Novel groups of Gammaproteobacteria catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment

The oxidation of hydrogen sulfide is essential to sulfur cycling in marine habitats. However, the role of microbial sulfur oxidation in marine sediments and the microorganisms involved are largely unknown, except for the filamentous, mat-forming bacteria. In this study we explored the diversity, abu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology Jg. 13; H. 3; S. 758 - 774
Hauptverfasser: Lenk, Sabine, Arnds, Julia, Zerjatke, Katrice, Musat, Niculina, Amann, Rudolf, Mußmann, Marc
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford, UK Blackwell Publishing Ltd 01.03.2011
Schlagworte:
ISSN:1462-2912, 1462-2920, 1462-2920
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The oxidation of hydrogen sulfide is essential to sulfur cycling in marine habitats. However, the role of microbial sulfur oxidation in marine sediments and the microorganisms involved are largely unknown, except for the filamentous, mat-forming bacteria. In this study we explored the diversity, abundance and activity of sulfur-oxidizing prokaryotes (SOP) in sulfidic intertidal sediments using 16S rRNA and functional gene sequence analyses, fluorescence in situ hybridization (FISH) and microautoradiography. The 16S rRNA gene analysis revealed that distinct clades of uncultured Gammaproteobacteria are important SOP in the tidal sediments. This was supported by the dominance of gammaproteobacterial sequences in clone libraries of genes encoding the reverse dissimilatory sulfite reductase (rDSR) and the adenosine phosphosulfate reductase (APR). Numerous sequences of all three genes grouped with uncultured autotrophic SOP. Accordingly, Gammaproteobacteria accounted for 40-70% of all ¹⁴CO₂-incorporating cells in surface sediments as shown by microautoradiography. Furthermore, phylogenetic analysis of all three genes consistently suggested a discrete population of SOP that was most closely related to the sulfur-oxidizing endosymbionts of the tubeworm Oligobrachia spp. FISH showed that members of this population (WS-Gam209 group) were abundant, reaching up to 1.3 × 10⁸ cells ml⁻¹ (4.6% of all cells). Approximately 25% of this population incorporated CO₂, consistent with a chemolithoautotrophic metabolism most likely based on sulfur oxidation. Thus, we hypothesize that novel, gammaproteobacterial SOP attached to sediment particles may play a more important role for sulfide removal and primary production in marine sediments than previously assumed.
AbstractList The oxidation of hydrogen sulfide is essential to sulfur cycling in marine habitats. However, the role of microbial sulfur oxidation in marine sediments and the microorganisms involved are largely unknown, except for the filamentous, mat-forming bacteria. In this study we explored the diversity, abundance and activity of sulfur-oxidizing prokaryotes (SOP) in sulfidic intertidal sediments using 16S rRNA and functional gene sequence analyses, fluorescence in situ hybridization (FISH) and microautoradiography. The 16S rRNA gene analysis revealed that distinct clades of uncultured Gammaproteobacteria are important SOP in the tidal sediments. This was supported by the dominance of gammaproteobacterial sequences in clone libraries of genes encoding the reverse dissimilatory sulfite reductase (rDSR) and the adenosine phosphosulfate reductase (APR). Numerous sequences of all three genes grouped with uncultured autotrophic SOP. Accordingly, Gammaproteobacteria accounted for 40-70% of all 14CO2-incorporating cells in surface sediments as shown by microautoradiography. Furthermore, phylogenetic analysis of all three genes consistently suggested a discrete population of SOP that was most closely related to the sulfur-oxidizing endosymbionts of the tubeworm Oligobrachia spp. FISH showed that members of this population (WS-Gam209 group) were abundant, reaching up to 1.3108 cells ml-1 (4.6% of all cells). Approximately 25% of this population incorporated CO2, consistent with a chemolithoautotrophic metabolism most likely based on sulfur oxidation. Thus, we hypothesize that novel, gammaproteobacterial SOP attached to sediment particles may play a more important role for sulfide removal and primary production in marine sediments than previously assumed.
The oxidation of hydrogen sulfide is essential to sulfur cycling in marine habitats. However, the role of microbial sulfur oxidation in marine sediments and the microorganisms involved are largely unknown, except for the filamentous, mat‐forming bacteria. In this study we explored the diversity, abundance and activity of sulfur‐oxidizing prokaryotes (SOP) in sulfidic intertidal sediments using 16S rRNA and functional gene sequence analyses, fluorescence in situ hybridization (FISH) and microautoradiography. The 16S rRNA gene analysis revealed that distinct clades of uncultured Gammaproteobacteria are important SOP in the tidal sediments. This was supported by the dominance of gammaproteobacterial sequences in clone libraries of genes encoding the reverse dissimilatory sulfite reductase (rDSR) and the adenosine phosphosulfate reductase (APR). Numerous sequences of all three genes grouped with uncultured autotrophic SOP. Accordingly, Gammaproteobacteria accounted for 40–70% of all 14 CO 2 ‐incorporating cells in surface sediments as shown by microautoradiography. Furthermore, phylogenetic analysis of all three genes consistently suggested a discrete population of SOP that was most closely related to the sulfur‐oxidizing endosymbionts of the tubeworm Oligobrachia spp. FISH showed that members of this population (WS‐Gam209 group) were abundant, reaching up to 1.3 × 10 8 cells ml −1 (4.6% of all cells). Approximately 25% of this population incorporated CO 2 , consistent with a chemolithoautotrophic metabolism most likely based on sulfur oxidation. Thus, we hypothesize that novel, gammaproteobacterial SOP attached to sediment particles may play a more important role for sulfide removal and primary production in marine sediments than previously assumed.
The oxidation of hydrogen sulfide is essential to sulfur cycling in marine habitats. However, the role of microbial sulfur oxidation in marine sediments and the microorganisms involved are largely unknown, except for the filamentous, mat-forming bacteria. In this study we explored the diversity, abundance and activity of sulfur-oxidizing prokaryotes (SOP) in sulfidic intertidal sediments using 16S rRNA and functional gene sequence analyses, fluorescence in situ hybridization (FISH) and microautoradiography. The 16S rRNA gene analysis revealed that distinct clades of uncultured Gammaproteobacteria are important SOP in the tidal sediments. This was supported by the dominance of gammaproteobacterial sequences in clone libraries of genes encoding the reverse dissimilatory sulfite reductase (rDSR) and the adenosine phosphosulfate reductase (APR). Numerous sequences of all three genes grouped with uncultured autotrophic SOP. Accordingly, Gammaproteobacteria accounted for 40-70% of all ¹⁴CO₂ -incorporating cells in surface sediments as shown by microautoradiography. Furthermore, phylogenetic analysis of all three genes consistently suggested a discrete population of SOP that was most closely related to the sulfur-oxidizing endosymbionts of the tubeworm Oligobrachia spp. FISH showed that members of this population (WS-Gam209 group) were abundant, reaching up to 1.3 × 10⁸ cells ml⁻¹ (4.6% of all cells). Approximately 25% of this population incorporated CO₂, consistent with a chemolithoautotrophic metabolism most likely based on sulfur oxidation. Thus, we hypothesize that novel, gammaproteobacterial SOP attached to sediment particles may play a more important role for sulfide removal and primary production in marine sediments than previously assumed.The oxidation of hydrogen sulfide is essential to sulfur cycling in marine habitats. However, the role of microbial sulfur oxidation in marine sediments and the microorganisms involved are largely unknown, except for the filamentous, mat-forming bacteria. In this study we explored the diversity, abundance and activity of sulfur-oxidizing prokaryotes (SOP) in sulfidic intertidal sediments using 16S rRNA and functional gene sequence analyses, fluorescence in situ hybridization (FISH) and microautoradiography. The 16S rRNA gene analysis revealed that distinct clades of uncultured Gammaproteobacteria are important SOP in the tidal sediments. This was supported by the dominance of gammaproteobacterial sequences in clone libraries of genes encoding the reverse dissimilatory sulfite reductase (rDSR) and the adenosine phosphosulfate reductase (APR). Numerous sequences of all three genes grouped with uncultured autotrophic SOP. Accordingly, Gammaproteobacteria accounted for 40-70% of all ¹⁴CO₂ -incorporating cells in surface sediments as shown by microautoradiography. Furthermore, phylogenetic analysis of all three genes consistently suggested a discrete population of SOP that was most closely related to the sulfur-oxidizing endosymbionts of the tubeworm Oligobrachia spp. FISH showed that members of this population (WS-Gam209 group) were abundant, reaching up to 1.3 × 10⁸ cells ml⁻¹ (4.6% of all cells). Approximately 25% of this population incorporated CO₂, consistent with a chemolithoautotrophic metabolism most likely based on sulfur oxidation. Thus, we hypothesize that novel, gammaproteobacterial SOP attached to sediment particles may play a more important role for sulfide removal and primary production in marine sediments than previously assumed.
The oxidation of hydrogen sulfide is essential to sulfur cycling in marine habitats. However, the role of microbial sulfur oxidation in marine sediments and the microorganisms involved are largely unknown, except for the filamentous, mat-forming bacteria. In this study we explored the diversity, abundance and activity of sulfur-oxidizing prokaryotes (SOP) in sulfidic intertidal sediments using 16S rRNA and functional gene sequence analyses, fluorescence in situ hybridization (FISH) and microautoradiography. The 16S rRNA gene analysis revealed that distinct clades of uncultured Gammaproteobacteria are important SOP in the tidal sediments. This was supported by the dominance of gammaproteobacterial sequences in clone libraries of genes encoding the reverse dissimilatory sulfite reductase (rDSR) and the adenosine phosphosulfate reductase (APR). Numerous sequences of all three genes grouped with uncultured autotrophic SOP. Accordingly, Gammaproteobacteria accounted for 40-70% of all ¹⁴CO₂ -incorporating cells in surface sediments as shown by microautoradiography. Furthermore, phylogenetic analysis of all three genes consistently suggested a discrete population of SOP that was most closely related to the sulfur-oxidizing endosymbionts of the tubeworm Oligobrachia spp. FISH showed that members of this population (WS-Gam209 group) were abundant, reaching up to 1.3 × 10⁸ cells ml⁻¹ (4.6% of all cells). Approximately 25% of this population incorporated CO₂, consistent with a chemolithoautotrophic metabolism most likely based on sulfur oxidation. Thus, we hypothesize that novel, gammaproteobacterial SOP attached to sediment particles may play a more important role for sulfide removal and primary production in marine sediments than previously assumed.
