<1613::AID-SIM867>3.0.CO;2-C
– volume-title: Model‐Oriented Design of Experiments.
  year: 1997
  ident: e_1_2_9_42_1
  doi: 10.1007/978-1-4612-0703-0
– volume: 6
  start-page: 459
  year: 1999
  ident: e_1_2_9_72_1
  article-title: Simulation‐based optimal design
  publication-title: Bayesian Stat.
  doi: 10.1093/oso/9780198504856.003.0020
– volume: 58
  start-page: 59
  year: 1996
  ident: e_1_2_9_3_1
  article-title: The usefulness of optimum experimental designs
  publication-title: J. R. Stat. Soc. Ser. B.
  doi: 10.1111/j.2517-6161.1996.tb02067.x
– ident: e_1_2_9_38_1
  doi: 10.1111/j.1467-9876.2010.00747.x
– ident: e_1_2_9_9_1
  doi: 10.1214/aos/1176344689
– ident: e_1_2_9_51_1
– volume-title: Introduction to Stochastic Dynamic Programming.
  year: 1983
  ident: e_1_2_9_88_1
– ident: e_1_2_9_107_1
  doi: 10.1186/1752-0509-8-20
– ident: e_1_2_9_4_1
  doi: 10.1016/j.jspi.2007.05.024
– ident: e_1_2_9_68_1
  doi: 10.1002/cjce.21711
– ident: e_1_2_9_66_1
– ident: e_1_2_9_79_1
  doi: 10.1198/tast.2010.09058
– ident: e_1_2_9_85_1
  doi: 10.1214/aos/1176348265
– ident: e_1_2_9_14_1
  doi: 10.1214/10-AOAS445
– ident: e_1_2_9_97_1
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: e_1_2_9_36_1
  doi: 10.1111/j.1541-0420.2010.01410.x
– ident: e_1_2_9_105_1
  doi: 10.1016/j.csda.2009.07.022
– volume-title: Case Studies in Bayesian Statistics
  year: 2000
  ident: e_1_2_9_11_1
– volume-title: Bayesian Biostatistics
  year: 1996
  ident: e_1_2_9_113_1
– ident: e_1_2_9_112_1
  doi: 10.1080/10543409808835252
– ident: e_1_2_9_15_1
  doi: 10.1111/j.2517-6161.1975.tb01032.x
– volume: 19
  start-page: 482
  issue: 4
  year: 1998
  ident: e_1_2_9_100_1
  article-title: An overview of the simultaneous perturbation method for efficient optimization
  publication-title: Johns Hopkins APL Tech. Dig.
– volume-title: Numerical Optimization
  year: 2006
  ident: e_1_2_9_78_1
– ident: e_1_2_9_40_1
  doi: 10.1214/aos/1176348392
– ident: e_1_2_9_74_1
  doi: 10.1198/016214504000001123
– ident: e_1_2_9_77_1
  doi: 10.1002/nav.20046
– ident: e_1_2_9_37_1
  doi: 10.1111/biom.12081
– ident: e_1_2_9_111_1
  doi: 10.1002/sim.4780140904
– ident: e_1_2_9_23_1
  doi: 10.2307/3316023
– volume-title: Bayesian Biostatistics
  year: 1996
  ident: e_1_2_9_101_1
– volume: 75
  start-page: 103
  year: 1985
  ident: e_1_2_9_84_1
  article-title: Robust experimental design via stochastic approximation
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(85)90068-9
– volume-title: Theory of Optimal Experiments.
  year: 1972
  ident: e_1_2_9_41_1
– volume: 162
  start-page: 2025
  issue: 4
  year: 2002
  ident: e_1_2_9_6_1
  article-title: Approximate Bayesian computation in population genetics
  publication-title: Genet.
  doi: 10.1093/genetics/162.4.2025
– ident: e_1_2_9_27_1
  doi: 10.1111/j.1541-0420.2007.00931.x
– ident: e_1_2_9_103_1
  doi: 10.1109/BMEI.2009.5305435
– ident: e_1_2_9_65_1
  doi: 10.1016/j.cma.2013.02.017
– start-page: 313
  volume-title: Handbook of Markov Chain Monte Carlo.
  year: 2011
  ident: e_1_2_9_98_1
  doi: 10.1201/b10905-13
– ident: e_1_2_9_91_1
– ident: e_1_2_9_32_1
  doi: 10.1111/j.1467-9868.2006.00553.x
– volume-title: Bayesian Estimation and Experimental Design in Linear Regression Models (2nd ed).