Summary The oxidation of hydrogen sulfide is essential to sulfur cycling in marine habitats. However, the role of microbial sulfur oxidation in marine sediments and the microorganisms involved are largely unknown, except for the filamentous, mat‐forming bacteria. In this study we explored the diversity, abundance and activity of sulfur‐oxidizing prokaryotes (SOP) in sulfidic intertidal sediments using 16S rRNA and functional gene sequence analyses, fluorescence in situ hybridization (FISH) and microautoradiography. The 16S rRNA gene analysis revealed that distinct clades of uncultured Gammaproteobacteria are important SOP in the tidal sediments. This was supported by the dominance of gammaproteobacterial sequences in clone libraries of genes encoding the reverse dissimilatory sulfite reductase (rDSR) and the adenosine phosphosulfate reductase (APR). Numerous sequences of all three genes grouped with uncultured autotrophic SOP. Accordingly, Gammaproteobacteria accounted for 40–70% of all 14CO2‐incorporating cells in surface sediments as shown by microautoradiography. Furthermore, phylogenetic analysis of all three genes consistently suggested a discrete population of SOP that was most closely related to the sulfur‐oxidizing endosymbionts of the tubeworm Oligobrachia spp. FISH showed that members of this population (WS‐Gam209 group) were abundant, reaching up to 1.3 × 108 cells ml−1 (4.6% of all cells). Approximately 25% of this population incorporated CO2, consistent with a chemolithoautotrophic metabolism most likely based on sulfur oxidation. Thus, we hypothesize that novel, gammaproteobacterial SOP attached to sediment particles may play a more important role for sulfide removal and primary production in marine sediments than previously assumed.
Author Arnds, Julia
Mußmann, Marc
Musat, Niculina
Lenk, Sabine
Zerjatke, Katrice
Amann, Rudolf
Author_xml – sequence: 1
  fullname: Lenk, Sabine
– sequence: 2
  fullname: Arnds, Julia
– sequence: 3
  fullname: Zerjatke, Katrice
– sequence: 4
  fullname: Musat, Niculina
– sequence: 5
  fullname: Amann, Rudolf
– sequence: 6
  fullname: Mußmann, Marc
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21134098$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URB_wFyA7WDSDH7GTLKiERmUoKkWorVhatmNXHpJ4sB2a-fc4k3YWLKDe-Pr6O8eyj4_BQe96DUCG4AKl8X69QAXDOa4xXGCYuhCTCi7GZ-Bov3GwrxE-BMchrCFEJSnhC3CIESIFrKsjEK7cb91md94Nm5A5k61E14mNd1E7KVTU3opMiSjabdBZGFoz-MyNthHRuj4TfZN2vUylsePcs6mdKSdCEp2mVfKIiW-zoBvb6T6-BM-NaIN-9TCfgNtP5zfLz_nlt9XF8uNlroqawbyoSkIpQ6QhZSMKUkNp0spIbKhBrCIlU4g2UDAJVaEKVlOJIcNSllTWUpMT8Hb2Tdf5NegQeWeD0m0reu2GwCsGSV3VjCby3T9JlE7HqCxo8X-UMAoJRTv09QM6yE43fONtJ_yWP75-As5mQHkXgteGKxt3jxi9sC1HkE9x8zWfkuRTqnyKm-_i5mMyqP4yeDzjCdIPs_Tetnr7ZB0__3oxVUmfz3oboh73euF_cpZ-GeU_rlYcVctr-AV95zeJfzPzRjgu7rwN_PY6OROIaooIrcgfqVLZLQ
CitedBy_id crossref_primary_10_1016_j_orggeochem_2018_04_006
crossref_primary_10_1128_AEM_01820_17
crossref_primary_10_1016_j_earscirev_2025_105133
crossref_primary_10_1038_srep35528
crossref_primary_10_1002_mbo3_330
crossref_primary_10_1016_j_jembe_2016_12_010
crossref_primary_10_1016_j_jenvman_2022_114952
crossref_primary_10_1016_j_scitotenv_2016_05_004
crossref_primary_10_1007_s10661_019_7616_8
crossref_primary_10_3389_fmicb_2018_03159
crossref_primary_10_1007_s00027_021_00803_w
crossref_primary_10_3389_fmicb_2014_00594
crossref_primary_10_1111_1462_2920_13676
crossref_primary_10_1111_1462_2920_14894
crossref_primary_10_1371_journal_pone_0107025
crossref_primary_10_1002_mlf2_12060
crossref_primary_10_1007_s11356_022_19157_3
crossref_primary_10_1016_j_marpolbul_2016_05_068
crossref_primary_10_3390_microorganisms4020019
crossref_primary_10_1016_j_marenvres_2023_105980
crossref_primary_10_1007_s00253_014_6165_x
crossref_primary_10_1371_journal_pone_0101443
crossref_primary_10_1016_j_eti_2023_103450
crossref_primary_10_3390_microorganisms9102072
crossref_primary_10_1038_ismej_2012_66
crossref_primary_10_1016_j_rvsc_2015_03_026
crossref_primary_10_1007_s10126_015_9683_3
crossref_primary_10_1016_j_jenvman_2023_119237
crossref_primary_10_1111_1758_2229_12538
crossref_primary_10_3389_fmicb_2020_01932
crossref_primary_10_1128_JB_00377_21
crossref_primary_10_1016_j_apsusc_2016_11_086
crossref_primary_10_1371_journal_pone_0175715
crossref_primary_10_3389_fmars_2022_872789
crossref_primary_10_1080_01490451_2017_1378951
crossref_primary_10_1016_j_syapm_2012_02_005
crossref_primary_10_1111_1462_2920_13895
crossref_primary_10_1128_AEM_01349_12
crossref_primary_10_3389_fmicb_2017_00152
crossref_primary_10_1016_j_geoderma_2025_117295
crossref_primary_10_3389_fmicb_2020_01825
crossref_primary_10_1093_treephys_tpad030
crossref_primary_10_1016_j_syapm_2013_04_009
crossref_primary_10_1038_s41598_023_38899_9
crossref_primary_10_1180_gbi_2024_8
crossref_primary_10_1007_s11356_024_35640_5
crossref_primary_10_1111_1462_2920_14514
crossref_primary_10_3389_fmicb_2017_00702
crossref_primary_10_1016_j_envpol_2019_04_136
crossref_primary_10_1038_s41598_024_72191_8
crossref_primary_10_3389_fmicb_2018_03124
crossref_primary_10_3389_fmicb_2019_00849
crossref_primary_10_7717_peerj_1913
crossref_primary_10_1016_j_rsma_2020_101153
crossref_primary_10_3389_fmicb_2018_00236
crossref_primary_10_1093_femsec_fiae105
crossref_primary_10_3389_fmicb_2014_00309
crossref_primary_10_1007_s00343_020_0106_6
crossref_primary_10_1111_1574_6941_12323
crossref_primary_10_1038_s41598_019_51341_3
crossref_primary_10_1016_j_scitotenv_2023_162922
crossref_primary_10_1007_s11802_020_4225_7
crossref_primary_10_3389_fmicb_2016_01661
crossref_primary_10_1016_j_micres_2012_09_005
crossref_primary_10_3389_fmars_2018_00171
crossref_primary_10_1111_j_1574_6941_2012_01431_x
crossref_primary_10_1155_2014_437684
crossref_primary_10_3389_fmicb_2018_00003
crossref_primary_10_1111_1462_2920_13511
crossref_primary_10_1111_1462_2920_12552
crossref_primary_10_1111_1462_2920_13880
crossref_primary_10_3390_microorganisms12081595
crossref_primary_10_1111_gbi_12196
crossref_primary_10_1016_j_syapm_2012_04_006
crossref_primary_10_1016_j_gca_2013_08_004
crossref_primary_10_1038_ismej_2015_257
crossref_primary_10_5194_bg_12_6169_2015
crossref_primary_10_1038_ismej_2015_10
crossref_primary_10_1016_j_dsr2_2014_05_011
crossref_primary_10_1029_2019GB006298
crossref_primary_10_3390_w14152394
crossref_primary_10_1016_j_pocean_2014_03_005
crossref_primary_10_1016_j_jembe_2013_07_015
crossref_primary_10_1016_j_envres_2025_122553
crossref_primary_10_1016_j_scitotenv_2020_143233
crossref_primary_10_1080_08927014_2013_824967
crossref_primary_10_1080_01490451_2023_2167021
crossref_primary_10_1016_j_dsr2_2017_11_016
crossref_primary_10_1093_femsec_fiac152
crossref_primary_10_1007_s11368_020_02800_2
crossref_primary_10_1038_s43705_023_00222_y
crossref_primary_10_1111_1462_2920_12133
crossref_primary_10_1016_j_scitotenv_2018_03_158
crossref_primary_10_1038_ismej_2014_208
crossref_primary_10_1111_maec_12411
crossref_primary_10_3389_fmicb_2017_02133
crossref_primary_10_1007_s00114_025_01989_x
crossref_primary_10_1128_AEM_03777_12
crossref_primary_10_1080_01490451_2018_1474507
crossref_primary_10_1128_AEM_03517_16
crossref_primary_10_1134_S0026261718030025
crossref_primary_10_1128_AEM_01821_12
crossref_primary_10_1038_s41396_021_01111_9
crossref_primary_10_1016_j_earscirev_2021_103799
crossref_primary_10_1016_j_scitotenv_2019_134316
crossref_primary_10_1007_s11430_017_9234_x
crossref_primary_10_1186_s40168_015_0077_6
crossref_primary_10_1089_ast_2016_1563
crossref_primary_10_3389_fmicb_2023_1102547
crossref_primary_10_1111_1462_2920_12410
crossref_primary_10_1016_j_envres_2023_116927
Cites_doi 10.1264/jsme2.23.81
10.1038/ismej.2009.127
10.1128/AEM.68.1.316-325.2002
10.1046/j.1462-2920.2003.00440.x
10.1128/AEM.64.12.4650-4657.1998
10.1111/j.1462-2920.2008.01760.x
10.1128/aem.56.6.1919-1925.1990
10.1073/pnas.0507245102
10.1038/nrmicro1414
10.1128/AEM.69.5.2448-2462.2003
10.1038/nature08790
10.1128/AEM.00715-06
10.1073/pnas.0608046104
10.1128/AEM.64.7.2691-2696.1998
10.1073/pnas.0809329105
10.1130/0-8137-2379-5.63
10.1099/mic.0.2008/018580-0
10.1038/nature07588
10.1080/01490450303896
10.3354/ame017255
10.1080/10635150802429642
10.1128/AEM.63.10.3789-3796.1997
10.1111/j.1462-2920.2004.00710.x
10.1007/BF00425214
10.1111/j.1574-6968.2001.tb10600.x
10.1111/j.1574-6968.1999.tb13772.x
10.1016/j.syapm.2008.12.001
10.1371/journal.pbio.0050230
10.1126/science.1175309
10.1038/ismej.2007.50
10.3354/meps326061
10.1046/j.1462-2920.2002.00364.x
10.1016/S0723-2020(11)80121-9
10.1016/j.femsec.2004.06.015
10.1016/0077-7579(75)90008-3
10.1099/mic.0.2007/008250-0
10.1111/j.1462-2920.2007.01407.x
10.1038/nature05192
10.1128/AEM.01817-06
10.4319/lo.2008.53.1.0014
10.1146/annurev.micro.60.080805.142115
10.1007/BF02328096
10.1002/cyto.990140205
10.1128/JB.187.4.1392-1404.2005
10.1080/08927010601108725
10.1128/AEM.00466-07
10.1016/j.syapm.2005.12.006
10.1128/AEM.71.4.1709-1716.2005
10.1128/JB.187.20.7126-7137.2005
10.1128/AEM.67.1.387-395.2001
10.1128/AEM.00163-06
10.1111/j.1462-2920.2008.01712.x
10.1128/AEM.67.11.5134-5142.2001
10.1038/msb4100131
10.1016/S0723-2020(99)80053-8
10.1007/s10236-009-0186-5
10.1093/biomet/40.3-4.237
10.1890/06-0219
10.1111/j.1574-6941.2009.00772.x
10.1128/AEM.71.6.2925-2933.2005
10.1128/aem.62.2.316-322.1996
10.1006/ecss.1999.0482
10.1128/AEM.71.3.1501-1506.2005
10.1093/nar/gkm864
10.1111/j.1462-2920.2005.00708.x
10.1099/00221287-144-7-1881
10.1038/296643a0
10.1111/j.1462-2920.2007.01496.x
10.1128/AEM.01272-07
10.1128/aem.63.7.2884-2896.1997
10.1093/bioinformatics/bth226
10.1128/AEM.72.3.2014-2021.2006
10.1007/BF00034558
10.1016/S0016-7037(03)00275-8
10.1128/AEM.66.6.2491-2501.2000
10.1093/bioinformatics/17.8.754
10.1128/AEM.70.12.7126-7139.2004
10.1007/s10236-009-0179-4
10.1128/AEM.72.4.2679-2690.2006
10.1128/AEM.65.9.3982-3989.1999
10.1099/00207713-49-2-385
10.1128/AEM.70.9.5426-5433.2004
10.1016/j.syapm.2005.05.006
ContentType Journal Article
Copyright 2010 Society for Applied Microbiology and Blackwell Publishing Ltd
2010 Society for Applied Microbiology and Blackwell Publishing Ltd.
Copyright_xml – notice: 2010 Society for Applied Microbiology and Blackwell Publishing Ltd
– notice: 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7QL
7TN
C1K
F1W
H95
H98
L.G
7X8
DOI 10.1111/j.1462-2920.2010.02380.x
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
Bacteriology Abstracts (Microbiology B)
Oceanic Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Oceanic Abstracts
Bacteriology Abstracts (Microbiology B)
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
MEDLINE - Academic
MEDLINE
AGRICOLA


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1462-2920
EndPage 774
ExternalDocumentID 21134098
10_1111_j_1462_2920_2010_02380_x
EMI2380
ark_67375_WNG_18CS0J1Q_T
US201301951358
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XFK
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
ALVPJ
BSCLL
HGLYW
OIG
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7QL
7TN
C1K
F1W
H95
H98
L.G
7X8
ID FETCH-LOGICAL-c4960-487355613d37da4390bf613fb2f5f168376c15d0a6b0c4c4695b2062bb75b9be3
IEDL.DBID DRFUL
ISICitedReferencesCount 119
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000287852900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1462-2912
1462-2920
IngestDate Fri Jul 11 10:05:55 EDT 2025
Tue Oct 07 09:23:03 EDT 2025
Thu Jul 10 18:42:53 EDT 2025
Mon Jul 21 06:02:52 EDT 2025
Sat Nov 29 06:56:54 EST 2025
Tue Nov 18 22:02:25 EST 2025
Wed Jan 22 17:06:38 EST 2025
Tue Sep 09 05:32:29 EDT 2025
Wed Dec 27 19:06:17 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4960-487355613d37da4390bf613fb2f5f168376c15d0a6b0c4c4695b2062bb75b9be3
Notes http://dx.doi.org/10.1111/j.1462-2920.2010.02380.x
istex:55F0C70CCC2CB7382B95F677FD1AB86E8B226C5D
ArticleID:EMI2380
ark:/67375/WNG-18CS0J1Q-T
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21134098
PQID 1365035154
PQPubID 24069
PageCount 17
ParticipantIDs proquest_miscellaneous_860398965
proquest_miscellaneous_1439217454
proquest_miscellaneous_1365035154
pubmed_primary_21134098
crossref_citationtrail_10_1111_j_1462_2920_2010_02380_x
crossref_primary_10_1111_j_1462_2920_2010_02380_x
wiley_primary_10_1111_j_1462_2920_2010_02380_x_EMI2380
istex_primary_ark_67375_WNG_18CS0J1Q_T
fao_agris_US201301951358
PublicationCentury 2000
PublicationDate March 2011
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: March 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Heijs, S.K., Jonkers, H.M., van Gemerden, H., Schaub, B.E.M., and Stal, L.J. (1999) The buffering capacity towards free sulphide in sediments of a coastal lagoon (Bassin d'Arcachon, France) - the relative importance of chemical and biological processes. Estuar Coast Shelf Sci 49: 21-35.
Loesekann, T., Robador, A., Niemann, H., Knittel, K., Boetius, A., and Dubilier, N. (2008) Endosymbioses between bacteria and deep-sea siboglinid tubeworms from an Arctic cold seep (Haakon Mosby Mud Volcano, Barents Sea). Environ Microbiol 10: 3237-3254.
Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W.G., Peplies, J., and Glockner, F.O. (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35: 7188-7196.
Brinkhoff, T., Muyzer, G., Wirsen, C.O., and Kuever, J. (1999) Thiomicrospira kuenenii sp. nov. Thiomicrospira frisia sp. nov., two mesophilic obligately chemolithoautotrophic sulfur-oxidizing bacteria isolated from an intertidal mud flat. Int J Syst Bacteriol 49: 385-392.
Huelsenbeck, J.P., and Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755.
Brinkhoff, T., and Muyzer, G. (1997) Increased species diversity and extended habitat range of sulfur-oxidizing Thiomicrospira spp. Appl Environ Microbiol 63: 3789-3796.
Amann, R.I., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R., and Stahl, D.A. (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Environ Microbiol 56: 1919-1925.
Kamp, A., Stief, P., and Schulz-Vogt, H.N. (2006) Anaerobic sulfide oxidation with nitrate by a freshwater Beggiatoa enrichment culture. Appl Environ Microbiol 72: 4755-4760.
Gillan, D.C., and Pernet, P. (2007) Adherent bacteria in heavy metal contaminated marine sediments. Biofouling 23: 1-13.
Meyer, B., and Kuever, J. (2007b) Molecular analysis of the distribution and phylogeny of dissimilatory adenosine-5′-phosphosulfate reductase-encoding genes (aprBA) among sulfur oxidizing prokaryotes. Microbiology 153: 3478-3498.
Daims, H., Bruhl, A., Amann, R., Schleifer, K.H., and Wagner, M. (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22: 434-444.
Campbell, B.J., Engel, A.S., Porter, M.L., and Takai, K. (2006) The versatile Epsilonproteobacteria: key players in sulphidic habitats. Nat Rev Micro 4 : 458-468.
Kuenen, J.G., and Veldkamp, H. (1972) Thiomicrospira pelophila gen. n. sp. n., a new obligately chemolithotrophic colourless sulfur bacterium. Antonie Van Leeuwenhoek 38: 241-256.
Preisler, A., de Beer, D., Lichtschlag, A., Lavik, G., Boetius, A., and Jørgensen, B.B. (2007) Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment. ISME J 1: 341-353.
Nielsen, L.P., Risgaard-Petersen, N., Fossing, H., Christensen, P.B., and Sayama, M. (2010) Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463: 1071-1074.
Rinke, C., Schmitz-Esser, S., Stoecker, K., Nussbaumer, A.D., Molnar, D.A., Vanura, K., et al. (2006) 'Candidatus Thiobios zoothamnicoli' an ectosymbiotic bacterium covering the giant marine ciliate Zoothamnium niveum. Appl Environ Microbiol 72: 2014-2021.
Zhou, J., Bruns, M.A., and Tiedje, J.M. (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62: 316-322.
Llobet-Brossa, E., Rossello-Mora, R., and Amann, R. (1998) Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Appl Environ Microbiol 64: 2691-2696.
Billerbeck, M., Werner, U., Polerecky, L., Walpersdorf, E., deBeer, D., and Huettel, M. (2006) Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment. Mar Ecol Prog Ser 326: 61-76.
Mussmann, M., Ishii, K., Rabus, R., and Amann, R. (2005a) Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Environ Microbiol 7: 405-418.
Alonso, C., and Pernthaler, J. (2005) Incorporation of glucose under anoxic conditions by bacterioplankton from coastal North Sea surface waters. Appl Environ Microbiol 71: 1709-1716.
Buehring, S.I., Elvert, M., and Witte, U. (2005) The microbial community structure of different permeable sandy sediments characterized by the investigation of bacterial fatty acids and fluorescence in situ hybridization. Environ Microbiol 7: 281-293.
Feng, B.-W., Li, X.-R., Wang, J.-H., Hu, Z.-Y., Meng, H., Xiang, L.-Y., and Quan, Z.-X. (2009) Bacterial diversity of water and sediment in the Changjiang estuary and coastal area of the East China Sea. FEMS Microbiol Ecol 70: 80-92.
Eilers, H., Pernthaler, J., Peplies, J., Glockner, F.O., Gerdts, G., and Amann, R. (2001) Isolation of novel pelagic bacteria from the German bight and their seasonal contributions to surface picoplankton. Appl Environ Microbiol 67: 5134-5142.
Brinkhoff, T., Santegoeds, C.M., Sahm, K., Kuever, J., and Muyzer, G. (1998) A polyphasic approach to study the diversity and vertical distribution of sulfur-oxidizing Thiomicrospira species in coastal sediments of the German Wadden Sea. Appl Environ Microbiol 64: 4650-4657.
Mussmann, M., Schulz, H.N., Strotmann, B., Kjaer, T., Nielsen, L.P., Rossello-Mora, R.A., et al. (2003) Phylogeny and distribution of nitrate-storing Beggiatoa spp. in coastal marine sediments. Environ Microbiol 5: 523-533.
Wallner, G., Amann, R., and Beisker, W. (1993) Optimizing flourescent in situ-hybridization with rRNA-targeted oligonulcleotide probes for flow cytometric identification of microorganisms. Cytometry 14: 136-143.
Al-Raei, A.M., Bosselmann, K., Bottcher, M.E., Hespenheide, B., and Tauber, F. (2009) Seasonal dynamics of microbial sulfate reduction in temperate intertidal surface sediments: controls by temperature and organic matter. Ocean Dyn 59: 351-370.
Jørgensen, B.B. (1982) Mineralization of organic matter in the sea bed - the role of sulphate reduction. Nature 296: 643-645.
Walsh, D.A., Zaikova, E., Howes, C.G., Song, Y.C., Wright, J.J., Tringe, S.G., et al. (2009) Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science 326: 578-582.
Robidart, J.C., Bench, S.R., Feldman, R.A., Novoradovsky, A., Podell, S.B., Gaasterland, T., et al. (2008) Metabolic versatility of the Riftia pachyptila endosymbiont revealed through metagenomics. Environ Microbiol 10: 727-737.
Bowman, J.P., McCammon, S.A., Gibson, J.A.E., Robertson, L., and Nichols, P.D. (2003) Prokaryotic metabolic activity and community structure in Antarctic continental shelf sediments. Appl Environ Microbiol 69: 2448-2462.
Schramm, A., Fuchs, B.M., Nielsen, J.L., Tonolla, M., and Stahl, D.A. (2002) Fluorescence in situ hybridization of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries. Environ Microbiol 4: 713-720.
Pott, A.S., and Dahl, C. (1998) Sirohaem sulfite reductase and other proteins encoded by genes at the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur. Microbiology 144: 1881-1894.