  year: 1991
  ident: e_1_2_9_83_1
– ident: e_1_2_9_46_1
  doi: 10.1080/00401706.1968.10490542
– ident: e_1_2_9_35_1
  doi: 10.1080/10618600.2012.730083
– volume-title: Optimum Experimental Designs
  year: 1992
  ident: e_1_2_9_5_1
  doi: 10.1093/oso/9780198522546.001.0001
– ident: e_1_2_9_12_1
  doi: 10.2307/2531909
– start-page: 467
  volume-title: Bayesian Statistics 4
  year: 1992
  ident: e_1_2_9_108_1
  doi: 10.1093/oso/9780198522669.003.0026
– ident: e_1_2_9_114_1
  doi: 10.1111/1467-9876.00179
– ident: e_1_2_9_57_1
  doi: 10.1162/neco.2008.08-07-594
– ident: e_1_2_9_90_1
  doi: 10.1093/biostatistics/kxl031
– ident: e_1_2_9_106_1
  doi: 10.1007/978-94-015-7744-1
– ident: e_1_2_9_16_1
  doi: 10.1080/00401706.1967.10490441
– ident: e_1_2_9_34_1
  doi: 10.1111/j.1467-9469.2005.00469.x
– ident: e_1_2_9_102_1
  doi: 10.1111/1467-9876.00239
– ident: e_1_2_9_21_1
  doi: 10.1214/ss/1177009939
– ident: e_1_2_9_55_1
  doi: 10.1214/aoms/1177729694
– ident: e_1_2_9_69_1
– ident: e_1_2_9_93_1
  doi: 10.1016/j.csda.2013.08.017
– volume-title: Bayesian Theory
  year: 2000
  ident: e_1_2_9_10_1
– ident: e_1_2_9_73_1
  doi: 10.1080/01621459.1995.10476636
– volume: 8
  start-page: 5075
  year: 2001
  ident: e_1_2_9_24_1
  article-title: Experimental design: A Bayesian perspective
  publication-title: IESBS
– ident: e_1_2_9_81_1
  doi: 10.1162/0899766053723032
– volume: 25
  start-page: 91
  issue: 2
  year: 2004
  ident: e_1_2_9_67_1
  article-title: Global random optimization by simultaneous perturbation stochastic approximation
  publication-title: Johns Hopkins APL Tech. Dig.
– ident: e_1_2_9_71_1
– ident: e_1_2_9_44_1
– ident: e_1_2_9_53_1
  doi: 10.1109/NSSPW.2006.4378829
– ident: e_1_2_9_7_1
  doi: 10.1214/193940307000000518
– ident: e_1_2_9_92_1
  doi: 10.1111/j.1467-9868.2008.00700.x
– volume: 91
  start-page: 1236
  year: 1996
  ident: e_1_2_9_25_1
  article-title: The equivalence of constrained and weighted designs in multiple objective design problems
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1996.10476993
– ident: e_1_2_9_13_1
  doi: 10.1287/mnsc.45.7.995
– ident: e_1_2_9_43_1
  doi: 10.2307/1913710
– ident: e_1_2_9_60_1
  doi: 10.1214/aoms/1177728069
– ident: e_1_2_9_17_1
  doi: 10.1198/1061860032274
– ident: e_1_2_9_52_1
  doi: 10.1139/f95-189
– volume-title: Bayesian Statistics VI.
  year: 1999
  ident: e_1_2_9_56_1
– ident: e_1_2_9_47_1
  doi: 10.1080/00401706.1978.10489611
– ident: e_1_2_9_76_1
  doi: 10.1093/comjnl/7.4.308
– ident: e_1_2_9_22_1
  doi: 10.1093/biomet/89.3.539
– volume-title: Robust Bayesian Analysis.