Lin, X., Wakeham, S.G., Putnam, I.F., Astor, Y.M., Scranton, M.I., Chistoserdov, A.Y., and Taylor, G.T. (2006) Comparison of vertical distributions of prokaryotic assemblages in the anoxic Cariaco Basin and Black Sea by use of fluorescence in situ hybridization. Appl Environ Microbiol 72: 2679-2690.
Mussmann, M., Richter, M., Lombardot, T., Meyerdierks, A., Kuever, J., Kube, M., et al. (2005b) Clustered genes related to sulfate respiration in uncultured prokaryotes support the theory of their concomitant horizontal transfer. J Bacteriol 187: 7126-7137.
Gao, H., Schreiber, F., Collins, G., Jensen, M.M., Kostka, J.E., Lavik, G., et al. (2009) Aerobic denitrification in permeable Wadden Sea sediments. ISME J 4: 417-426.
Ravenschlag, K., Sahm, K., and Amann, R. (2001) Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard). Appl Environ Microbiol 67: 387-395.
Aida, M., Kanemori, M., Kubota, N., Matada, M., Sasayama, Y., and Fukumori, Y. (2008) Distribution and population of free-living cells related to endosymbiont a harbored in Oligobrachia mashikoi (a siboglinid polychaete) inhabiting Tsukumo Bay. Microbes Environ 23: 81-88.
Musat, N., Werner, U., Knittel, K., Kolb, S., Dodenhof, T., van Beusekom, J.E.E., et al. (2006) Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Romo Basin, Wadden Sea. Syst Appl Microbiol 29: 333-348.
Good, I.J. (1953) The population frequencies of species and the estimation to the population parameters. Biometrika 40: 237-264.
Petri, R., Podgorsek, L., and Imhoff, J.F. (2001) Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria. FEMS Microbiol Lett 197: 171-178.
Timmer-Ten Hoor, A. (1975) A new type of thiosulfate oxidizing, nitrate reducing microorganism: Thiomicrospira denitrificans sp. nov. Neth J Sea Res 9: 344-350.
Pernthaler, A., and Amann, R. (2004) Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria. Appl Environ Microbiol 70: 5426-5433.
Gevertz, D., Telang, A.J., Voordouw, G., and Jenneman, G.E. (2000) Isolation and characterization of strains CVO and FWKOB, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl Environ Microbiol 66: 2491-2501.
Jansen, S., Walpersdorf, E., Werner, U., Billerbeck, M., Böttcher, M., and de Beer, D. (2009) Functioning of intertidal flats inferred from temporal and spatial dynamics of O2, H2S and pH in their surface sediment. Ocean Dyn 59: 317-332.
Schaub, B.E.M., and Gemerden, H. (1996) Sulfur bacteria in sediments of two coastal ecosystems: the Bassin d'Arcachon and the Etang du Prévost, France. Hydrobiologia 329: 199-210.
Macalady, J.L., Lyon, E.H., Koffman, B., Albe
2007; 104
2004; 20
1990; 56
2006; 72
1999; 49
2007a; 73
2010; 463
2007; 71
2008; 105
2007; 73
1992; 15
2005; 28
2007; 35
2004; 32
2009; 11
2006; 60
2004; 70
2005; 187
2000
1999; 17
2007; 9
2008; 23
1982; 296
2006; 29
2003; 5
1996; 62
2007; 5
2005; 71
2001; 17
1999; 178
1995; 164
2007; 1
2008; 154
2006; 326
2007; 23
1975; 9
2009; 59
2009; 326
2006; 443
1983; 136
1996; 329
1997; 63
2000; 66
2009
2008
1999; 22
1999; 65
2002; 4
2008; 57
2008; 10
2006; 4
2004
2008; 53
2001; 67
1998; 64
2009; 457
1993; 14
2004; 50
2001; 197
2009; 32
2009; 70
2007b; 153
2002; 68
1953; 40
2003; 69
2005; 7
2005a; 7
2005b; 187
2009; 4
1998; 144
2003; 20
2006; 103
1972; 38
2003; 67
e_1_2_7_3_1
e_1_2_7_9_1
Sandrin T.R. (e_1_2_7_71_1) 2008
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Kamyshny A. (e_1_2_7_37_1) 2007; 71
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
Mussmann M. (e_1_2_7_56_1) 2007; 5
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_88_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_86_1
Amann R.I. (e_1_2_7_5_1) 1990; 56
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – reference: Asami, H., Aida, M., and Watanabe, K. (2005) Accelerated sulfur cycle in coastal marine sediment beneath areas of intensive shellfish aquaculture. Appl Environ Microbiol 71: 2925-2933.
– reference: Snaidr, J., Amann, R., Huber, I., Ludwig, W., and Schleifer, K.-H. (1997) Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63: 2884-2896.
– reference: Yilmaz, L.S., and Noguera, D.R. (2004) Mechanistic approach to the problem of hybridization efficiency in fluorescent in situ hybridization. Appl Environ Microbiol 70: 7126-7139.
– reference: Brinkhoff, T., Santegoeds, C.M., Sahm, K., Kuever, J., and Muyzer, G. (1998) A polyphasic approach to study the diversity and vertical distribution of sulfur-oxidizing Thiomicrospira species in coastal sediments of the German Wadden Sea. Appl Environ Microbiol 64: 4650-4657.
– reference: Brinkhoff, T., Muyzer, G., Wirsen, C.O., and Kuever, J. (1999) Thiomicrospira kuenenii sp. nov. Thiomicrospira frisia sp. nov., two mesophilic obligately chemolithoautotrophic sulfur-oxidizing bacteria isolated from an intertidal mud flat. Int J Syst Bacteriol 49: 385-392.
– reference: Lavik, G., Stuhrmann, T., Bruchert, V., Van der Plas, A., Mohrholz, V., Lam, P., et al. (2009) Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature 457: 581-584.
– reference: Walsh, D.A., Zaikova, E., Howes, C.G., Song, Y.C., Wright, J.J., Tringe, S.G., et al. (2009) Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science 326: 578-582.
– reference: Campbell, B.J., Engel, A.S., Porter, M.L., and Takai, K. (2006) The versatile Epsilonproteobacteria: key players in sulphidic habitats. Nat Rev Micro 4 : 458-468.
– reference: Llobet-Brossa, E., Rossello-Mora, R., and Amann, R. (1998) Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Appl Environ Microbiol 64: 2691-2696.
– reference: Podgorsek, L., and Imhoff, J.F. (1999) Tetrathionate production by sulfur oxidizing bacteria and the role of tetrathionate in the sulfur cycle of Baltic Sea sediments. Aquat Microb Ecol 17: 255-265.
– reference: Ishii, K., Mussmann, M., MacGregor, B.J., and Amann, R. (2004) An improved fluorescence in situ hybridization protocol for the identification of Bacteria and Archaea in marine sediments. FEMS Microbiol Ecol 50: 203-212.
– reference: Pham, V.H., Yong, J.J., Park, S.J., Yoon, D.N., Chung, W.H., and Rhee, S.K. (2008) Molecular analysis of the diversity of the sulfide: quinone reductase (sqr) gene in sediment environments. Microbiology 154: 3112-3121.
– reference: Mussmann, M., Schulz, H.N., Strotmann, B., Kjaer, T., Nielsen, L.P., Rossello-Mora, R.A., et al. (2003) Phylogeny and distribution of nitrate-storing Beggiatoa spp. in coastal marine sediments. Environ Microbiol 5: 523-533.
– reference: Amann, R.I., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R., and Stahl, D.A. (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Environ Microbiol 56: 1919-1925.
– reference: Schloss, P.D., and Handelsman, J. (2005) Introducing dotur, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71: 1501-1506.
– reference: Nelson, D.C., and Jannasch, H.W. (1983) Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch Microbiol 136: 262-269.
– reference: Hong, S.H., Bunge, J., Jeon, S.O., and Epstein, S.S. (2006) Predicting microbial species richness. Proc Natl Acad Sci USA 103: 117-122.
– reference: Muyzer, G., Teske, A., Wirsen, C.O., and Jannasch, H.W. (1995) Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164: 165-172.
– reference: Stamatakis, A., Hoover, P., and Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57: 758-771.
– reference: Loesekann, T., Robador, A., Niemann, H., Knittel, K., Boetius, A., and Dubilier, N. (2008) Endosymbioses between bacteria and deep-sea siboglinid tubeworms from an Arctic cold seep (Haakon Mosby Mud Volcano, Barents Sea). Environ Microbiol 10: 3237-3254.
– reference: Brinkhoff, T., and Muyzer, G. (1997) Increased species diversity and extended habitat range of sulfur-oxidizing Thiomicrospira spp. Appl Environ Microbiol 63: 3789-3796.
– reference: Wallner, G., Amann, R., and Beisker, W. (1993) Optimizing flourescent in situ-hybridization with rRNA-targeted oligonulcleotide probes for flow cytometric identification of microorganisms. Cytometry 14: 136-143.
– reference: Jørgensen, B.B. (1982) Mineralization of organic matter in the sea bed - the role of sulphate reduction. Nature 296: 643-645.
– reference: Lin, X., Wakeham, S.G., Putnam, I.F., Astor, Y.M., Scranton, M.I., Chistoserdov, A.Y., and Taylor, G.T. (2006) Comparison of vertical distributions of prokaryotic assemblages in the anoxic Cariaco Basin and Black Sea by use of fluorescence in situ hybridization. Appl Environ Microbiol 72: 2679-2690.
– reference: Musat, N., Werner, U., Knittel, K., Kolb, S., Dodenhof, T., van Beusekom, J.E.E., et al. (2006) Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Romo Basin, Wadden Sea. Syst Appl Microbiol 29: 333-348.
– reference: Rinke, C., Schmitz-Esser, S., Stoecker, K., Nussbaumer, A.D., Molnar, D.A., Vanura, K., et al. (2006) 'Candidatus Thiobios zoothamnicoli' an ectosymbiotic bacterium covering the giant marine ciliate Zoothamnium niveum. Appl Environ Microbiol 72: 2014-2021.
– reference: Macalady, J.L., Lyon, E.H., Koffman, B., Albertson, L.K., Meyer, K., Galdenzi, S., and Mariani, S. (2006) Dominant microbial populations in limestone-corroding stream biofilms, Frasassi cave system, Italy. Appl Environ Microbiol 72: 5596-5609.
– reference: Eilers, H., Pernthaler, J., Peplies, J., Glockner, F.O., Gerdts, G., and Amann, R. (2001) Isolation of novel pelagic bacteria from the German bight and their seasonal contributions to surface picoplankton. Appl Environ Microbiol 67: 5134-5142.
– reference: Fuchs, B.M., Spring, S., Teeling, H., Quast, C., Wulf, J., Schattenhofer, M., et al. (2007) Characterization of a marine gammaproteobacterium capable of aerobic anoxygenic photosynthesis. Proc Natl Acad Sci USA 104: 2891-2896.
– reference: Grote, J., Labrenz, M., Pfeiffer, B., Jost, G., and Jurgens, M. (2007) Quantitative distributions of Epsilonproteobacteria and a Sulfurimonas subgroup in pelagic redoxclines of the central Baltic sea. Appl Environ Microbiol 73 : 7155-7161.
– reference: Kamyshny, A., and Ferdelman, T.G. (2007) Dynamics of zero-valent sulfur species, including polysulfides, in Wadden Sea tidal flat pools. Geochim Cosmochim Acta 71: A461-A461.
– reference: Sorokin, D.Y., Tourova, T.P., and Muyzer, G. (2005) Citreicella thiooxidans gen. nov., sp. nov., a novel lithoheterotrophic sulfur-oxidizing bacterium from the Black Sea. Syst Appl Microbiol 28: 679-687.
– reference: Bruechert, V., Jorgensen, B.B., Neumann, K., Riechmann, D., Schlosser, M., and Schulz, H. (2003) Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone. Geochim Cosmochim Acta 67: 4505-4518.
– reference: Loy, A., Duller, S., Baranyi, C., Mussmann, M., Ott, J., Sharon, I., et al. (2009) Reverse dissimilatory sulfite reductase as phylogenetic marker for a subgroup of sulfur-oxidizing prokaryotes. Environ Microbiol 11: 289-299.
– reference: Bowman, J.P., McCammon, S.A., Gibson, J.A.E., Robertson, L., and Nichols, P.D. (2003) Prokaryotic metabolic activity and community structure in Antarctic continental shelf sediments. Appl Environ Microbiol 69: 2448-2462.
– reference: Good, I.J. (1953) The population frequencies of species and the estimation to the population parameters. Biometrika 40: 237-264.
– reference: Schaub, B.E.M., and Gemerden, H. (1996) Sulfur bacteria in sediments of two coastal ecosystems: the Bassin d'Arcachon and the Etang du Prévost, France. Hydrobiologia 329: 199-210.
– reference: Heijs, S.K., Jonkers, H.M., van Gemerden, H., Schaub, B.E.M., and Stal, L.J. (1999) The buffering capacity towards free sulphide in sediments of a coastal lagoon (Bassin d'Arcachon, France) - the relative importance of chemical and biological processes. Estuar Coast Shelf Sci 49: 21-35.
– reference: Mussmann, M., Hu, F.Z., Richter, M., de Beer, D., Preisler, A., Jørgensen, B., et al. (2007) Insights into the genome of large sulfur bacteria revealed by analysis of single filaments. PLoS Biol 5: 1923-1937.
– reference: Ravenschlag, K., Sahm, K., and Amann, R. (2001) Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard). Appl Environ Microbiol 67: 387-395.
– reference: Billerbeck, M., Werner, U., Polerecky, L., Walpersdorf, E., deBeer, D., and Huettel, M. (2006) Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment. Mar Ecol Prog Ser 326: 61-76.
– reference: Daims, H., Bruhl, A., Amann, R., Schleifer, K.H., and Wagner, M. (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22: 434-444.
– reference: Pernthaler, A., and Amann, R. (2004) Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria. Appl Environ Microbiol 70: 5426-5433.
– reference: Alonso, C., and Pernthaler, J. (2005) Incorporation of glucose under anoxic conditions by bacterioplankton from coastal North Sea surface waters. Appl Environ Microbiol 71: 1709-1716.
– reference: Buehring, S.I., Elvert, M., and Witte, U. (2005) The microbial community structure of different permeable sandy sediments characterized by the investigation of bacterial fatty acids and fluorescence in situ hybridization. Environ Microbiol 7: 281-293.
– reference: Huber, T., Faulkner, G., and Hugenholtz, P. (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20: 2317-2319.
– reference: Ravenschlag, K., Sahm, K., Pernthaler, J., and Amann, R. (1999) High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65: 3982-3989.
– reference: Woyke, T., Teeling, H., Ivanova, N.N., Huntemann, M., Richter, M., Gloeckner, F.O., et al. (2006) Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 443: 950-955.
– reference: Meyer, B., Imhoff, J.F., and Kuever, J. (2007) Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria - evolution of the Sox sulfur oxidation enzyme system. Environ Microbiol 9: 2957-2977.
– reference: Mussmann, M., Richter, M., Lombardot, T., Meyerdierks, A., Kuever, J., Kube, M., et al. (2005b) Clustered genes related to sulfate respiration in uncultured prokaryotes support the theory of their concomitant horizontal transfer. J Bacteriol 187: 7126-7137.
– reference: Jost, G., Zubkov, M.V., Yakushev, E., Labrenz, M., and Jurgens, K. (2008) High abundance and dark CO2 fixation of chemolithoautotrophic prokaryotes in anoxic waters of the Baltic Sea. Limnol Oceanogr 53: 14-22.
– reference: Scott, K.M., and Cavanaugh, C.M. (2007) CO2 uptake and fixation by endosymbiotic chemoautotrophs from the bivalve Solemya velum. Appl Environ Microbiol 73: 1174-1179.
– reference: Knittel, K., Boetius, A., Lemke, A., Eilers, H., Lochte, K., Pfannkuche, O., et al. (2003) Activity, distribution and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia margin, Oregon). Geomicrobiol J 20: 269-294.
– reference: Robidart, J.C., Bench, S.R., Feldman, R.A., Novoradovsky, A., Podell, S.B., Gaasterland, T., et al. (2008) Metabolic versatility of the Riftia pachyptila endosymbiont revealed through metagenomics. Environ Microbiol 10: 727-737.
– reference: Gao, H., Schreiber, F., Collins, G., Jensen, M.M., Kostka, J.E., Lavik, G., et al. (2009) Aerobic denitrification in permeable Wadden Sea sediments. ISME J 4: 417-426.
– reference: Meyer, B., and Kuever, J. (2007a) Molecular analysis of the diversity of sulfate-reducing and sulfur-oxidizing prokaryotes in the environment, using aprA as functional marker gene. Appl Environ Microbiol 73: 7664-7679.
– reference: Aida, M., Kanemori, M., Kubota, N., Matada, M., Sasayama, Y., and Fukumori, Y. (2008) Distribution and population of free-living cells related to endosymbiont a harbored in Oligobrachia mashikoi (a siboglinid polychaete) inhabiting Tsukumo Bay. Microbes Environ 23: 81-88.
– reference: Kuenen, J.G., and Veldkamp, H. (1972) Thiomicrospira pelophila gen. n. sp. n., a new obligately chemolithotrophic colourless sulfur bacterium. Antonie Van Leeuwenhoek 38: 241-256.
– reference: Feng, B.-W., Li, X.-R., Wang, J.-H., Hu, Z.-Y., Meng, H., Xiang, L.-Y., and Quan, Z.-X. (2009) Bacterial diversity of water and sediment in the Changjiang estuary and coastal area of the East China Sea. FEMS Microbiol Ecol 70: 80-92.
– reference: Al-Raei, A.M., Bosselmann, K., Bottcher, M.E., Hespenheide, B., and Tauber, F. (2009) Seasonal dynamics of microbial sulfate reduction in temperate intertidal surface sediments: controls by temperature and organic matter. Ocean Dyn 59: 351-370.
– reference: Jansen, S., Walpersdorf, E., Werner, U., Billerbeck, M., Böttcher, M., and de Beer, D. (2009) Functioning of intertidal flats inferred from temporal and spatial dynamics of O2, H2S and pH in their surface sediment. Ocean Dyn 59: 317-332.
– reference: Gevertz, D., Telang, A.J., Voordouw, G., and Jenneman, G.E. (2000) Isolation and characterization of strains CVO and FWKOB, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl Environ Microbiol 66: 2491-2501.
– reference: Meyer, B., and Kuever, J. (2007b) Molecular analysis of the distribution and phylogeny of dissimilatory adenosine-5′-phosphosulfate reductase-encoding genes (aprBA) among sulfur oxidizing prokaryotes. Microbiology 153: 3478-3498.
– reference: Preisler, A., de Beer, D., Lichtschlag, A., Lavik, G., Boetius, A., and Jørgensen, B.B. (2007) Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment. ISME J 1: 341-353.
– reference: Huelsenbeck, J.P., and Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755.
– reference: Pott, A.S., and Dahl, C. (1998) Sirohaem sulfite reductase and other proteins encoded by genes at the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur. Microbiology 144: 1881-1894.
– reference: Gillan, D.C., and Pernet, P. (2007) Adherent bacteria in heavy metal contaminated marine sediments. Biofouling 23: 1-13.
– reference: Wirsen, C.O., Sievert, S.M., Cavanaugh, C.M., Molyneaux, S.J., Ahmad, A., Taylor, L.T., et al. (2002) Characterization of an autotrophic sulfide-oxidizing marine Arcobacter sp. that produces filamentous sulfur. Appl Environ Microbiol 68: 316-325.
– reference: Wagner-Doebler, I., and Biebl, H. (2006) Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol 60: 255-280.
– reference: Dahl, C., Engels, S., Pott-Sperling, A.S., Schulte, A., Sander, J., Luebbe, J., et al. (2005) Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. J Bacteriol 187: 1392-1404.
– reference: Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W.G., Peplies, J., and Glockner, F.O. (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35: 7188-7196.
– reference: Schramm, A., Fuchs, B.M., Nielsen, J.L., Tonolla, M., and Stahl, D.A. (2002) Fluorescence in situ hybridization of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries. Environ Microbiol 4: 713-720.
– reference: Musat, N., Halm, H., Winterholler, B., Hoppe, P., Peduzzi, S., Hillion, F., et al. (2008) A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc Natl Acad Sci USA 105: 17861-17866.
– reference: Yan, S., Fuchs, B.M., Lenk, S., Harder, J., Wulf, J., Jiao, N.-Z., and Amann, R. (2009) Biogeography and phylogeny of the NOR5/OM60 clade of Gammaproteobacteria. Syst Appl Microbiol 32: 124-139.
– reference: Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, et al. (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363-1371.
– reference: Petri, R., Podgorsek, L., and Imhoff, J.F. (2001) Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria. FEMS Microbiol Lett 197: 171-178.
– reference: Timmer-Ten Hoor, A. (1975) A new type of thiosulfate oxidizing, nitrate reducing microorganism: Thiomicrospira denitrificans sp. nov. Neth J Sea Res 9: 344-350.
– reference: Grabovich, M.Y., Muntyan, M.S., Lebedeva, V.Y., Ustiyan, V.S., and Dubinina, G.A. (1999) Lithoheterotrophic growth and electron transfer chain components of the filamentous gliding bacterium Leucothrix mucor DSM 2157 during oxidation of sulfur compounds. FEMS Microbiol Lett 178: 155-161.
– reference: Kamp, A., Stief, P., and Schulz-Vogt, H.N. (2006) Anaerobic sulfide oxidation with nitrate by a freshwater Beggiatoa enrichment culture. Appl Environ Microbiol 72: 4755-4760.
– reference: Mussmann, M., Ishii, K., Rabus, R., and Amann, R. (2005a) Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Environ Microbiol 7: 405-418.
– reference: Zhou, J., Bruns, M.A., and Tiedje, J.M. (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62: 316-322.
– reference: Manz, W., Amann, R., Ludwig, W., Wagner, M., and Schleifer, K.-H. (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 15: 593-600.
– reference: Nielsen, L.P., Risgaard-Petersen, N., Fossing, H., Christensen, P.B., and Sayama, M. (2010) Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463: 1071-1074.
– year: 2009
– volume: 50
  start-page: 203
  year: 2004
  end-page: 212
  article-title: An improved fluorescence hybridization protocol for the identification of and in marine sediments
  publication-title: FEMS Microbiol Ecol
– volume: 62
  start-page: 316
  year: 1996
  end-page: 322
  article-title: DNA recovery from soils of diverse composition
  publication-title: Appl Environ Microbiol
– volume: 20
  start-page: 2317
  year: 2004
  end-page: 2319
  article-title: Bellerophon: a program to detect chimeric sequences in multiple sequence alignments
  publication-title: Bioinformatics
– volume: 72
  start-page: 2014
  year: 2006
  end-page: 2021
  article-title: ‘ Thiobios zoothamnicoli’ an ectosymbiotic bacterium covering the giant marine ciliate
  publication-title: Appl Environ Microbiol
– volume: 5
  start-page: 1923
  year: 2007
  end-page: 1937
  article-title: Insights into the genome of large sulfur bacteria revealed by analysis of single filaments
  publication-title: PLoS Biol
– volume: 72
  start-page: 4755
  year: 2006
  end-page: 4760
  article-title: Anaerobic sulfide oxidation with nitrate by a freshwater enrichment culture
  publication-title: Appl Environ Microbiol
– volume: 10
  start-page: 3237
  year: 2008
  end-page: 3254
  article-title: Endosymbioses between bacteria and deep‐sea siboglinid tubeworms from an Arctic cold seep (Haakon Mosby Mud Volcano, Barents Sea)
  publication-title: Environ Microbiol
– volume: 71
  start-page: 1501
  year: 2005
  end-page: 1506
  article-title: Introducing dotur, a computer program for defining operational taxonomic units and estimating species richness
  publication-title: Appl Environ Microbiol
– volume: 32
  start-page: 1363
  year: 2004
  end-page: 1371
  article-title: ARB: a software environment for sequence data
  publication-title: Nucleic Acids Res
– volume: 29
  start-page: 333
  year: 2006
  end-page: 348
  article-title: Microbial community structure of sandy intertidal sediments in the North Sea, Sylt‐Romo Basin, Wadden Sea
  publication-title: Syst Appl Microbiol
– volume: 23
  start-page: 1
  year: 2007
  end-page: 13
  article-title: Adherent bacteria in heavy metal contaminated marine sediments
  publication-title: Biofouling
– volume: 326
  start-page: 61
  year: 2006
  end-page: 76
  article-title: Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment
  publication-title: Mar Ecol Prog Ser
– volume: 5
  start-page: 523
  year: 2003
  end-page: 533
  article-title: Phylogeny and distribution of nitrate‐storing spp. in coastal marine sediments
  publication-title: Environ Microbiol
– volume: 56
  start-page: 1919
  year: 1990
  end-page: 1925
  article-title: Combination of 16S rRNA‐targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations
  publication-title: Environ Microbiol
– volume: 178
  start-page: 155
  year: 1999
  end-page: 161
  article-title: Lithoheterotrophic growth and electron transfer chain components of the filamentous gliding bacterium DSM 2157 during oxidation of sulfur compounds
  publication-title: FEMS Microbiol Lett
– volume: 20
  start-page: 269
  year: 2003
  end-page: 294
  article-title: Activity, distribution and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia margin, Oregon)
  publication-title: Geomicrobiol J
– volume: 73
  start-page: 1174
  year: 2007
  end-page: 1179
  article-title: CO uptake and fixation by endosymbiotic chemoautotrophs from the bivalve
  publication-title: Appl Environ Microbiol
– volume: 105
  start-page: 17861
  year: 2008
  end-page: 17866
  article-title: A single‐cell view on the ecophysiology of anaerobic phototrophic bacteria
  publication-title: Proc Natl Acad Sci USA
– volume: 14
  start-page: 136
  year: 1993
  end-page: 143
  article-title: Optimizing flourescent ‐hybridization with rRNA‐targeted oligonulcleotide probes for flow cytometric identification of microorganisms
  publication-title: Cytometry
– volume: 68
  start-page: 316
  year: 2002
  end-page: 325
  article-title: Characterization of an autotrophic sulfide‐oxidizing marine sp. that produces filamentous sulfur
  publication-title: Appl Environ Microbiol
– volume: 197
  start-page: 171
  year: 2001
  end-page: 178
  article-title: Phylogeny and distribution of the gene among thiosulfate‐oxidizing bacteria
  publication-title: FEMS Microbiol Lett
– volume: 28
  start-page: 679
  year: 2005
  end-page: 687
  article-title: gen. nov., sp. nov., a novel lithoheterotrophic sulfur‐oxidizing bacterium from the Black Sea
  publication-title: Syst Appl Microbiol
– volume: 104
  start-page: 2891
  year: 2007
  end-page: 2896
  article-title: Characterization of a marine gammaproteobacterium capable of aerobic anoxygenic photosynthesis
  publication-title: Proc Natl Acad Sci USA
– volume: 49
  start-page: 21
  year: 1999
  end-page: 35
  article-title: The buffering capacity towards free sulphide in sediments of a coastal lagoon (Bassin d'Arcachon, France) – the relative importance of chemical and biological processes
  publication-title: Estuar Coast Shelf Sci
– volume: 73
  start-page: 7664
  year: 2007a
  end-page: 7679
  article-title: Molecular analysis of the diversity of sulfate‐reducing and sulfur‐oxidizing prokaryotes in the environment, using as functional marker gene
  publication-title: Appl Environ Microbiol
– start-page: 195
  year: 2008
– volume: 73
  start-page: 7155
  year: 2007
  end-page: 7161
  article-title: Quantitative distributions of and a subgroup in pelagic redoxclines of the central Baltic sea
  publication-title: Appl Environ Microbiol
– volume: 103
  start-page: 117
  year: 2006
  end-page: 122
  article-title: Predicting microbial species richness
  publication-title: Proc Natl Acad Sci USA
– volume: 70
  start-page: 80
  year: 2009
  end-page: 92
  article-title: Bacterial diversity of water and sediment in the Changjiang estuary and coastal area of the East China Sea
  publication-title: FEMS Microbiol Ecol
– volume: 72
  start-page: 5596
  year: 2006
  end-page: 5609
  article-title: Dominant microbial populations in limestone‐corroding stream biofilms, Frasassi cave system, Italy
  publication-title: Appl Environ Microbiol
– volume: 49
  start-page: 385
  year: 1999
  end-page: 392
  article-title: sp. nov. sp. nov., two mesophilic obligately chemolithoautotrophic sulfur‐oxidizing bacteria isolated from an intertidal mud flat
  publication-title: Int J Syst Bacteriol
– volume: 70
  start-page: 5426
  year: 2004
  end-page: 5433
  article-title: Simultaneous fluorescence hybridization of mRNA and rRNA in environmental bacteria
  publication-title: Appl Environ Microbiol
– volume: 17
  start-page: 255
  year: 1999
  end-page: 265
  article-title: Tetrathionate production by sulfur oxidizing bacteria and the role of tetrathionate in the sulfur cycle of Baltic Sea sediments
  publication-title: Aquat Microb Ecol
– volume: 4
  start-page: 713
  year: 2002
  end-page: 720
  article-title: Fluorescence hybridization of 16S rRNA gene clones (Clone‐FISH) for probe validation and screening of clone libraries
  publication-title: Environ Microbiol
– volume: 67
  start-page: 5134
  year: 2001
  end-page: 5142
  article-title: Isolation of novel pelagic bacteria from the German bight and their seasonal contributions to surface picoplankton
  publication-title: Appl Environ Microbiol
– volume: 53
  start-page: 14
  year: 2008
  end-page: 22
  article-title: High abundance and dark CO2 fixation of chemolithoautotrophic prokaryotes in anoxic waters of the Baltic Sea
  publication-title: Limnol Oceanogr
– volume: 11
  start-page: 289
  year: 2009
  end-page: 299
  article-title: Reverse dissimilatory sulfite reductase as phylogenetic marker for a subgroup of sulfur‐oxidizing prokaryotes
  publication-title: Environ Microbiol
– volume: 63
  start-page: 3789
  year: 1997
  end-page: 3796
  article-title: Increased species diversity and extended habitat range of sulfur‐oxidizing spp
  publication-title: Appl Environ Microbiol
– volume: 296
  start-page: 643
  year: 1982
  end-page: 645
  article-title: Mineralization of organic matter in the sea bed – the role of sulphate reduction
  publication-title: Nature
– volume: 154
  start-page: 3112
  year: 2008
  end-page: 3121
  article-title: Molecular analysis of the diversity of the sulfide: quinone reductase ( ) gene in sediment environments
  publication-title: Microbiology
– volume: 57
  start-page: 758
  year: 2008
  end-page: 771
  article-title: A rapid bootstrap algorithm for the RAxML web servers
  publication-title: Syst Biol
– volume: 60
  start-page: 255
  year: 2006
  end-page: 280
  article-title: Environmental biology of the marine lineage
  publication-title: Annu Rev Microbiol
– volume: 71
  start-page: A461
  year: 2007
  end-page: A461
  article-title: Dynamics of zero‐valent sulfur species, including polysulfides, in Wadden Sea tidal flat pools
  publication-title: Geochim Cosmochim Acta
– volume: 38
  start-page: 241
  year: 1972
  end-page: 256
  article-title: gen. n. sp. n., a new obligately chemolithotrophic colourless sulfur bacterium
  publication-title: Antonie Van Leeuwenhoek
– volume: 69
  start-page: 2448
  year: 2003
  end-page: 2462
  article-title: Prokaryotic metabolic activity and community structure in Antarctic continental shelf sediments