  year: 2000
  ident: e_1_2_9_86_1
– ident: e_1_2_9_2_1
  doi: 10.1198/016214505000001159
– ident: e_1_2_9_109_1
  doi: 10.2307/2348929
– volume-title: Optimal Statistical Decisions
  year: 1970
  ident: e_1_2_9_31_1
– ident: e_1_2_9_87_1
  doi: 10.1214/aoms/1177729586
– ident: e_1_2_9_18_1
  doi: 10.2307/2533849
– ident: e_1_2_9_48_1
  doi: 10.1007/BF00933971
– ident: e_1_2_9_50_1
  doi: 10.1615/Int.J.UncertaintyQuantification.2014006730
– volume-title: Monte Carlo and Quasi‐Monte Carlo Methods 2004
  year: 2006
  ident: e_1_2_9_82_1
– ident: e_1_2_9_70_1
  doi: 10.1016/j.jspi.2011.12.029
– ident: e_1_2_9_104_1
  doi: 10.1016/j.jspi.2009.05.042
– ident: e_1_2_9_63_1
  doi: 10.1002/bimj.200800192
– ident: e_1_2_9_95_1
  doi: 10.1016/j.csda.2015.06.007
– ident: e_1_2_9_33_1
  doi: 10.1214/aos/1176347878
– ident: e_1_2_9_94_1
  doi: 10.3390/e17031063
– ident: e_1_2_9_28_1
  doi: 10.1016/0025-5564(90)90141-K
– ident: e_1_2_9_8_1
  doi: 10.1007/978-1-4757-4286-2
– ident: e_1_2_9_39_1
  doi: 10.1016/j.csda.2012.05.014
– ident: e_1_2_9_45_1
  doi: 10.1111/j.0006-341X.2004.00148.x
– ident: e_1_2_9_64_1
  doi: 10.1016/j.jspi.2009.12.004
– ident: e_1_2_9_110_1
  doi: 10.1080/10543400802677257
– ident: e_1_2_9_58_1
  doi: 10.1080/01621459.1994.10476893
– ident: e_1_2_9_62_1
  doi: 10.1137/1.9781611970654
– ident: e_1_2_9_54_1
  doi: 10.1016/j.jmp.2005.12.005
– ident: e_1_2_9_99_1
  doi: 10.1198/jcgs.2011.10070
– ident: e_1_2_9_96_1
  doi: 10.1198/1061860032012
– ident: e_1_2_9_26_1
– ident: e_1_2_9_75_1
  doi: 10.1287/deca.1060.0079
– ident: e_1_2_9_49_1
  doi: 10.1016/j.jcp.2012.08.013
– ident: e_1_2_9_19_1
  doi: 10.1162/neco.2009.02-09-959
– ident: e_1_2_9_89_1
  doi: 10.1093/biostatistics/kxs026
– ident: e_1_2_9_29_1
SSID ssj0003284
Score 2.5610254
Snippet Bayesian experimental design is a fast growing area of research with many real-world applications. As computational power has increased over the years, so has...
Summary Bayesian experimental design is a fast growing area of research with many real‐world applications. As computational power has increased over the years,...
Bayesian experimental design is a fast growing area of research with many real‐world applications. As computational power has increased over the years, so has...
SourceID proquest
crossref
wiley
jstor
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 128
SubjectTerms Algorithms
Bayesian analysis
Bayesian optimal design
Computation
Computer simulation
decision theory
Experiments
Mathematical analysis
Mathematical models
Monte Carlo simulation
Optimization
posterior distribution approximation
Simulation
stochastic optimisation
Utilities
utility function
Title A Review of Modern Computational Algorithms for Bayesian Optimal Design
URI https://api.istex.fr/ark:/67375/WNG-7GQHDK2M-M/fulltext.pdf
https://www.jstor.org/stable/44162464
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Finsr.12107
https://www.proquest.com/docview/1785500791
https://www.proquest.com/docview/1808118392