  publication-title: Appl Environ Microbiol
– volume: 10
  start-page: 727
  year: 2008
  end-page: 737
  article-title: Metabolic versatility of the endosymbiont revealed through metagenomics
  publication-title: Environ Microbiol
– volume: 457
  start-page: 581
  year: 2009
  end-page: 584
  article-title: Detoxification of sulphidic African shelf waters by blooming chemolithotrophs
  publication-title: Nature
– volume: 1
  start-page: 341
  year: 2007
  end-page: 353
  article-title: Biological and chemical sulfide oxidation in a inhabited marine sediment
  publication-title: ISME J
– volume: 67
  start-page: 387
  year: 2001
  end-page: 395
  article-title: Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard)
  publication-title: Appl Environ Microbiol
– volume: 63
  start-page: 2884
  year: 1997
  end-page: 2896
  article-title: Phylogenetic analysis and identification of bacteria in activated sludge
  publication-title: Appl Environ Microbiol
– volume: 59
  start-page: 351
  year: 2009
  end-page: 370
  article-title: Seasonal dynamics of microbial sulfate reduction in temperate intertidal surface sediments: controls by temperature and organic matter
  publication-title: Ocean Dyn
– volume: 64
  start-page: 2691
  year: 1998
  end-page: 2696
  article-title: Microbial community composition of Wadden Sea sediments as revealed by fluorescence hybridization
  publication-title: Appl Environ Microbiol
– volume: 15
  start-page: 593
  year: 1992
  end-page: 600
  article-title: Phylogenetic oligodeoxynucleotide probes for the major subclasses of : problems and solutions
  publication-title: Syst Appl Microbiol
– volume: 187
  start-page: 7126
  year: 2005b
  end-page: 7137
  article-title: Clustered genes related to sulfate respiration in uncultured prokaryotes support the theory of their concomitant horizontal transfer
  publication-title: J Bacteriol
– volume: 136
  start-page: 262
  year: 1983
  end-page: 269
  article-title: Chemoautotrophic growth of a marine in sulfide‐gradient cultures
  publication-title: Arch Microbiol
– volume: 71
  start-page: 1709
  year: 2005
  end-page: 1716
  article-title: Incorporation of glucose under anoxic conditions by bacterioplankton from coastal North Sea surface waters
  publication-title: Appl Environ Microbiol
– volume: 187
  start-page: 1392
  year: 2005
  end-page: 1404
  article-title: Novel genes of the gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium
  publication-title: J Bacteriol
– volume: 40
  start-page: 237
  year: 1953
  end-page: 264
  article-title: The population frequencies of species and the estimation to the population parameters
  publication-title: Biometrika
– volume: 4
  start-page: 458
  year: 2006
  end-page: 468
  article-title: The versatile : key players in sulphidic habitats
  publication-title: Nat Rev Micro
– volume: 64
  start-page: 4650
  year: 1998
  end-page: 4657
  article-title: A polyphasic approach to study the diversity and vertical distribution of sulfur‐oxidizing species in coastal sediments of the German Wadden Sea
  publication-title: Appl Environ Microbiol
– year: 2000
– volume: 72
  start-page: 2679
  year: 2006
  end-page: 2690
  article-title: Comparison of vertical distributions of prokaryotic assemblages in the anoxic Cariaco Basin and Black Sea by use of fluorescence hybridization
  publication-title: Appl Environ Microbiol
– volume: 326
  start-page: 578
  year: 2009
  end-page: 582
  article-title: Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones
  publication-title: Science
– volume: 7
  start-page: 281
  year: 2005
  end-page: 293
  article-title: The microbial community structure of different permeable sandy sediments characterized by the investigation of bacterial fatty acids and fluorescence hybridization
  publication-title: Environ Microbiol
– volume: 66
  start-page: 2491
  year: 2000
  end-page: 2501
  article-title: Isolation and characterization of strains CVO and FWKOB, two novel nitrate‐reducing, sulfide‐oxidizing bacteria isolated from oil field brine
  publication-title: Appl Environ Microbiol
– volume: 22
  start-page: 434
  year: 1999
  end-page: 444
  article-title: The domain‐specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set
  publication-title: Syst Appl Microbiol
– volume: 329
  start-page: 199
  year: 1996
  end-page: 210
  article-title: Sulfur bacteria in sediments of two coastal ecosystems: the Bassin d'Arcachon and the Etang du Prévost, France
  publication-title: Hydrobiologia
– volume: 59
  start-page: 317
  year: 2009
  end-page: 332
  article-title: Functioning of intertidal flats inferred from temporal and spatial dynamics of O2, H2S and pH in their surface sediment
  publication-title: Ocean Dyn
– volume: 144
  start-page: 1881
  year: 1998
  end-page: 1894
  article-title: Sirohaem sulfite reductase and other proteins encoded by genes at the locus of are involved in the oxidation of intracellular sulfur
  publication-title: Microbiology
– volume: 443
  start-page: 950
  year: 2006
  end-page: 955
  article-title: Symbiosis insights through metagenomic analysis of a microbial consortium
  publication-title: Nature
– volume: 153
  start-page: 3478
  year: 2007b
  end-page: 3498
  article-title: Molecular analysis of the distribution and phylogeny of dissimilatory adenosine‐5′‐phosphosulfate reductase‐encoding genes ( ) among sulfur oxidizing prokaryotes
  publication-title: Microbiology
– volume: 463
  start-page: 1071
  year: 2010
  end-page: 1074
  article-title: Electric currents couple spatially separated biogeochemical processes in marine sediment
  publication-title: Nature
– volume: 67
  start-page: 4505
  year: 2003
  end-page: 4518
  article-title: Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone
  publication-title: Geochim Cosmochim Acta
– volume: 164
  start-page: 165
  year: 1995
  end-page: 172
  article-title: Phylogenetic relationships of species and their identification in deep‐sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments
  publication-title: Arch Microbiol
– volume: 32
  start-page: 124
  year: 2009
  end-page: 139
  article-title: Biogeography and phylogeny of the NOR5/OM60 clade of
  publication-title: Syst Appl Microbiol
– volume: 17
  start-page: 754
  year: 2001
  end-page: 755
  article-title: MRBAYES: Bayesian inference of phylogenetic trees
  publication-title: Bioinformatics
– start-page: 63
  year: 2004
  end-page: 81
– volume: 9
  start-page: 2957
  year: 2007
  end-page: 2977
  article-title: Molecular analysis of the distribution and phylogeny of the gene among sulfur‐oxidizing bacteria – evolution of the Sox sulfur oxidation enzyme system
  publication-title: Environ Microbiol
– volume: 4
  start-page: 417
  year: 2009
  end-page: 426
  article-title: Aerobic denitrification in permeable Wadden Sea sediments
  publication-title: ISME J
– volume: 65
  start-page: 3982
  year: 1999
  end-page: 3989
  article-title: High bacterial diversity in permanently cold marine sediments
  publication-title: Appl Environ Microbiol
– volume: 70
  start-page: 7126
  year: 2004
  end-page: 7139
  article-title: Mechanistic approach to the problem of hybridization efficiency in fluorescent hybridization
  publication-title: Appl Environ Microbiol
– volume: 23
  start-page: 81
  year: 2008
  end-page: 88
  article-title: Distribution and population of free‐living cells related to endosymbiont a harbored in (a siboglinid polychaete) inhabiting Tsukumo Bay
  publication-title: Microbes Environ
– volume: 7
  start-page: 405
  year: 2005a
  end-page: 418
  article-title: Diversity and vertical distribution of cultured and uncultured in an intertidal mud flat of the Wadden Sea
  publication-title: Environ Microbiol
– volume: 35
  start-page: 7188
  year: 2007
  end-page: 7196
  article-title: SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB
  publication-title: Nucleic Acids Res
– volume: 71
  start-page: 2925
  year: 2005
  end-page: 2933
  article-title: Accelerated sulfur cycle in coastal marine sediment beneath areas of intensive shellfish aquaculture
  publication-title: Appl Environ Microbiol
– volume: 9
  start-page: 344
  year: 1975
  end-page: 350
  article-title: A new type of thiosulfate oxidizing, nitrate reducing microorganism: sp. nov
  publication-title: Neth J Sea Res
– ident: e_1_2_7_2_1
  doi: 10.1264/jsme2.23.81
– ident: e_1_2_7_20_1
  doi: 10.1038/ismej.2009.127
– ident: e_1_2_7_83_1
  doi: 10.1128/AEM.68.1.316-325.2002
– ident: e_1_2_7_53_1
  doi: 10.1046/j.1462-2920.2003.00440.x
– ident: e_1_2_7_10_1
  doi: 10.1128/AEM.64.12.4650-4657.1998
– ident: e_1_2_7_44_1
  doi: 10.1111/j.1462-2920.2008.01760.x
– volume: 56
  start-page: 1919
  year: 1990
  ident: e_1_2_7_5_1
  article-title: Combination of 16S rRNA‐targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations
  publication-title: Environ Microbiol
  doi: 10.1128/aem.56.6.1919-1925.1990
– ident: e_1_2_7_27_1
  doi: 10.1073/pnas.0507245102
– ident: e_1_2_7_14_1
  doi: 10.1038/nrmicro1414
– ident: e_1_2_7_8_1
  doi: 10.1128/AEM.69.5.2448-2462.2003
– ident: e_1_2_7_59_1
  doi: 10.1038/nature08790
– ident: e_1_2_7_46_1
  doi: 10.1128/AEM.00715-06
– ident: e_1_2_7_19_1
  doi: 10.1073/pnas.0608046104