Volume 84
WOSCitedRecordID wos000374597200008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1751-5823
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003284
  issn: 0306-7734
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB9Kz4e--F1cWyWiCAoLt9lskgVfTs-7iu2p1Wrflmw-arHdK3ut6H_vJNldWxBBfFvILIRJZvKbZOY3AE9oZrnIjWe4LMqUMVOmsihomjkU10ZpGcieP--KxUIeHpbv1-BFXwsT-SGGCzdvGcFfewNX9eqSkR83q9ZzI_hS8pGvqsLQazTdnx3sDp44pzLSR2HULETOOnpSn8nz--8rB9LI6_ZHn5t4BXVexq7h8Jnd-L9p34TrHegkk7hLbsGabW7DhseZkab5DswnJL4SkKUjsT8aiQ0fustCMjk5WrbH519PVwRxLnmpflpff0neoc85xfFpSAW5Cwez159e7aRdj4VUsxJ9pMFwA4OmekyNdbxUeY5nmjXGcY6-oC5zy_R4bEotpWKFQyhuBHU-pq5zUVieb8J6s2zsPSAu09pSqZyxlMlaKCd45motMaiqC0cTeNYrutIdAbnvg3FS9YGI100VdJPA40H2LNJu_FHqaVivQUS133yimiiqL4t5JeYfdqZv6V61l8BmWNBBEEEgp4yzBLb7Fa46411VmfAsb2NRZgk8GobR7Pxbimrs8gJlfMeSgC4TeB7W-y_zrN4sPu6Hr_v_IrwFGwjPeMwT2ob18_bCPoBr-jtujvZht9l_AXDxAPA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB_kTrAvfhdXq0YUQWHhNskm2cfT8-5K71atrfYt7OZDi-2e7LWi_7352FtbEEF8W8gshJnM5DfJ5DcAz3BmGCfaM1zmRUqpLlKR5zjNrBNXulIikD1_XPCyFEdHxbuuNse_hYn8EP2Bm_eMEK-9g_sD6QteftysW0-O4N-SDykjXAxgONmfHi76UEywiPxRLm3mnNCOn9SX8vz--9KONPTK_bEpTrwEOy-C17D7TG_857xvwvUOdqJxXCe34IppbsOWR5qRqPkOzMYo3hOglUWxQxqKLR-640I0Pvm8ao_PvpyukUO66FX10_gXmOitizqnbnwSikHuwuH0zcHredp1WUgVLVyU1C7hcGlTPcLaWFZUhLhdzWhtGXPRoC6IoWo00oUSoqK5dWBcc2x9Vl0TnhtGtmHQrBpzD5DNlDJYVFYbTEXNK8tZZmslXFpV5xYn8GKjaak6CnLfCeNEblIRrxsZdJPA0172WyTe-KPU82CwXqRqv_pSNZ7LT-VM8tn7-WQPL-Uyge1g0V7QwUCGKaMJ7GxMLDv3XcuMe563ES-yBJ70w87x_G1K1ZjVuZPxPUsCvkzgZTD4X-Ypd8sP--Hr_r8IP4Zr84PlQi52y70HsOXAGotVQzswOGvPzUO4qr67hdI-6lb-L9F_BOA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3raxQxEB_kTqRffJeuVo0ogsLCbTabx8fT866l17VWq_0WdvOwpe1e2WtF_3vz2FtbEEH8tpBZCDOZyW-SyW8AXuLMUJZrz3BZiJQQLVJeFDjNrBNXulI8kD1_mbOy5IeHYq-rzfFvYSI_RH_g5j0jxGvv4OZc2yteftwsW0-O4N-SD0khCjKA4WR_ejDvQ3GOeeSPcmkzYznp-El9Kc_vv6_tSEOv3B-r4sRrsPMqeA27z_TOf877LtzuYCcax3VyD26Y5j6seaQZiZofwGyM4j0BWlgUO6Sh2PKhOy5E49Nvi_b44uhsiRzSRW-rn8a_wEQfXNQ5c-OTUAzyEA6m7z-_20q7LgupIsJFSe0SDpc21SOsjaWiynO3qxmtLaUuGtQiN0SNRloozitSWAfGNcPWZ9V1zgpD83UYNIvGbACymVIG88pqgwmvWWUZzWytuEur6sLiBF6vNC1VR0HuO2GcylUq4nUjg24SeNHLnkfijT9KvQoG60Wq9sSXqrFCfi1nks0-bk128K7cTWA9WLQXdDCQYkJJApsrE8vOfZcyY57nbcRElsDzftg5nr9NqRqzuHQyvmdJwJcJvAkG_8s85Xb5aT98PfoX4Wdwa28ylfPtcucxrDmsRmPR0CYMLtpL8wRuqu9unbRPu4X_C1WvBFs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Modern+Computational+Algorithms+for+Bayesian+Optimal+Design&rft.jtitle=International+statistical+review&rft.au=Ryan%2C+Elizabeth+G.&rft.au=Drovandi%2C+Christopher+C.&rft.au=McGree%2C+James+M.&rft.au=Pettitt%2C+Anthony+N.&rft.date=2016-04-01&rft.issn=0306-7734&rft.eissn=1751-5823&rft.volume=84&rft.issue=1&rft.spage=128&rft.epage=154&rft_id=info:doi/10.1111%2Finsr.12107&rft.externalDBID=10.1111%252Finsr.12107&rft.externalDocID=INSR12107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-7734&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-7734&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-7734&client=summon