– ident: e_1_2_7_42_1
  doi: 10.1128/AEM.64.7.2691-2696.1998
– ident: e_1_2_7_52_1
  doi: 10.1073/pnas.0809329105
– ident: e_1_2_7_33_1
  doi: 10.1130/0-8137-2379-5.63
– ident: e_1_2_7_62_1
  doi: 10.1099/mic.0.2008/018580-0
– ident: e_1_2_7_40_1
  doi: 10.1038/nature07588
– ident: e_1_2_7_38_1
  doi: 10.1080/01490450303896
– ident: e_1_2_7_63_1
  doi: 10.3354/ame017255
– ident: e_1_2_7_78_1
  doi: 10.1080/10635150802429642
– ident: e_1_2_7_9_1
  doi: 10.1128/AEM.63.10.3789-3796.1997
– ident: e_1_2_7_13_1
  doi: 10.1111/j.1462-2920.2004.00710.x
– ident: e_1_2_7_58_1
  doi: 10.1007/BF00425214
– ident: e_1_2_7_61_1
  doi: 10.1111/j.1574-6968.2001.tb10600.x
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1574-6968.1999.tb13772.x
– ident: e_1_2_7_86_1
  doi: 10.1016/j.syapm.2008.12.001
– volume: 5
  start-page: 1923
  year: 2007
  ident: e_1_2_7_56_1
  article-title: Insights into the genome of large sulfur bacteria revealed by analysis of single filaments
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0050230
– ident: e_1_2_7_82_1
  doi: 10.1126/science.1175309
– ident: e_1_2_7_65_1
  doi: 10.1038/ismej.2007.50
– ident: e_1_2_7_7_1
  doi: 10.3354/meps326061
– ident: e_1_2_7_74_1
  doi: 10.1046/j.1462-2920.2002.00364.x
– ident: e_1_2_7_47_1
  doi: 10.1016/S0723-2020(11)80121-9
– ident: e_1_2_7_30_1
  doi: 10.1016/j.femsec.2004.06.015
– ident: e_1_2_7_35_1
– ident: e_1_2_7_79_1
  doi: 10.1016/0077-7579(75)90008-3
– ident: e_1_2_7_49_1
  doi: 10.1099/mic.0.2007/008250-0
– ident: e_1_2_7_50_1
  doi: 10.1111/j.1462-2920.2007.01407.x
– ident: e_1_2_7_84_1
  doi: 10.1038/nature05192
– start-page: 195
  volume-title: Environmental Microbiology
  year: 2008
  ident: e_1_2_7_71_1
– ident: e_1_2_7_75_1
  doi: 10.1128/AEM.01817-06
– ident: e_1_2_7_34_1
  doi: 10.4319/lo.2008.53.1.0014
– ident: e_1_2_7_80_1
  doi: 10.1146/annurev.micro.60.080805.142115
– ident: e_1_2_7_39_1
  doi: 10.1007/BF02328096
– ident: e_1_2_7_81_1
  doi: 10.1002/cyto.990140205
– ident: e_1_2_7_15_1
  doi: 10.1128/JB.187.4.1392-1404.2005
– ident: e_1_2_7_22_1
  doi: 10.1080/08927010601108725
– ident: e_1_2_7_25_1
  doi: 10.1128/AEM.00466-07
– ident: e_1_2_7_51_1
  doi: 10.1016/j.syapm.2005.12.006
– ident: e_1_2_7_3_1
  doi: 10.1128/AEM.71.4.1709-1716.2005
– ident: e_1_2_7_55_1
  doi: 10.1128/JB.187.20.7126-7137.2005
– ident: e_1_2_7_68_1
  doi: 10.1128/AEM.67.1.387-395.2001
– ident: e_1_2_7_36_1
  doi: 10.1128/AEM.00163-06
– ident: e_1_2_7_43_1
  doi: 10.1111/j.1462-2920.2008.01712.x
– ident: e_1_2_7_17_1
  doi: 10.1128/AEM.67.11.5134-5142.2001
– ident: e_1_2_7_57_1
  doi: 10.1038/msb4100131
– ident: e_1_2_7_16_1
  doi: 10.1016/S0723-2020(99)80053-8
– ident: e_1_2_7_4_1
  doi: 10.1007/s10236-009-0186-5
– ident: e_1_2_7_23_1
  doi: 10.1093/biomet/40.3-4.237
– ident: e_1_2_7_85_1
– ident: e_1_2_7_45_1
  doi: 10.1890/06-0219
– ident: e_1_2_7_18_1
  doi: 10.1111/j.1574-6941.2009.00772.x
– ident: e_1_2_7_6_1
  doi: 10.1128/AEM.71.6.2925-2933.2005
– volume: 71
  start-page: A461
  year: 2007
  ident: e_1_2_7_37_1
  article-title: Dynamics of zero‐valent sulfur species, including polysulfides, in Wadden Sea tidal flat pools
  publication-title: Geochim Cosmochim Acta
– ident: e_1_2_7_88_1
  doi: 10.1128/aem.62.2.316-322.1996
– ident: e_1_2_7_26_1
  doi: 10.1006/ecss.1999.0482
– ident: e_1_2_7_73_1
  doi: 10.1128/AEM.71.3.1501-1506.2005
– ident: e_1_2_7_66_1
  doi: 10.1093/nar/gkm864
– ident: e_1_2_7_54_1
  doi: 10.1111/j.1462-2920.2005.00708.x
– ident: e_1_2_7_64_1
  doi: 10.1099/00221287-144-7-1881
– ident: e_1_2_7_32_1
  doi: 10.1038/296643a0
– ident: e_1_2_7_70_1
  doi: 10.1111/j.1462-2920.2007.01496.x
– ident: e_1_2_7_48_1
  doi: 10.1128/AEM.01272-07
– ident: e_1_2_7_76_1
  doi: 10.1128/aem.63.7.2884-2896.1997
– ident: e_1_2_7_28_1
  doi: 10.1093/bioinformatics/bth226
– ident: e_1_2_7_69_1
  doi: 10.1128/AEM.72.3.2014-2021.2006
– ident: e_1_2_7_72_1
  doi: 10.1007/BF00034558
– ident: e_1_2_7_12_1
  doi: 10.1016/S0016-7037(03)00275-8
– ident: e_1_2_7_21_1
  doi: 10.1128/AEM.66.6.2491-2501.2000
– ident: e_1_2_7_29_1
  doi: 10.1093/bioinformatics/17.8.754
– ident: e_1_2_7_87_1
  doi: 10.1128/AEM.70.12.7126-7139.2004
– ident: e_1_2_7_31_1
  doi: 10.1007/s10236-009-0179-4
– ident: e_1_2_7_41_1
  doi: 10.1128/AEM.72.4.2679-2690.2006
– ident: e_1_2_7_67_1
  doi: 10.1128/AEM.65.9.3982-3989.1999
– ident: e_1_2_7_11_1
  doi: 10.1099/00207713-49-2-385
– ident: e_1_2_7_60_1
  doi: 10.1128/AEM.70.9.5426-5433.2004
– ident: e_1_2_7_77_1
  doi: 10.1016/j.syapm.2005.05.006
SSID ssj0017370
Score 2.377167
Snippet The oxidation of hydrogen sulfide is essential to sulfur cycling in marine habitats. However, the role of microbial sulfur oxidation in marine sediments and...
Summary The oxidation of hydrogen sulfide is essential to sulfur cycling in marine habitats. However, the role of microbial sulfur oxidation in marine...
SourceID proquest
pubmed
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 758
SubjectTerms adenylyl-sulfate reductase
bacteria
Biocatalysis
carbon
Carbon Cycle
classification
DNA libraries
endosymbionts
fluorescence in situ hybridization
gamma-Proteobacteria
Gammaproteobacteria
Gammaproteobacteria - classification
Gammaproteobacteria - genetics
Gammaproteobacteria - metabolism
genes
Genes, rRNA
genetics
Geologic Sediments
Geologic Sediments - microbiology
habitats
hydrogen sulfide
Hydrogensulfite Reductase
Hydrogensulfite Reductase - genetics
marine sediments
metabolism
microbiology
molecular cloning
Molecular Sequence Data
nucleotide sequences
Oligobrachia
oxidation
Oxidation-Reduction
Phylogeny
primary productivity
ribosomal RNA
RNA, Ribosomal, 16S
RNA, Ribosomal, 16S - genetics
sequence analysis
Sulfides
Sulfides - metabolism
sulfur
Sulfur - metabolism
Title Novel groups of Gammaproteobacteria catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment
URI https://api.istex.fr/ark:/67375/WNG-18CS0J1Q-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-2920.2010.02380.x
https://www.ncbi.nlm.nih.gov/pubmed/21134098
https://www.proquest.com/docview/1365035154
https://www.proquest.com/docview/1439217454
https://www.proquest.com/docview/860398965
Volume 13
WOSCitedRecordID wos000287852900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1462-2920
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017370
  issn: 1462-2912
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1da9UwNLg7BV_81tWPEUF8stI0TdI-yvRORC7qdvG-hSRtpdi10u6Ou3_vOWlXuGPKEN_SNgnJ6fnOyTmEvLJOCsM4C6UQLkxA5IXG5ibMbVZYoeIyG4tNqMUiXa2yL2P8E96FGfJDTA43pAzPr5HAje0vE3kcYrWlMUILpE_0FvTJ3RjQWMzI7vtv8-Xn6UxBcV86bhzFLsX1XDnXlrDaKU0LKixCf3OVPrqt3nr5NL_7P3d2j9wZtVT6bkCr--RG0Twgt4a6lecPSb9oz4qa-hshPW1LemhOToxP-QDswad_NtQ7hs77gvbrulx3tN1UQ_0mapocvnYWmmW1Gd5V8Jq61oCyWr-hlQ9VgP417UG6ogfzEVnOPxwffAzH6g2hS8AsCsES4lh7k-dc5QaQILIlPJU2LkXJJBjG0jGRR0bayCUOzHRh40jG1iphM1vwx2TWtE2xR6jJuXMM-TbLE-GkFcwqCWJWFJmKUhcQdfGbtBtTm2OFjVpvmTixRpBqBKn2INWbgLBp5K8hvcc1xuwBJmjzA7iwXh7FePbLQFHlIg3Ia48e01ym-4mRc0ro74tDzdKDo-gT-6qPA_LyAn800DMe0pimaNe9xrBDPN0VyV_6ADTRlMQ-9A99UhnxLM2kCMiTAT-nRYHNz8Gsh9VKj4bX3rkG1oCtp_868Bm5PfjkMYbvOZmdduviBbnpzk6rvtsnO2qV7o9k-xtExDng
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagBcGFN214GglxIlUcx05yRIVtgWUFdFf0ZtlOgqKmCUq61fbfM-OkkbYqqELc8rAjZzJvT-Yj5LWxUmjGmS-FsH4EJs_XJtN-ZtLciDgs0gFsIp7NksPD9OsAB4T_wvT9IcaEG0qG09co4JiQvijloY9wS0OJFpifYAccys0IuArYffP998liOm4qxNxhxw2z2IXCnkuftWatrhe6AR8Wyb-6zCFd92-dgZrc_a-vdo_cGfxU-q5nrPvkWl4_IDd75Mqzh6SbNad5Rd0_IR1tCrqnj4-1a_oACsI1gNbUpYbOupx2y6pYtrRZlT2CE9V1BndbA4dFueqvlXCZ2kaDu1q9paUrVoDxFe3AvmIO8xFZTD7Md_f9Ab_BtxEERj7EQhzRN3nG40wDGwSmgLPChIUomITQWFomskBLE9jIQqAuTBjI0JhYmNTk_DHZqJs63yZUZ9xahpqbZZGw0ghmYgmGVuRpHCTWI_H5d1J2aG6OGBuVWgtyQoUkVUhS5UiqVh5h48xffYOPK8zZBlZQ-ifoYbU4CHH3l4GrykXikTeOP8Zn6fYIa-dioX7M9hRLdg-CT-ybmnvk1TkDKZBo3KbRdd4sO4WFh7i_K6K_jAFqYjCJY-gfxiQy4GmSSuGRrZ5Bx0VB1M8hsIfVSseHV35zBcoBj57868SX5Nb-_MtUTT_OPj8lt_sMPVb0PSMbJ-0yf05u2NOTsmtfDNL7G7yEPOg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db5UwFG_0To0vfuvwsybGJzEUaIFHs3nnx0Km2417a9pCDZHBArvL3X_vOYWR3GWaxfhWoG3K4Xy2h_Mj5I02gisWMV9wbvwYTJ6vdKH8Qmel5klosxFsIsnz9PAw2xvhgPBfmKE-xLThhpLh9DUKeHlc2ItSHvoItzSmaIH5Cd6DQ7kRI6bMjGxsf58vdqdDhSRy2HHjKHYhsefSudas1XWrWvBhkfyryxzSdf_WGaj53f_6avfIndFPpR8GxrpPrpXNA3JzQK48e0j6vD0ta-r-Celpa-mOOjpSrugDKAhXAFpRtzV01pe0X9Z22dF2VQ0ITlQ1BTztNDRttRruVXCbmlaBu1q_o5VLVoD-Ne3BvuIe5iOymH882Prkj_gNvokhMPIhFooQfTMqoqRQwAaBtnBldWi5ZQJCY2EYLwIldGBiA4E612EgQq0TrjNdRo_JrGmbcpNQVUTGMNTcrIi5EZoznQgwtLzMkiA1HknOv5M0Y3FzxNio5VqQE0okqUSSSkdSufIIm0YeDwU-rjBmE1hBqp-gh-ViP8TTXwauasRTj7x1_DHNpbpfmDuXcPkj35Es3doPvrBv8sAjr88ZSIJE4zGNasp22UtMPMTzXR7_pQ9QE4NJ7EP_0CcVQZSlmeAeeTIw6LQoiPojCOxhtcLx4ZXfXIJywNbTfx34itza257L3c_512fk9rBBjwl9z8nspFuWL8gNc3pS9d3LUXh_A-m_PGM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+groups+of+Gammaproteobacteria+catalyse+sulfur+oxidation+and+carbon+fixation+in+a+coastal%2C+intertidal+sediment&rft.jtitle=Environmental+microbiology&rft.au=Lenk%2C+Sabine&rft.au=Arnds%2C+Julia&rft.au=Zerjatke%2C+Katrice&rft.au=Musat%2C+Niculina&rft.date=2011-03-01&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=13&rft.issue=3&rft.spage=758&rft.epage=774&rft_id=info:doi/10.1111%2Fj.1462-2920.2010.02380.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1462_2920_2010_02380_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon