Novel groups of Gammaproteobacteria catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment
The oxidation of hydrogen sulfide is essential to sulfur cycling in marine habitats. However, the role of microbial sulfur oxidation in marine sediments and the microorganisms involved are largely unknown, except for the filamentous, mat-forming bacteria. In this study we explored the diversity, abu...
Gespeichert in:
| Veröffentlicht in: | Environmental microbiology Jg. 13; H. 3; S. 758 - 774 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford, UK
Blackwell Publishing Ltd
01.03.2011
|
| Schlagworte: | |
| ISSN: | 1462-2912, 1462-2920, 1462-2920 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The oxidation of hydrogen sulfide is essential to sulfur cycling in marine habitats. However, the role of microbial sulfur oxidation in marine sediments and the microorganisms involved are largely unknown, except for the filamentous, mat-forming bacteria. In this study we explored the diversity, abundance and activity of sulfur-oxidizing prokaryotes (SOP) in sulfidic intertidal sediments using 16S rRNA and functional gene sequence analyses, fluorescence in situ hybridization (FISH) and microautoradiography. The 16S rRNA gene analysis revealed that distinct clades of uncultured Gammaproteobacteria are important SOP in the tidal sediments. This was supported by the dominance of gammaproteobacterial sequences in clone libraries of genes encoding the reverse dissimilatory sulfite reductase (rDSR) and the adenosine phosphosulfate reductase (APR). Numerous sequences of all three genes grouped with uncultured autotrophic SOP. Accordingly, Gammaproteobacteria accounted for 40-70% of all ¹⁴CO₂-incorporating cells in surface sediments as shown by microautoradiography. Furthermore, phylogenetic analysis of all three genes consistently suggested a discrete population of SOP that was most closely related to the sulfur-oxidizing endosymbionts of the tubeworm Oligobrachia spp. FISH showed that members of this population (WS-Gam209 group) were abundant, reaching up to 1.3 × 10⁸ cells ml⁻¹ (4.6% of all cells). Approximately 25% of this population incorporated CO₂, consistent with a chemolithoautotrophic metabolism most likely based on sulfur oxidation. Thus, we hypothesize that novel, gammaproteobacterial SOP attached to sediment particles may play a more important role for sulfide removal and primary production in marine sediments than previously assumed. |
|---|---|
| AbstractList | The oxidation of hydrogen sulfide is essential to sulfur cycling in marine habitats. However, the role of microbial sulfur oxidation in marine sediments and the microorganisms involved are largely unknown, except for the filamentous, mat-forming bacteria. In this study we explored the diversity, abundance and activity of sulfur-oxidizing prokaryotes (SOP) in sulfidic intertidal sediments using 16S rRNA and functional gene sequence analyses, fluorescence in situ hybridization (FISH) and microautoradiography. The 16S rRNA gene analysis revealed that distinct clades of uncultured Gammaproteobacteria are important SOP in the tidal sediments. This was supported by the dominance of gammaproteobacterial sequences in clone libraries of genes encoding the reverse dissimilatory sulfite reductase (rDSR) and the adenosine phosphosulfate reductase (APR). Numerous sequences of all three genes grouped with uncultured autotrophic SOP. Accordingly, Gammaproteobacteria accounted for 40-70% of all 14CO2-incorporating cells in surface sediments as shown by microautoradiography. Furthermore, phylogenetic analysis of all three genes consistently suggested a discrete population of SOP that was most closely related to the sulfur-oxidizing endosymbionts of the tubeworm Oligobrachia spp. FISH showed that members of this population (WS-Gam209 group) were abundant, reaching up to 1.3108 cells ml-1 (4.6% of all cells). Approximately 25% of this population incorporated CO2, consistent with a chemolithoautotrophic metabolism most likely based on sulfur oxidation. Thus, we hypothesize that novel, gammaproteobacterial SOP attached to sediment particles may play a more important role for sulfide removal and primary production in marine sediments than previously assumed. The oxidation of hydrogen sulfide is essential to sulfur cycling in marine habitats. However, the role of microbial sulfur oxidation in marine sediments and the microorganisms involved are largely unknown, except for the filamentous, mat‐forming bacteria. In this study we explored the diversity, abundance and activity of sulfur‐oxidizing prokaryotes (SOP) in sulfidic intertidal sediments using 16S rRNA and functional gene sequence analyses, fluorescence in situ hybridization (FISH) and microautoradiography. The 16S rRNA gene analysis revealed that distinct clades of uncultured Gammaproteobacteria are important SOP in the tidal sediments. This was supported by the dominance of gammaproteobacterial sequences in clone libraries of genes encoding the reverse dissimilatory sulfite reductase (rDSR) and the adenosine phosphosulfate reductase (APR). Numerous sequences of all three genes grouped with uncultured autotrophic SOP. Accordingly, Gammaproteobacteria accounted for 40–70% of all 14 CO 2 ‐incorporating cells in surface sediments as shown by microautoradiography. Furthermore, phylogenetic analysis of all three genes consistently suggested a discrete population of SOP that was most closely related to the sulfur‐oxidizing endosymbionts of the tubeworm Oligobrachia spp. FISH showed that members of this population (WS‐Gam209 group) were abundant, reaching up to 1.3 × 10 8 cells ml −1 (4.6% of all cells). Approximately 25% of this population incorporated CO 2 , consistent with a chemolithoautotrophic metabolism most likely based on sulfur oxidation. Thus, we hypothesize that novel, gammaproteobacterial SOP attached to sediment particles may play a more important role for sulfide removal and primary production in marine sediments than previously assumed. The oxidation of hydrogen sulfide is essential to sulfur cycling in marine habitats. However, the role of microbial sulfur oxidation in marine sediments and the microorganisms involved are largely unknown, except for the filamentous, mat-forming bacteria. In this study we explored the diversity, abundance and activity of sulfur-oxidizing prokaryotes (SOP) in sulfidic intertidal sediments using 16S rRNA and functional gene sequence analyses, fluorescence in situ hybridization (FISH) and microautoradiography. The 16S rRNA gene analysis revealed that distinct clades of uncultured Gammaproteobacteria are important SOP in the tidal sediments. This was supported by the dominance of gammaproteobacterial sequences in clone libraries of genes encoding the reverse dissimilatory sulfite reductase (rDSR) and the adenosine phosphosulfate reductase (APR). Numerous sequences of all three genes grouped with uncultured autotrophic SOP. Accordingly, Gammaproteobacteria accounted for 40-70% of all ¹⁴CO₂ -incorporating cells in surface sediments as shown by microautoradiography. Furthermore, phylogenetic analysis of all three genes consistently suggested a discrete population of SOP that was most closely related to the sulfur-oxidizing endosymbionts of the tubeworm Oligobrachia spp. FISH showed that members of this population (WS-Gam209 group) were abundant, reaching up to 1.3 × 10⁸ cells ml⁻¹ (4.6% of all cells). Approximately 25% of this population incorporated CO₂, consistent with a chemolithoautotrophic metabolism most likely based on sulfur oxidation. Thus, we hypothesize that novel, gammaproteobacterial SOP attached to sediment particles may play a more important role for sulfide removal and primary production in marine sediments than previously assumed.The oxidation of hydrogen sulfide is essential to sulfur cycling in marine habitats. However, the role of microbial sulfur oxidation in marine sediments and the microorganisms involved are largely unknown, except for the filamentous, mat-forming bacteria. In this study we explored the diversity, abundance and activity of sulfur-oxidizing prokaryotes (SOP) in sulfidic intertidal sediments using 16S rRNA and functional gene sequence analyses, fluorescence in situ hybridization (FISH) and microautoradiography. The 16S rRNA gene analysis revealed that distinct clades of uncultured Gammaproteobacteria are important SOP in the tidal sediments. This was supported by the dominance of gammaproteobacterial sequences in clone libraries of genes encoding the reverse dissimilatory sulfite reductase (rDSR) and the adenosine phosphosulfate reductase (APR). Numerous sequences of all three genes grouped with uncultured autotrophic SOP. Accordingly, Gammaproteobacteria accounted for 40-70% of all ¹⁴CO₂ -incorporating cells in surface sediments as shown by microautoradiography. Furthermore, phylogenetic analysis of all three genes consistently suggested a discrete population of SOP that was most closely related to the sulfur-oxidizing endosymbionts of the tubeworm Oligobrachia spp. FISH showed that members of this population (WS-Gam209 group) were abundant, reaching up to 1.3 × 10⁸ cells ml⁻¹ (4.6% of all cells). Approximately 25% of this population incorporated CO₂, consistent with a chemolithoautotrophic metabolism most likely based on sulfur oxidation. Thus, we hypothesize that novel, gammaproteobacterial SOP attached to sediment particles may play a more important role for sulfide removal and primary production in marine sediments than previously assumed. The oxidation of hydrogen sulfide is essential to sulfur cycling in marine habitats. However, the role of microbial sulfur oxidation in marine sediments and the microorganisms involved are largely unknown, except for the filamentous, mat-forming bacteria. In this study we explored the diversity, abundance and activity of sulfur-oxidizing prokaryotes (SOP) in sulfidic intertidal sediments using 16S rRNA and functional gene sequence analyses, fluorescence in situ hybridization (FISH) and microautoradiography. The 16S rRNA gene analysis revealed that distinct clades of uncultured Gammaproteobacteria are important SOP in the tidal sediments. This was supported by the dominance of gammaproteobacterial sequences in clone libraries of genes encoding the reverse dissimilatory sulfite reductase (rDSR) and the adenosine phosphosulfate reductase (APR). Numerous sequences of all three genes grouped with uncultured autotrophic SOP. Accordingly, Gammaproteobacteria accounted for 40-70% of all ¹⁴CO₂ -incorporating cells in surface sediments as shown by microautoradiography. Furthermore, phylogenetic analysis of all three genes consistently suggested a discrete population of SOP that was most closely related to the sulfur-oxidizing endosymbionts of the tubeworm Oligobrachia spp. FISH showed that members of this population (WS-Gam209 group) were abundant, reaching up to 1.3 × 10⁸ cells ml⁻¹ (4.6% of all cells). Approximately 25% of this population incorporated CO₂, consistent with a chemolithoautotrophic metabolism most likely based on sulfur oxidation. Thus, we hypothesize that novel, gammaproteobacterial SOP attached to sediment particles may play a more important role for sulfide removal and primary production in marine sediments than previously assumed. Summary The oxidation of hydrogen sulfide is essential to sulfur cycling in marine habitats. However, the role of microbial sulfur oxidation in marine sediments and the microorganisms involved are largely unknown, except for the filamentous, mat‐forming bacteria. In this study we explored the diversity, abundance and activity of sulfur‐oxidizing prokaryotes (SOP) in sulfidic intertidal sediments using 16S rRNA and functional gene sequence analyses, fluorescence in situ hybridization (FISH) and microautoradiography. The 16S rRNA gene analysis revealed that distinct clades of uncultured Gammaproteobacteria are important SOP in the tidal sediments. This was supported by the dominance of gammaproteobacterial sequences in clone libraries of genes encoding the reverse dissimilatory sulfite reductase (rDSR) and the adenosine phosphosulfate reductase (APR). Numerous sequences of all three genes grouped with uncultured autotrophic SOP. Accordingly, Gammaproteobacteria accounted for 40–70% of all 14CO2‐incorporating cells in surface sediments as shown by microautoradiography. Furthermore, phylogenetic analysis of all three genes consistently suggested a discrete population of SOP that was most closely related to the sulfur‐oxidizing endosymbionts of the tubeworm Oligobrachia spp. FISH showed that members of this population (WS‐Gam209 group) were abundant, reaching up to 1.3 × 108 cells ml−1 (4.6% of all cells). Approximately 25% of this population incorporated CO2, consistent with a chemolithoautotrophic metabolism most likely based on sulfur oxidation. Thus, we hypothesize that novel, gammaproteobacterial SOP attached to sediment particles may play a more important role for sulfide removal and primary production in marine sediments than previously assumed. |
| Author | Arnds, Julia Mußmann, Marc Musat, Niculina Lenk, Sabine Zerjatke, Katrice Amann, Rudolf |
| Author_xml | – sequence: 1 fullname: Lenk, Sabine – sequence: 2 fullname: Arnds, Julia – sequence: 3 fullname: Zerjatke, Katrice – sequence: 4 fullname: Musat, Niculina – sequence: 5 fullname: Amann, Rudolf – sequence: 6 fullname: Mußmann, Marc |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21134098$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktv1DAUhS1URB_wFyA7WDSDH7GTLKiERmUoKkWorVhatmNXHpJ4sB2a-fc4k3YWLKDe-Pr6O8eyj4_BQe96DUCG4AKl8X69QAXDOa4xXGCYuhCTCi7GZ-Bov3GwrxE-BMchrCFEJSnhC3CIESIFrKsjEK7cb91md94Nm5A5k61E14mNd1E7KVTU3opMiSjabdBZGFoz-MyNthHRuj4TfZN2vUylsePcs6mdKSdCEp2mVfKIiW-zoBvb6T6-BM-NaIN-9TCfgNtP5zfLz_nlt9XF8uNlroqawbyoSkIpQ6QhZSMKUkNp0spIbKhBrCIlU4g2UDAJVaEKVlOJIcNSllTWUpMT8Hb2Tdf5NegQeWeD0m0reu2GwCsGSV3VjCby3T9JlE7HqCxo8X-UMAoJRTv09QM6yE43fONtJ_yWP75-As5mQHkXgteGKxt3jxi9sC1HkE9x8zWfkuRTqnyKm-_i5mMyqP4yeDzjCdIPs_Tetnr7ZB0__3oxVUmfz3oboh73euF_cpZ-GeU_rlYcVctr-AV95zeJfzPzRjgu7rwN_PY6OROIaooIrcgfqVLZLQ |
| CitedBy_id | crossref_primary_10_1016_j_orggeochem_2018_04_006 crossref_primary_10_1128_AEM_01820_17 crossref_primary_10_1016_j_earscirev_2025_105133 crossref_primary_10_1038_srep35528 crossref_primary_10_1002_mbo3_330 crossref_primary_10_1016_j_jembe_2016_12_010 crossref_primary_10_1016_j_jenvman_2022_114952 crossref_primary_10_1016_j_scitotenv_2016_05_004 crossref_primary_10_1007_s10661_019_7616_8 crossref_primary_10_3389_fmicb_2018_03159 crossref_primary_10_1007_s00027_021_00803_w crossref_primary_10_3389_fmicb_2014_00594 crossref_primary_10_1111_1462_2920_13676 crossref_primary_10_1111_1462_2920_14894 crossref_primary_10_1371_journal_pone_0107025 crossref_primary_10_1002_mlf2_12060 crossref_primary_10_1007_s11356_022_19157_3 crossref_primary_10_1016_j_marpolbul_2016_05_068 crossref_primary_10_3390_microorganisms4020019 crossref_primary_10_1016_j_marenvres_2023_105980 crossref_primary_10_1007_s00253_014_6165_x crossref_primary_10_1371_journal_pone_0101443 crossref_primary_10_1016_j_eti_2023_103450 crossref_primary_10_3390_microorganisms9102072 crossref_primary_10_1038_ismej_2012_66 crossref_primary_10_1016_j_rvsc_2015_03_026 crossref_primary_10_1007_s10126_015_9683_3 crossref_primary_10_1016_j_jenvman_2023_119237 crossref_primary_10_1111_1758_2229_12538 crossref_primary_10_3389_fmicb_2020_01932 crossref_primary_10_1128_JB_00377_21 crossref_primary_10_1016_j_apsusc_2016_11_086 crossref_primary_10_1371_journal_pone_0175715 crossref_primary_10_3389_fmars_2022_872789 crossref_primary_10_1080_01490451_2017_1378951 crossref_primary_10_1016_j_syapm_2012_02_005 crossref_primary_10_1111_1462_2920_13895 crossref_primary_10_1128_AEM_01349_12 crossref_primary_10_3389_fmicb_2017_00152 crossref_primary_10_1016_j_geoderma_2025_117295 crossref_primary_10_3389_fmicb_2020_01825 crossref_primary_10_1093_treephys_tpad030 crossref_primary_10_1016_j_syapm_2013_04_009 crossref_primary_10_1038_s41598_023_38899_9 crossref_primary_10_1180_gbi_2024_8 crossref_primary_10_1007_s11356_024_35640_5 crossref_primary_10_1111_1462_2920_14514 crossref_primary_10_3389_fmicb_2017_00702 crossref_primary_10_1016_j_envpol_2019_04_136 crossref_primary_10_1038_s41598_024_72191_8 crossref_primary_10_3389_fmicb_2018_03124 crossref_primary_10_3389_fmicb_2019_00849 crossref_primary_10_7717_peerj_1913 crossref_primary_10_1016_j_rsma_2020_101153 crossref_primary_10_3389_fmicb_2018_00236 crossref_primary_10_1093_femsec_fiae105 crossref_primary_10_3389_fmicb_2014_00309 crossref_primary_10_1007_s00343_020_0106_6 crossref_primary_10_1111_1574_6941_12323 crossref_primary_10_1038_s41598_019_51341_3 crossref_primary_10_1016_j_scitotenv_2023_162922 crossref_primary_10_1007_s11802_020_4225_7 crossref_primary_10_3389_fmicb_2016_01661 crossref_primary_10_1016_j_micres_2012_09_005 crossref_primary_10_3389_fmars_2018_00171 crossref_primary_10_1111_j_1574_6941_2012_01431_x crossref_primary_10_1155_2014_437684 crossref_primary_10_3389_fmicb_2018_00003 crossref_primary_10_1111_1462_2920_13511 crossref_primary_10_1111_1462_2920_12552 crossref_primary_10_1111_1462_2920_13880 crossref_primary_10_3390_microorganisms12081595 crossref_primary_10_1111_gbi_12196 crossref_primary_10_1016_j_syapm_2012_04_006 crossref_primary_10_1016_j_gca_2013_08_004 crossref_primary_10_1038_ismej_2015_257 crossref_primary_10_5194_bg_12_6169_2015 crossref_primary_10_1038_ismej_2015_10 crossref_primary_10_1016_j_dsr2_2014_05_011 crossref_primary_10_1029_2019GB006298 crossref_primary_10_3390_w14152394 crossref_primary_10_1016_j_pocean_2014_03_005 crossref_primary_10_1016_j_jembe_2013_07_015 crossref_primary_10_1016_j_envres_2025_122553 crossref_primary_10_1016_j_scitotenv_2020_143233 crossref_primary_10_1080_08927014_2013_824967 crossref_primary_10_1080_01490451_2023_2167021 crossref_primary_10_1016_j_dsr2_2017_11_016 crossref_primary_10_1093_femsec_fiac152 crossref_primary_10_1007_s11368_020_02800_2 crossref_primary_10_1038_s43705_023_00222_y crossref_primary_10_1111_1462_2920_12133 crossref_primary_10_1016_j_scitotenv_2018_03_158 crossref_primary_10_1038_ismej_2014_208 crossref_primary_10_1111_maec_12411 crossref_primary_10_3389_fmicb_2017_02133 crossref_primary_10_1007_s00114_025_01989_x crossref_primary_10_1128_AEM_03777_12 crossref_primary_10_1080_01490451_2018_1474507 crossref_primary_10_1128_AEM_03517_16 crossref_primary_10_1134_S0026261718030025 crossref_primary_10_1128_AEM_01821_12 crossref_primary_10_1038_s41396_021_01111_9 crossref_primary_10_1016_j_earscirev_2021_103799 crossref_primary_10_1016_j_scitotenv_2019_134316 crossref_primary_10_1007_s11430_017_9234_x crossref_primary_10_1186_s40168_015_0077_6 crossref_primary_10_1089_ast_2016_1563 crossref_primary_10_3389_fmicb_2023_1102547 crossref_primary_10_1111_1462_2920_12410 crossref_primary_10_1016_j_envres_2023_116927 |
| Cites_doi | 10.1264/jsme2.23.81 10.1038/ismej.2009.127 10.1128/AEM.68.1.316-325.2002 10.1046/j.1462-2920.2003.00440.x 10.1128/AEM.64.12.4650-4657.1998 10.1111/j.1462-2920.2008.01760.x 10.1128/aem.56.6.1919-1925.1990 10.1073/pnas.0507245102 10.1038/nrmicro1414 10.1128/AEM.69.5.2448-2462.2003 10.1038/nature08790 10.1128/AEM.00715-06 10.1073/pnas.0608046104 10.1128/AEM.64.7.2691-2696.1998 10.1073/pnas.0809329105 10.1130/0-8137-2379-5.63 10.1099/mic.0.2008/018580-0 10.1038/nature07588 10.1080/01490450303896 10.3354/ame017255 10.1080/10635150802429642 10.1128/AEM.63.10.3789-3796.1997 10.1111/j.1462-2920.2004.00710.x 10.1007/BF00425214 10.1111/j.1574-6968.2001.tb10600.x 10.1111/j.1574-6968.1999.tb13772.x 10.1016/j.syapm.2008.12.001 10.1371/journal.pbio.0050230 10.1126/science.1175309 10.1038/ismej.2007.50 10.3354/meps326061 10.1046/j.1462-2920.2002.00364.x 10.1016/S0723-2020(11)80121-9 10.1016/j.femsec.2004.06.015 10.1016/0077-7579(75)90008-3 10.1099/mic.0.2007/008250-0 10.1111/j.1462-2920.2007.01407.x 10.1038/nature05192 10.1128/AEM.01817-06 10.4319/lo.2008.53.1.0014 10.1146/annurev.micro.60.080805.142115 10.1007/BF02328096 10.1002/cyto.990140205 10.1128/JB.187.4.1392-1404.2005 10.1080/08927010601108725 10.1128/AEM.00466-07 10.1016/j.syapm.2005.12.006 10.1128/AEM.71.4.1709-1716.2005 10.1128/JB.187.20.7126-7137.2005 10.1128/AEM.67.1.387-395.2001 10.1128/AEM.00163-06 10.1111/j.1462-2920.2008.01712.x 10.1128/AEM.67.11.5134-5142.2001 10.1038/msb4100131 10.1016/S0723-2020(99)80053-8 10.1007/s10236-009-0186-5 10.1093/biomet/40.3-4.237 10.1890/06-0219 10.1111/j.1574-6941.2009.00772.x 10.1128/AEM.71.6.2925-2933.2005 10.1128/aem.62.2.316-322.1996 10.1006/ecss.1999.0482 10.1128/AEM.71.3.1501-1506.2005 10.1093/nar/gkm864 10.1111/j.1462-2920.2005.00708.x 10.1099/00221287-144-7-1881 10.1038/296643a0 10.1111/j.1462-2920.2007.01496.x 10.1128/AEM.01272-07 10.1128/aem.63.7.2884-2896.1997 10.1093/bioinformatics/bth226 10.1128/AEM.72.3.2014-2021.2006 10.1007/BF00034558 10.1016/S0016-7037(03)00275-8 10.1128/AEM.66.6.2491-2501.2000 10.1093/bioinformatics/17.8.754 10.1128/AEM.70.12.7126-7139.2004 10.1007/s10236-009-0179-4 10.1128/AEM.72.4.2679-2690.2006 10.1128/AEM.65.9.3982-3989.1999 10.1099/00207713-49-2-385 10.1128/AEM.70.9.5426-5433.2004 10.1016/j.syapm.2005.05.006 |
| ContentType | Journal Article |
| Copyright | 2010 Society for Applied Microbiology and Blackwell Publishing Ltd 2010 Society for Applied Microbiology and Blackwell Publishing Ltd. |
| Copyright_xml | – notice: 2010 Society for Applied Microbiology and Blackwell Publishing Ltd – notice: 2010 Society for Applied Microbiology and Blackwell Publishing Ltd. |
| DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7QL 7TN C1K F1W H95 H98 L.G 7X8 |
| DOI | 10.1111/j.1462-2920.2010.02380.x |
| DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic Bacteriology Abstracts (Microbiology B) Oceanic Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts Oceanic Abstracts Bacteriology Abstracts (Microbiology B) ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef MEDLINE - Academic MEDLINE AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1462-2920 |
| EndPage | 774 |
| ExternalDocumentID | 21134098 10_1111_j_1462_2920_2010_02380_x EMI2380 ark_67375_WNG_18CS0J1Q_T US201301951358 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABCVL ABEML ABHUG ABJNI ABPTK ABPVW ABWRO ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIAGR AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XFK XG1 XIH YUY ZZTAW ~02 ~IA ~KM ~WT AAHBH AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG ALVPJ BSCLL HGLYW OIG AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7S9 L.6 7QL 7TN C1K F1W H95 H98 L.G 7X8 |
| ID | FETCH-LOGICAL-c4960-487355613d37da4390bf613fb2f5f168376c15d0a6b0c4c4695b2062bb75b9be3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 119 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000287852900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1462-2912 1462-2920 |
| IngestDate | Fri Jul 11 10:05:55 EDT 2025 Tue Oct 07 09:23:03 EDT 2025 Thu Jul 10 18:42:53 EDT 2025 Mon Jul 21 06:02:52 EDT 2025 Sat Nov 29 06:56:54 EST 2025 Tue Nov 18 22:02:25 EST 2025 Wed Jan 22 17:06:38 EST 2025 Tue Sep 09 05:32:29 EDT 2025 Wed Dec 27 19:06:17 EST 2023 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | 2010 Society for Applied Microbiology and Blackwell Publishing Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4960-487355613d37da4390bf613fb2f5f168376c15d0a6b0c4c4695b2062bb75b9be3 |
| Notes | http://dx.doi.org/10.1111/j.1462-2920.2010.02380.x istex:55F0C70CCC2CB7382B95F677FD1AB86E8B226C5D ArticleID:EMI2380 ark:/67375/WNG-18CS0J1Q-T ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 21134098 |
| PQID | 1365035154 |
| PQPubID | 24069 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_860398965 proquest_miscellaneous_1439217454 proquest_miscellaneous_1365035154 pubmed_primary_21134098 crossref_citationtrail_10_1111_j_1462_2920_2010_02380_x crossref_primary_10_1111_j_1462_2920_2010_02380_x wiley_primary_10_1111_j_1462_2920_2010_02380_x_EMI2380 istex_primary_ark_67375_WNG_18CS0J1Q_T fao_agris_US201301951358 |
| PublicationCentury | 2000 |
| PublicationDate | March 2011 |
| PublicationDateYYYYMMDD | 2011-03-01 |
| PublicationDate_xml | – month: 03 year: 2011 text: March 2011 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: England |
| PublicationTitle | Environmental microbiology |
| PublicationTitleAlternate | Environ Microbiol |
| PublicationYear | 2011 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | Heijs, S.K., Jonkers, H.M., van Gemerden, H., Schaub, B.E.M., and Stal, L.J. (1999) The buffering capacity towards free sulphide in sediments of a coastal lagoon (Bassin d'Arcachon, France) - the relative importance of chemical and biological processes. Estuar Coast Shelf Sci 49: 21-35. Loesekann, T., Robador, A., Niemann, H., Knittel, K., Boetius, A., and Dubilier, N. (2008) Endosymbioses between bacteria and deep-sea siboglinid tubeworms from an Arctic cold seep (Haakon Mosby Mud Volcano, Barents Sea). Environ Microbiol 10: 3237-3254. Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W.G., Peplies, J., and Glockner, F.O. (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35: 7188-7196. Brinkhoff, T., Muyzer, G., Wirsen, C.O., and Kuever, J. (1999) Thiomicrospira kuenenii sp. nov. Thiomicrospira frisia sp. nov., two mesophilic obligately chemolithoautotrophic sulfur-oxidizing bacteria isolated from an intertidal mud flat. Int J Syst Bacteriol 49: 385-392. Huelsenbeck, J.P., and Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755. Brinkhoff, T., and Muyzer, G. (1997) Increased species diversity and extended habitat range of sulfur-oxidizing Thiomicrospira spp. Appl Environ Microbiol 63: 3789-3796. Amann, R.I., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R., and Stahl, D.A. (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Environ Microbiol 56: 1919-1925. Kamp, A., Stief, P., and Schulz-Vogt, H.N. (2006) Anaerobic sulfide oxidation with nitrate by a freshwater Beggiatoa enrichment culture. Appl Environ Microbiol 72: 4755-4760. Gillan, D.C., and Pernet, P. (2007) Adherent bacteria in heavy metal contaminated marine sediments. Biofouling 23: 1-13. Meyer, B., and Kuever, J. (2007b) Molecular analysis of the distribution and phylogeny of dissimilatory adenosine-5′-phosphosulfate reductase-encoding genes (aprBA) among sulfur oxidizing prokaryotes. Microbiology 153: 3478-3498. Daims, H., Bruhl, A., Amann, R., Schleifer, K.H., and Wagner, M. (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22: 434-444. Campbell, B.J., Engel, A.S., Porter, M.L., and Takai, K. (2006) The versatile Epsilonproteobacteria: key players in sulphidic habitats. Nat Rev Micro 4 : 458-468. Kuenen, J.G., and Veldkamp, H. (1972) Thiomicrospira pelophila gen. n. sp. n., a new obligately chemolithotrophic colourless sulfur bacterium. Antonie Van Leeuwenhoek 38: 241-256. Preisler, A., de Beer, D., Lichtschlag, A., Lavik, G., Boetius, A., and Jørgensen, B.B. (2007) Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment. ISME J 1: 341-353. Nielsen, L.P., Risgaard-Petersen, N., Fossing, H., Christensen, P.B., and Sayama, M. (2010) Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463: 1071-1074. Rinke, C., Schmitz-Esser, S., Stoecker, K., Nussbaumer, A.D., Molnar, D.A., Vanura, K., et al. (2006) 'Candidatus Thiobios zoothamnicoli' an ectosymbiotic bacterium covering the giant marine ciliate Zoothamnium niveum. Appl Environ Microbiol 72: 2014-2021. Zhou, J., Bruns, M.A., and Tiedje, J.M. (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62: 316-322. Llobet-Brossa, E., Rossello-Mora, R., and Amann, R. (1998) Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Appl Environ Microbiol 64: 2691-2696. Billerbeck, M., Werner, U., Polerecky, L., Walpersdorf, E., deBeer, D., and Huettel, M. (2006) Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment. Mar Ecol Prog Ser 326: 61-76. Mussmann, M., Ishii, K., Rabus, R., and Amann, R. (2005a) Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Environ Microbiol 7: 405-418. Alonso, C., and Pernthaler, J. (2005) Incorporation of glucose under anoxic conditions by bacterioplankton from coastal North Sea surface waters. Appl Environ Microbiol 71: 1709-1716. Buehring, S.I., Elvert, M., and Witte, U. (2005) The microbial community structure of different permeable sandy sediments characterized by the investigation of bacterial fatty acids and fluorescence in situ hybridization. Environ Microbiol 7: 281-293. Feng, B.-W., Li, X.-R., Wang, J.-H., Hu, Z.-Y., Meng, H., Xiang, L.-Y., and Quan, Z.-X. (2009) Bacterial diversity of water and sediment in the Changjiang estuary and coastal area of the East China Sea. FEMS Microbiol Ecol 70: 80-92. Eilers, H., Pernthaler, J., Peplies, J., Glockner, F.O., Gerdts, G., and Amann, R. (2001) Isolation of novel pelagic bacteria from the German bight and their seasonal contributions to surface picoplankton. Appl Environ Microbiol 67: 5134-5142. Brinkhoff, T., Santegoeds, C.M., Sahm, K., Kuever, J., and Muyzer, G. (1998) A polyphasic approach to study the diversity and vertical distribution of sulfur-oxidizing Thiomicrospira species in coastal sediments of the German Wadden Sea. Appl Environ Microbiol 64: 4650-4657. Mussmann, M., Schulz, H.N., Strotmann, B., Kjaer, T., Nielsen, L.P., Rossello-Mora, R.A., et al. (2003) Phylogeny and distribution of nitrate-storing Beggiatoa spp. in coastal marine sediments. Environ Microbiol 5: 523-533. Wallner, G., Amann, R., and Beisker, W. (1993) Optimizing flourescent in situ-hybridization with rRNA-targeted oligonulcleotide probes for flow cytometric identification of microorganisms. Cytometry 14: 136-143. Al-Raei, A.M., Bosselmann, K., Bottcher, M.E., Hespenheide, B., and Tauber, F. (2009) Seasonal dynamics of microbial sulfate reduction in temperate intertidal surface sediments: controls by temperature and organic matter. Ocean Dyn 59: 351-370. Jørgensen, B.B. (1982) Mineralization of organic matter in the sea bed - the role of sulphate reduction. Nature 296: 643-645. Walsh, D.A., Zaikova, E., Howes, C.G., Song, Y.C., Wright, J.J., Tringe, S.G., et al. (2009) Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science 326: 578-582. Robidart, J.C., Bench, S.R., Feldman, R.A., Novoradovsky, A., Podell, S.B., Gaasterland, T., et al. (2008) Metabolic versatility of the Riftia pachyptila endosymbiont revealed through metagenomics. Environ Microbiol 10: 727-737. Bowman, J.P., McCammon, S.A., Gibson, J.A.E., Robertson, L., and Nichols, P.D. (2003) Prokaryotic metabolic activity and community structure in Antarctic continental shelf sediments. Appl Environ Microbiol 69: 2448-2462. Schramm, A., Fuchs, B.M., Nielsen, J.L., Tonolla, M., and Stahl, D.A. (2002) Fluorescence in situ hybridization of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries. Environ Microbiol 4: 713-720. Pott, A.S., and Dahl, C. (1998) Sirohaem sulfite reductase and other proteins encoded by genes at the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur. Microbiology 144: 1881-1894. Lin, X., Wakeham, S.G., Putnam, I.F., Astor, Y.M., Scranton, M.I., Chistoserdov, A.Y., and Taylor, G.T. (2006) Comparison of vertical distributions of prokaryotic assemblages in the anoxic Cariaco Basin and Black Sea by use of fluorescence in situ hybridization. Appl Environ Microbiol 72: 2679-2690. Mussmann, M., Richter, M., Lombardot, T., Meyerdierks, A., Kuever, J., Kube, M., et al. (2005b) Clustered genes related to sulfate respiration in uncultured prokaryotes support the theory of their concomitant horizontal transfer. J Bacteriol 187: 7126-7137. Gao, H., Schreiber, F., Collins, G., Jensen, M.M., Kostka, J.E., Lavik, G., et al. (2009) Aerobic denitrification in permeable Wadden Sea sediments. ISME J 4: 417-426. Ravenschlag, K., Sahm, K., and Amann, R. (2001) Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard). Appl Environ Microbiol 67: 387-395. Aida, M., Kanemori, M., Kubota, N., Matada, M., Sasayama, Y., and Fukumori, Y. (2008) Distribution and population of free-living cells related to endosymbiont a harbored in Oligobrachia mashikoi (a siboglinid polychaete) inhabiting Tsukumo Bay. Microbes Environ 23: 81-88. Musat, N., Werner, U., Knittel, K., Kolb, S., Dodenhof, T., van Beusekom, J.E.E., et al. (2006) Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Romo Basin, Wadden Sea. Syst Appl Microbiol 29: 333-348. Good, I.J. (1953) The population frequencies of species and the estimation to the population parameters. Biometrika 40: 237-264. Petri, R., Podgorsek, L., and Imhoff, J.F. (2001) Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria. FEMS Microbiol Lett 197: 171-178. Timmer-Ten Hoor, A. (1975) A new type of thiosulfate oxidizing, nitrate reducing microorganism: Thiomicrospira denitrificans sp. nov. Neth J Sea Res 9: 344-350. Pernthaler, A., and Amann, R. (2004) Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria. Appl Environ Microbiol 70: 5426-5433. Gevertz, D., Telang, A.J., Voordouw, G., and Jenneman, G.E. (2000) Isolation and characterization of strains CVO and FWKOB, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl Environ Microbiol 66: 2491-2501. Jansen, S., Walpersdorf, E., Werner, U., Billerbeck, M., Böttcher, M., and de Beer, D. (2009) Functioning of intertidal flats inferred from temporal and spatial dynamics of O2, H2S and pH in their surface sediment. Ocean Dyn 59: 317-332. Schaub, B.E.M., and Gemerden, H. (1996) Sulfur bacteria in sediments of two coastal ecosystems: the Bassin d'Arcachon and the Etang du Prévost, France. Hydrobiologia 329: 199-210. Macalady, J.L., Lyon, E.H., Koffman, B., Albe 2007; 104 2004; 20 1990; 56 2006; 72 1999; 49 2007a; 73 2010; 463 2007; 71 2008; 105 2007; 73 1992; 15 2005; 28 2007; 35 2004; 32 2009; 11 2006; 60 2004; 70 2005; 187 2000 1999; 17 2007; 9 2008; 23 1982; 296 2006; 29 2003; 5 1996; 62 2007; 5 2005; 71 2001; 17 1999; 178 1995; 164 2007; 1 2008; 154 2006; 326 2007; 23 1975; 9 2009; 59 2009; 326 2006; 443 1983; 136 1996; 329 1997; 63 2000; 66 2009 2008 1999; 22 1999; 65 2002; 4 2008; 57 2008; 10 2006; 4 2004 2008; 53 2001; 67 1998; 64 2009; 457 1993; 14 2004; 50 2001; 197 2009; 32 2009; 70 2007b; 153 2002; 68 1953; 40 2003; 69 2005; 7 2005a; 7 2005b; 187 2009; 4 1998; 144 2003; 20 2006; 103 1972; 38 2003; 67 e_1_2_7_3_1 e_1_2_7_9_1 Sandrin T.R. (e_1_2_7_71_1) 2008 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Kamyshny A. (e_1_2_7_37_1) 2007; 71 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 Mussmann M. (e_1_2_7_56_1) 2007; 5 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_88_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_86_1 Amann R.I. (e_1_2_7_5_1) 1990; 56 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
| References_xml | – reference: Asami, H., Aida, M., and Watanabe, K. (2005) Accelerated sulfur cycle in coastal marine sediment beneath areas of intensive shellfish aquaculture. Appl Environ Microbiol 71: 2925-2933. – reference: Snaidr, J., Amann, R., Huber, I., Ludwig, W., and Schleifer, K.-H. (1997) Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63: 2884-2896. – reference: Yilmaz, L.S., and Noguera, D.R. (2004) Mechanistic approach to the problem of hybridization efficiency in fluorescent in situ hybridization. Appl Environ Microbiol 70: 7126-7139. – reference: Brinkhoff, T., Santegoeds, C.M., Sahm, K., Kuever, J., and Muyzer, G. (1998) A polyphasic approach to study the diversity and vertical distribution of sulfur-oxidizing Thiomicrospira species in coastal sediments of the German Wadden Sea. Appl Environ Microbiol 64: 4650-4657. – reference: Brinkhoff, T., Muyzer, G., Wirsen, C.O., and Kuever, J. (1999) Thiomicrospira kuenenii sp. nov. Thiomicrospira frisia sp. nov., two mesophilic obligately chemolithoautotrophic sulfur-oxidizing bacteria isolated from an intertidal mud flat. Int J Syst Bacteriol 49: 385-392. – reference: Lavik, G., Stuhrmann, T., Bruchert, V., Van der Plas, A., Mohrholz, V., Lam, P., et al. (2009) Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature 457: 581-584. – reference: Walsh, D.A., Zaikova, E., Howes, C.G., Song, Y.C., Wright, J.J., Tringe, S.G., et al. (2009) Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science 326: 578-582. – reference: Campbell, B.J., Engel, A.S., Porter, M.L., and Takai, K. (2006) The versatile Epsilonproteobacteria: key players in sulphidic habitats. Nat Rev Micro 4 : 458-468. – reference: Llobet-Brossa, E., Rossello-Mora, R., and Amann, R. (1998) Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Appl Environ Microbiol 64: 2691-2696. – reference: Podgorsek, L., and Imhoff, J.F. (1999) Tetrathionate production by sulfur oxidizing bacteria and the role of tetrathionate in the sulfur cycle of Baltic Sea sediments. Aquat Microb Ecol 17: 255-265. – reference: Ishii, K., Mussmann, M., MacGregor, B.J., and Amann, R. (2004) An improved fluorescence in situ hybridization protocol for the identification of Bacteria and Archaea in marine sediments. FEMS Microbiol Ecol 50: 203-212. – reference: Pham, V.H., Yong, J.J., Park, S.J., Yoon, D.N., Chung, W.H., and Rhee, S.K. (2008) Molecular analysis of the diversity of the sulfide: quinone reductase (sqr) gene in sediment environments. Microbiology 154: 3112-3121. – reference: Mussmann, M., Schulz, H.N., Strotmann, B., Kjaer, T., Nielsen, L.P., Rossello-Mora, R.A., et al. (2003) Phylogeny and distribution of nitrate-storing Beggiatoa spp. in coastal marine sediments. Environ Microbiol 5: 523-533. – reference: Amann, R.I., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R., and Stahl, D.A. (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Environ Microbiol 56: 1919-1925. – reference: Schloss, P.D., and Handelsman, J. (2005) Introducing dotur, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71: 1501-1506. – reference: Nelson, D.C., and Jannasch, H.W. (1983) Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch Microbiol 136: 262-269. – reference: Hong, S.H., Bunge, J., Jeon, S.O., and Epstein, S.S. (2006) Predicting microbial species richness. Proc Natl Acad Sci USA 103: 117-122. – reference: Muyzer, G., Teske, A., Wirsen, C.O., and Jannasch, H.W. (1995) Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164: 165-172. – reference: Stamatakis, A., Hoover, P., and Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57: 758-771. – reference: Loesekann, T., Robador, A., Niemann, H., Knittel, K., Boetius, A., and Dubilier, N. (2008) Endosymbioses between bacteria and deep-sea siboglinid tubeworms from an Arctic cold seep (Haakon Mosby Mud Volcano, Barents Sea). Environ Microbiol 10: 3237-3254. – reference: Brinkhoff, T., and Muyzer, G. (1997) Increased species diversity and extended habitat range of sulfur-oxidizing Thiomicrospira spp. Appl Environ Microbiol 63: 3789-3796. – reference: Wallner, G., Amann, R., and Beisker, W. (1993) Optimizing flourescent in situ-hybridization with rRNA-targeted oligonulcleotide probes for flow cytometric identification of microorganisms. Cytometry 14: 136-143. – reference: Jørgensen, B.B. (1982) Mineralization of organic matter in the sea bed - the role of sulphate reduction. Nature 296: 643-645. – reference: Lin, X., Wakeham, S.G., Putnam, I.F., Astor, Y.M., Scranton, M.I., Chistoserdov, A.Y., and Taylor, G.T. (2006) Comparison of vertical distributions of prokaryotic assemblages in the anoxic Cariaco Basin and Black Sea by use of fluorescence in situ hybridization. Appl Environ Microbiol 72: 2679-2690. – reference: Musat, N., Werner, U., Knittel, K., Kolb, S., Dodenhof, T., van Beusekom, J.E.E., et al. (2006) Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Romo Basin, Wadden Sea. Syst Appl Microbiol 29: 333-348. – reference: Rinke, C., Schmitz-Esser, S., Stoecker, K., Nussbaumer, A.D., Molnar, D.A., Vanura, K., et al. (2006) 'Candidatus Thiobios zoothamnicoli' an ectosymbiotic bacterium covering the giant marine ciliate Zoothamnium niveum. Appl Environ Microbiol 72: 2014-2021. – reference: Macalady, J.L., Lyon, E.H., Koffman, B., Albertson, L.K., Meyer, K., Galdenzi, S., and Mariani, S. (2006) Dominant microbial populations in limestone-corroding stream biofilms, Frasassi cave system, Italy. Appl Environ Microbiol 72: 5596-5609. – reference: Eilers, H., Pernthaler, J., Peplies, J., Glockner, F.O., Gerdts, G., and Amann, R. (2001) Isolation of novel pelagic bacteria from the German bight and their seasonal contributions to surface picoplankton. Appl Environ Microbiol 67: 5134-5142. – reference: Fuchs, B.M., Spring, S., Teeling, H., Quast, C., Wulf, J., Schattenhofer, M., et al. (2007) Characterization of a marine gammaproteobacterium capable of aerobic anoxygenic photosynthesis. Proc Natl Acad Sci USA 104: 2891-2896. – reference: Grote, J., Labrenz, M., Pfeiffer, B., Jost, G., and Jurgens, M. (2007) Quantitative distributions of Epsilonproteobacteria and a Sulfurimonas subgroup in pelagic redoxclines of the central Baltic sea. Appl Environ Microbiol 73 : 7155-7161. – reference: Kamyshny, A., and Ferdelman, T.G. (2007) Dynamics of zero-valent sulfur species, including polysulfides, in Wadden Sea tidal flat pools. Geochim Cosmochim Acta 71: A461-A461. – reference: Sorokin, D.Y., Tourova, T.P., and Muyzer, G. (2005) Citreicella thiooxidans gen. nov., sp. nov., a novel lithoheterotrophic sulfur-oxidizing bacterium from the Black Sea. Syst Appl Microbiol 28: 679-687. – reference: Bruechert, V., Jorgensen, B.B., Neumann, K., Riechmann, D., Schlosser, M., and Schulz, H. (2003) Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone. Geochim Cosmochim Acta 67: 4505-4518. – reference: Loy, A., Duller, S., Baranyi, C., Mussmann, M., Ott, J., Sharon, I., et al. (2009) Reverse dissimilatory sulfite reductase as phylogenetic marker for a subgroup of sulfur-oxidizing prokaryotes. Environ Microbiol 11: 289-299. – reference: Bowman, J.P., McCammon, S.A., Gibson, J.A.E., Robertson, L., and Nichols, P.D. (2003) Prokaryotic metabolic activity and community structure in Antarctic continental shelf sediments. Appl Environ Microbiol 69: 2448-2462. – reference: Good, I.J. (1953) The population frequencies of species and the estimation to the population parameters. Biometrika 40: 237-264. – reference: Schaub, B.E.M., and Gemerden, H. (1996) Sulfur bacteria in sediments of two coastal ecosystems: the Bassin d'Arcachon and the Etang du Prévost, France. Hydrobiologia 329: 199-210. – reference: Heijs, S.K., Jonkers, H.M., van Gemerden, H., Schaub, B.E.M., and Stal, L.J. (1999) The buffering capacity towards free sulphide in sediments of a coastal lagoon (Bassin d'Arcachon, France) - the relative importance of chemical and biological processes. Estuar Coast Shelf Sci 49: 21-35. – reference: Mussmann, M., Hu, F.Z., Richter, M., de Beer, D., Preisler, A., Jørgensen, B., et al. (2007) Insights into the genome of large sulfur bacteria revealed by analysis of single filaments. PLoS Biol 5: 1923-1937. – reference: Ravenschlag, K., Sahm, K., and Amann, R. (2001) Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard). Appl Environ Microbiol 67: 387-395. – reference: Billerbeck, M., Werner, U., Polerecky, L., Walpersdorf, E., deBeer, D., and Huettel, M. (2006) Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment. Mar Ecol Prog Ser 326: 61-76. – reference: Daims, H., Bruhl, A., Amann, R., Schleifer, K.H., and Wagner, M. (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22: 434-444. – reference: Pernthaler, A., and Amann, R. (2004) Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria. Appl Environ Microbiol 70: 5426-5433. – reference: Alonso, C., and Pernthaler, J. (2005) Incorporation of glucose under anoxic conditions by bacterioplankton from coastal North Sea surface waters. Appl Environ Microbiol 71: 1709-1716. – reference: Buehring, S.I., Elvert, M., and Witte, U. (2005) The microbial community structure of different permeable sandy sediments characterized by the investigation of bacterial fatty acids and fluorescence in situ hybridization. Environ Microbiol 7: 281-293. – reference: Huber, T., Faulkner, G., and Hugenholtz, P. (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20: 2317-2319. – reference: Ravenschlag, K., Sahm, K., Pernthaler, J., and Amann, R. (1999) High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65: 3982-3989. – reference: Woyke, T., Teeling, H., Ivanova, N.N., Huntemann, M., Richter, M., Gloeckner, F.O., et al. (2006) Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 443: 950-955. – reference: Meyer, B., Imhoff, J.F., and Kuever, J. (2007) Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria - evolution of the Sox sulfur oxidation enzyme system. Environ Microbiol 9: 2957-2977. – reference: Mussmann, M., Richter, M., Lombardot, T., Meyerdierks, A., Kuever, J., Kube, M., et al. (2005b) Clustered genes related to sulfate respiration in uncultured prokaryotes support the theory of their concomitant horizontal transfer. J Bacteriol 187: 7126-7137. – reference: Jost, G., Zubkov, M.V., Yakushev, E., Labrenz, M., and Jurgens, K. (2008) High abundance and dark CO2 fixation of chemolithoautotrophic prokaryotes in anoxic waters of the Baltic Sea. Limnol Oceanogr 53: 14-22. – reference: Scott, K.M., and Cavanaugh, C.M. (2007) CO2 uptake and fixation by endosymbiotic chemoautotrophs from the bivalve Solemya velum. Appl Environ Microbiol 73: 1174-1179. – reference: Knittel, K., Boetius, A., Lemke, A., Eilers, H., Lochte, K., Pfannkuche, O., et al. (2003) Activity, distribution and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia margin, Oregon). Geomicrobiol J 20: 269-294. – reference: Robidart, J.C., Bench, S.R., Feldman, R.A., Novoradovsky, A., Podell, S.B., Gaasterland, T., et al. (2008) Metabolic versatility of the Riftia pachyptila endosymbiont revealed through metagenomics. Environ Microbiol 10: 727-737. – reference: Gao, H., Schreiber, F., Collins, G., Jensen, M.M., Kostka, J.E., Lavik, G., et al. (2009) Aerobic denitrification in permeable Wadden Sea sediments. ISME J 4: 417-426. – reference: Meyer, B., and Kuever, J. (2007a) Molecular analysis of the diversity of sulfate-reducing and sulfur-oxidizing prokaryotes in the environment, using aprA as functional marker gene. Appl Environ Microbiol 73: 7664-7679. – reference: Aida, M., Kanemori, M., Kubota, N., Matada, M., Sasayama, Y., and Fukumori, Y. (2008) Distribution and population of free-living cells related to endosymbiont a harbored in Oligobrachia mashikoi (a siboglinid polychaete) inhabiting Tsukumo Bay. Microbes Environ 23: 81-88. – reference: Kuenen, J.G., and Veldkamp, H. (1972) Thiomicrospira pelophila gen. n. sp. n., a new obligately chemolithotrophic colourless sulfur bacterium. Antonie Van Leeuwenhoek 38: 241-256. – reference: Feng, B.-W., Li, X.-R., Wang, J.-H., Hu, Z.-Y., Meng, H., Xiang, L.-Y., and Quan, Z.-X. (2009) Bacterial diversity of water and sediment in the Changjiang estuary and coastal area of the East China Sea. FEMS Microbiol Ecol 70: 80-92. – reference: Al-Raei, A.M., Bosselmann, K., Bottcher, M.E., Hespenheide, B., and Tauber, F. (2009) Seasonal dynamics of microbial sulfate reduction in temperate intertidal surface sediments: controls by temperature and organic matter. Ocean Dyn 59: 351-370. – reference: Jansen, S., Walpersdorf, E., Werner, U., Billerbeck, M., Böttcher, M., and de Beer, D. (2009) Functioning of intertidal flats inferred from temporal and spatial dynamics of O2, H2S and pH in their surface sediment. Ocean Dyn 59: 317-332. – reference: Gevertz, D., Telang, A.J., Voordouw, G., and Jenneman, G.E. (2000) Isolation and characterization of strains CVO and FWKOB, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl Environ Microbiol 66: 2491-2501. – reference: Meyer, B., and Kuever, J. (2007b) Molecular analysis of the distribution and phylogeny of dissimilatory adenosine-5′-phosphosulfate reductase-encoding genes (aprBA) among sulfur oxidizing prokaryotes. Microbiology 153: 3478-3498. – reference: Preisler, A., de Beer, D., Lichtschlag, A., Lavik, G., Boetius, A., and Jørgensen, B.B. (2007) Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment. ISME J 1: 341-353. – reference: Huelsenbeck, J.P., and Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755. – reference: Pott, A.S., and Dahl, C. (1998) Sirohaem sulfite reductase and other proteins encoded by genes at the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur. Microbiology 144: 1881-1894. – reference: Gillan, D.C., and Pernet, P. (2007) Adherent bacteria in heavy metal contaminated marine sediments. Biofouling 23: 1-13. – reference: Wirsen, C.O., Sievert, S.M., Cavanaugh, C.M., Molyneaux, S.J., Ahmad, A., Taylor, L.T., et al. (2002) Characterization of an autotrophic sulfide-oxidizing marine Arcobacter sp. that produces filamentous sulfur. Appl Environ Microbiol 68: 316-325. – reference: Wagner-Doebler, I., and Biebl, H. (2006) Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol 60: 255-280. – reference: Dahl, C., Engels, S., Pott-Sperling, A.S., Schulte, A., Sander, J., Luebbe, J., et al. (2005) Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. J Bacteriol 187: 1392-1404. – reference: Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W.G., Peplies, J., and Glockner, F.O. (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35: 7188-7196. – reference: Schramm, A., Fuchs, B.M., Nielsen, J.L., Tonolla, M., and Stahl, D.A. (2002) Fluorescence in situ hybridization of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries. Environ Microbiol 4: 713-720. – reference: Musat, N., Halm, H., Winterholler, B., Hoppe, P., Peduzzi, S., Hillion, F., et al. (2008) A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc Natl Acad Sci USA 105: 17861-17866. – reference: Yan, S., Fuchs, B.M., Lenk, S., Harder, J., Wulf, J., Jiao, N.-Z., and Amann, R. (2009) Biogeography and phylogeny of the NOR5/OM60 clade of Gammaproteobacteria. Syst Appl Microbiol 32: 124-139. – reference: Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, et al. (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363-1371. – reference: Petri, R., Podgorsek, L., and Imhoff, J.F. (2001) Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria. FEMS Microbiol Lett 197: 171-178. – reference: Timmer-Ten Hoor, A. (1975) A new type of thiosulfate oxidizing, nitrate reducing microorganism: Thiomicrospira denitrificans sp. nov. Neth J Sea Res 9: 344-350. – reference: Grabovich, M.Y., Muntyan, M.S., Lebedeva, V.Y., Ustiyan, V.S., and Dubinina, G.A. (1999) Lithoheterotrophic growth and electron transfer chain components of the filamentous gliding bacterium Leucothrix mucor DSM 2157 during oxidation of sulfur compounds. FEMS Microbiol Lett 178: 155-161. – reference: Kamp, A., Stief, P., and Schulz-Vogt, H.N. (2006) Anaerobic sulfide oxidation with nitrate by a freshwater Beggiatoa enrichment culture. Appl Environ Microbiol 72: 4755-4760. – reference: Mussmann, M., Ishii, K., Rabus, R., and Amann, R. (2005a) Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Environ Microbiol 7: 405-418. – reference: Zhou, J., Bruns, M.A., and Tiedje, J.M. (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62: 316-322. – reference: Manz, W., Amann, R., Ludwig, W., Wagner, M., and Schleifer, K.-H. (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 15: 593-600. – reference: Nielsen, L.P., Risgaard-Petersen, N., Fossing, H., Christensen, P.B., and Sayama, M. (2010) Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463: 1071-1074. – year: 2009 – volume: 50 start-page: 203 year: 2004 end-page: 212 article-title: An improved fluorescence hybridization protocol for the identification of and in marine sediments publication-title: FEMS Microbiol Ecol – volume: 62 start-page: 316 year: 1996 end-page: 322 article-title: DNA recovery from soils of diverse composition publication-title: Appl Environ Microbiol – volume: 20 start-page: 2317 year: 2004 end-page: 2319 article-title: Bellerophon: a program to detect chimeric sequences in multiple sequence alignments publication-title: Bioinformatics – volume: 72 start-page: 2014 year: 2006 end-page: 2021 article-title: ‘ Thiobios zoothamnicoli’ an ectosymbiotic bacterium covering the giant marine ciliate publication-title: Appl Environ Microbiol – volume: 5 start-page: 1923 year: 2007 end-page: 1937 article-title: Insights into the genome of large sulfur bacteria revealed by analysis of single filaments publication-title: PLoS Biol – volume: 72 start-page: 4755 year: 2006 end-page: 4760 article-title: Anaerobic sulfide oxidation with nitrate by a freshwater enrichment culture publication-title: Appl Environ Microbiol – volume: 10 start-page: 3237 year: 2008 end-page: 3254 article-title: Endosymbioses between bacteria and deep‐sea siboglinid tubeworms from an Arctic cold seep (Haakon Mosby Mud Volcano, Barents Sea) publication-title: Environ Microbiol – volume: 71 start-page: 1501 year: 2005 end-page: 1506 article-title: Introducing dotur, a computer program for defining operational taxonomic units and estimating species richness publication-title: Appl Environ Microbiol – volume: 32 start-page: 1363 year: 2004 end-page: 1371 article-title: ARB: a software environment for sequence data publication-title: Nucleic Acids Res – volume: 29 start-page: 333 year: 2006 end-page: 348 article-title: Microbial community structure of sandy intertidal sediments in the North Sea, Sylt‐Romo Basin, Wadden Sea publication-title: Syst Appl Microbiol – volume: 23 start-page: 1 year: 2007 end-page: 13 article-title: Adherent bacteria in heavy metal contaminated marine sediments publication-title: Biofouling – volume: 326 start-page: 61 year: 2006 end-page: 76 article-title: Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment publication-title: Mar Ecol Prog Ser – volume: 5 start-page: 523 year: 2003 end-page: 533 article-title: Phylogeny and distribution of nitrate‐storing spp. in coastal marine sediments publication-title: Environ Microbiol – volume: 56 start-page: 1919 year: 1990 end-page: 1925 article-title: Combination of 16S rRNA‐targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations publication-title: Environ Microbiol – volume: 178 start-page: 155 year: 1999 end-page: 161 article-title: Lithoheterotrophic growth and electron transfer chain components of the filamentous gliding bacterium DSM 2157 during oxidation of sulfur compounds publication-title: FEMS Microbiol Lett – volume: 20 start-page: 269 year: 2003 end-page: 294 article-title: Activity, distribution and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia margin, Oregon) publication-title: Geomicrobiol J – volume: 73 start-page: 1174 year: 2007 end-page: 1179 article-title: CO uptake and fixation by endosymbiotic chemoautotrophs from the bivalve publication-title: Appl Environ Microbiol – volume: 105 start-page: 17861 year: 2008 end-page: 17866 article-title: A single‐cell view on the ecophysiology of anaerobic phototrophic bacteria publication-title: Proc Natl Acad Sci USA – volume: 14 start-page: 136 year: 1993 end-page: 143 article-title: Optimizing flourescent ‐hybridization with rRNA‐targeted oligonulcleotide probes for flow cytometric identification of microorganisms publication-title: Cytometry – volume: 68 start-page: 316 year: 2002 end-page: 325 article-title: Characterization of an autotrophic sulfide‐oxidizing marine sp. that produces filamentous sulfur publication-title: Appl Environ Microbiol – volume: 197 start-page: 171 year: 2001 end-page: 178 article-title: Phylogeny and distribution of the gene among thiosulfate‐oxidizing bacteria publication-title: FEMS Microbiol Lett – volume: 28 start-page: 679 year: 2005 end-page: 687 article-title: gen. nov., sp. nov., a novel lithoheterotrophic sulfur‐oxidizing bacterium from the Black Sea publication-title: Syst Appl Microbiol – volume: 104 start-page: 2891 year: 2007 end-page: 2896 article-title: Characterization of a marine gammaproteobacterium capable of aerobic anoxygenic photosynthesis publication-title: Proc Natl Acad Sci USA – volume: 49 start-page: 21 year: 1999 end-page: 35 article-title: The buffering capacity towards free sulphide in sediments of a coastal lagoon (Bassin d'Arcachon, France) – the relative importance of chemical and biological processes publication-title: Estuar Coast Shelf Sci – volume: 73 start-page: 7664 year: 2007a end-page: 7679 article-title: Molecular analysis of the diversity of sulfate‐reducing and sulfur‐oxidizing prokaryotes in the environment, using as functional marker gene publication-title: Appl Environ Microbiol – start-page: 195 year: 2008 – volume: 73 start-page: 7155 year: 2007 end-page: 7161 article-title: Quantitative distributions of and a subgroup in pelagic redoxclines of the central Baltic sea publication-title: Appl Environ Microbiol – volume: 103 start-page: 117 year: 2006 end-page: 122 article-title: Predicting microbial species richness publication-title: Proc Natl Acad Sci USA – volume: 70 start-page: 80 year: 2009 end-page: 92 article-title: Bacterial diversity of water and sediment in the Changjiang estuary and coastal area of the East China Sea publication-title: FEMS Microbiol Ecol – volume: 72 start-page: 5596 year: 2006 end-page: 5609 article-title: Dominant microbial populations in limestone‐corroding stream biofilms, Frasassi cave system, Italy publication-title: Appl Environ Microbiol – volume: 49 start-page: 385 year: 1999 end-page: 392 article-title: sp. nov. sp. nov., two mesophilic obligately chemolithoautotrophic sulfur‐oxidizing bacteria isolated from an intertidal mud flat publication-title: Int J Syst Bacteriol – volume: 70 start-page: 5426 year: 2004 end-page: 5433 article-title: Simultaneous fluorescence hybridization of mRNA and rRNA in environmental bacteria publication-title: Appl Environ Microbiol – volume: 17 start-page: 255 year: 1999 end-page: 265 article-title: Tetrathionate production by sulfur oxidizing bacteria and the role of tetrathionate in the sulfur cycle of Baltic Sea sediments publication-title: Aquat Microb Ecol – volume: 4 start-page: 713 year: 2002 end-page: 720 article-title: Fluorescence hybridization of 16S rRNA gene clones (Clone‐FISH) for probe validation and screening of clone libraries publication-title: Environ Microbiol – volume: 67 start-page: 5134 year: 2001 end-page: 5142 article-title: Isolation of novel pelagic bacteria from the German bight and their seasonal contributions to surface picoplankton publication-title: Appl Environ Microbiol – volume: 53 start-page: 14 year: 2008 end-page: 22 article-title: High abundance and dark CO2 fixation of chemolithoautotrophic prokaryotes in anoxic waters of the Baltic Sea publication-title: Limnol Oceanogr – volume: 11 start-page: 289 year: 2009 end-page: 299 article-title: Reverse dissimilatory sulfite reductase as phylogenetic marker for a subgroup of sulfur‐oxidizing prokaryotes publication-title: Environ Microbiol – volume: 63 start-page: 3789 year: 1997 end-page: 3796 article-title: Increased species diversity and extended habitat range of sulfur‐oxidizing spp publication-title: Appl Environ Microbiol – volume: 296 start-page: 643 year: 1982 end-page: 645 article-title: Mineralization of organic matter in the sea bed – the role of sulphate reduction publication-title: Nature – volume: 154 start-page: 3112 year: 2008 end-page: 3121 article-title: Molecular analysis of the diversity of the sulfide: quinone reductase ( ) gene in sediment environments publication-title: Microbiology – volume: 57 start-page: 758 year: 2008 end-page: 771 article-title: A rapid bootstrap algorithm for the RAxML web servers publication-title: Syst Biol – volume: 60 start-page: 255 year: 2006 end-page: 280 article-title: Environmental biology of the marine lineage publication-title: Annu Rev Microbiol – volume: 71 start-page: A461 year: 2007 end-page: A461 article-title: Dynamics of zero‐valent sulfur species, including polysulfides, in Wadden Sea tidal flat pools publication-title: Geochim Cosmochim Acta – volume: 38 start-page: 241 year: 1972 end-page: 256 article-title: gen. n. sp. n., a new obligately chemolithotrophic colourless sulfur bacterium publication-title: Antonie Van Leeuwenhoek – volume: 69 start-page: 2448 year: 2003 end-page: 2462 article-title: Prokaryotic metabolic activity and community structure in Antarctic continental shelf sediments publication-title: Appl Environ Microbiol – volume: 10 start-page: 727 year: 2008 end-page: 737 article-title: Metabolic versatility of the endosymbiont revealed through metagenomics publication-title: Environ Microbiol – volume: 457 start-page: 581 year: 2009 end-page: 584 article-title: Detoxification of sulphidic African shelf waters by blooming chemolithotrophs publication-title: Nature – volume: 1 start-page: 341 year: 2007 end-page: 353 article-title: Biological and chemical sulfide oxidation in a inhabited marine sediment publication-title: ISME J – volume: 67 start-page: 387 year: 2001 end-page: 395 article-title: Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard) publication-title: Appl Environ Microbiol – volume: 63 start-page: 2884 year: 1997 end-page: 2896 article-title: Phylogenetic analysis and identification of bacteria in activated sludge publication-title: Appl Environ Microbiol – volume: 59 start-page: 351 year: 2009 end-page: 370 article-title: Seasonal dynamics of microbial sulfate reduction in temperate intertidal surface sediments: controls by temperature and organic matter publication-title: Ocean Dyn – volume: 64 start-page: 2691 year: 1998 end-page: 2696 article-title: Microbial community composition of Wadden Sea sediments as revealed by fluorescence hybridization publication-title: Appl Environ Microbiol – volume: 15 start-page: 593 year: 1992 end-page: 600 article-title: Phylogenetic oligodeoxynucleotide probes for the major subclasses of : problems and solutions publication-title: Syst Appl Microbiol – volume: 187 start-page: 7126 year: 2005b end-page: 7137 article-title: Clustered genes related to sulfate respiration in uncultured prokaryotes support the theory of their concomitant horizontal transfer publication-title: J Bacteriol – volume: 136 start-page: 262 year: 1983 end-page: 269 article-title: Chemoautotrophic growth of a marine in sulfide‐gradient cultures publication-title: Arch Microbiol – volume: 71 start-page: 1709 year: 2005 end-page: 1716 article-title: Incorporation of glucose under anoxic conditions by bacterioplankton from coastal North Sea surface waters publication-title: Appl Environ Microbiol – volume: 187 start-page: 1392 year: 2005 end-page: 1404 article-title: Novel genes of the gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium publication-title: J Bacteriol – volume: 40 start-page: 237 year: 1953 end-page: 264 article-title: The population frequencies of species and the estimation to the population parameters publication-title: Biometrika – volume: 4 start-page: 458 year: 2006 end-page: 468 article-title: The versatile : key players in sulphidic habitats publication-title: Nat Rev Micro – volume: 64 start-page: 4650 year: 1998 end-page: 4657 article-title: A polyphasic approach to study the diversity and vertical distribution of sulfur‐oxidizing species in coastal sediments of the German Wadden Sea publication-title: Appl Environ Microbiol – year: 2000 – volume: 72 start-page: 2679 year: 2006 end-page: 2690 article-title: Comparison of vertical distributions of prokaryotic assemblages in the anoxic Cariaco Basin and Black Sea by use of fluorescence hybridization publication-title: Appl Environ Microbiol – volume: 326 start-page: 578 year: 2009 end-page: 582 article-title: Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones publication-title: Science – volume: 7 start-page: 281 year: 2005 end-page: 293 article-title: The microbial community structure of different permeable sandy sediments characterized by the investigation of bacterial fatty acids and fluorescence hybridization publication-title: Environ Microbiol – volume: 66 start-page: 2491 year: 2000 end-page: 2501 article-title: Isolation and characterization of strains CVO and FWKOB, two novel nitrate‐reducing, sulfide‐oxidizing bacteria isolated from oil field brine publication-title: Appl Environ Microbiol – volume: 22 start-page: 434 year: 1999 end-page: 444 article-title: The domain‐specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set publication-title: Syst Appl Microbiol – volume: 329 start-page: 199 year: 1996 end-page: 210 article-title: Sulfur bacteria in sediments of two coastal ecosystems: the Bassin d'Arcachon and the Etang du Prévost, France publication-title: Hydrobiologia – volume: 59 start-page: 317 year: 2009 end-page: 332 article-title: Functioning of intertidal flats inferred from temporal and spatial dynamics of O2, H2S and pH in their surface sediment publication-title: Ocean Dyn – volume: 144 start-page: 1881 year: 1998 end-page: 1894 article-title: Sirohaem sulfite reductase and other proteins encoded by genes at the locus of are involved in the oxidation of intracellular sulfur publication-title: Microbiology – volume: 443 start-page: 950 year: 2006 end-page: 955 article-title: Symbiosis insights through metagenomic analysis of a microbial consortium publication-title: Nature – volume: 153 start-page: 3478 year: 2007b end-page: 3498 article-title: Molecular analysis of the distribution and phylogeny of dissimilatory adenosine‐5′‐phosphosulfate reductase‐encoding genes ( ) among sulfur oxidizing prokaryotes publication-title: Microbiology – volume: 463 start-page: 1071 year: 2010 end-page: 1074 article-title: Electric currents couple spatially separated biogeochemical processes in marine sediment publication-title: Nature – volume: 67 start-page: 4505 year: 2003 end-page: 4518 article-title: Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone publication-title: Geochim Cosmochim Acta – volume: 164 start-page: 165 year: 1995 end-page: 172 article-title: Phylogenetic relationships of species and their identification in deep‐sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments publication-title: Arch Microbiol – volume: 32 start-page: 124 year: 2009 end-page: 139 article-title: Biogeography and phylogeny of the NOR5/OM60 clade of publication-title: Syst Appl Microbiol – volume: 17 start-page: 754 year: 2001 end-page: 755 article-title: MRBAYES: Bayesian inference of phylogenetic trees publication-title: Bioinformatics – start-page: 63 year: 2004 end-page: 81 – volume: 9 start-page: 2957 year: 2007 end-page: 2977 article-title: Molecular analysis of the distribution and phylogeny of the gene among sulfur‐oxidizing bacteria – evolution of the Sox sulfur oxidation enzyme system publication-title: Environ Microbiol – volume: 4 start-page: 417 year: 2009 end-page: 426 article-title: Aerobic denitrification in permeable Wadden Sea sediments publication-title: ISME J – volume: 65 start-page: 3982 year: 1999 end-page: 3989 article-title: High bacterial diversity in permanently cold marine sediments publication-title: Appl Environ Microbiol – volume: 70 start-page: 7126 year: 2004 end-page: 7139 article-title: Mechanistic approach to the problem of hybridization efficiency in fluorescent hybridization publication-title: Appl Environ Microbiol – volume: 23 start-page: 81 year: 2008 end-page: 88 article-title: Distribution and population of free‐living cells related to endosymbiont a harbored in (a siboglinid polychaete) inhabiting Tsukumo Bay publication-title: Microbes Environ – volume: 7 start-page: 405 year: 2005a end-page: 418 article-title: Diversity and vertical distribution of cultured and uncultured in an intertidal mud flat of the Wadden Sea publication-title: Environ Microbiol – volume: 35 start-page: 7188 year: 2007 end-page: 7196 article-title: SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB publication-title: Nucleic Acids Res – volume: 71 start-page: 2925 year: 2005 end-page: 2933 article-title: Accelerated sulfur cycle in coastal marine sediment beneath areas of intensive shellfish aquaculture publication-title: Appl Environ Microbiol – volume: 9 start-page: 344 year: 1975 end-page: 350 article-title: A new type of thiosulfate oxidizing, nitrate reducing microorganism: sp. nov publication-title: Neth J Sea Res – ident: e_1_2_7_2_1 doi: 10.1264/jsme2.23.81 – ident: e_1_2_7_20_1 doi: 10.1038/ismej.2009.127 – ident: e_1_2_7_83_1 doi: 10.1128/AEM.68.1.316-325.2002 – ident: e_1_2_7_53_1 doi: 10.1046/j.1462-2920.2003.00440.x – ident: e_1_2_7_10_1 doi: 10.1128/AEM.64.12.4650-4657.1998 – ident: e_1_2_7_44_1 doi: 10.1111/j.1462-2920.2008.01760.x – volume: 56 start-page: 1919 year: 1990 ident: e_1_2_7_5_1 article-title: Combination of 16S rRNA‐targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations publication-title: Environ Microbiol doi: 10.1128/aem.56.6.1919-1925.1990 – ident: e_1_2_7_27_1 doi: 10.1073/pnas.0507245102 – ident: e_1_2_7_14_1 doi: 10.1038/nrmicro1414 – ident: e_1_2_7_8_1 doi: 10.1128/AEM.69.5.2448-2462.2003 – ident: e_1_2_7_59_1 doi: 10.1038/nature08790 – ident: e_1_2_7_46_1 doi: 10.1128/AEM.00715-06 – ident: e_1_2_7_19_1 doi: 10.1073/pnas.0608046104 – ident: e_1_2_7_42_1 doi: 10.1128/AEM.64.7.2691-2696.1998 – ident: e_1_2_7_52_1 doi: 10.1073/pnas.0809329105 – ident: e_1_2_7_33_1 doi: 10.1130/0-8137-2379-5.63 – ident: e_1_2_7_62_1 doi: 10.1099/mic.0.2008/018580-0 – ident: e_1_2_7_40_1 doi: 10.1038/nature07588 – ident: e_1_2_7_38_1 doi: 10.1080/01490450303896 – ident: e_1_2_7_63_1 doi: 10.3354/ame017255 – ident: e_1_2_7_78_1 doi: 10.1080/10635150802429642 – ident: e_1_2_7_9_1 doi: 10.1128/AEM.63.10.3789-3796.1997 – ident: e_1_2_7_13_1 doi: 10.1111/j.1462-2920.2004.00710.x – ident: e_1_2_7_58_1 doi: 10.1007/BF00425214 – ident: e_1_2_7_61_1 doi: 10.1111/j.1574-6968.2001.tb10600.x – ident: e_1_2_7_24_1 doi: 10.1111/j.1574-6968.1999.tb13772.x – ident: e_1_2_7_86_1 doi: 10.1016/j.syapm.2008.12.001 – volume: 5 start-page: 1923 year: 2007 ident: e_1_2_7_56_1 article-title: Insights into the genome of large sulfur bacteria revealed by analysis of single filaments publication-title: PLoS Biol doi: 10.1371/journal.pbio.0050230 – ident: e_1_2_7_82_1 doi: 10.1126/science.1175309 – ident: e_1_2_7_65_1 doi: 10.1038/ismej.2007.50 – ident: e_1_2_7_7_1 doi: 10.3354/meps326061 – ident: e_1_2_7_74_1 doi: 10.1046/j.1462-2920.2002.00364.x – ident: e_1_2_7_47_1 doi: 10.1016/S0723-2020(11)80121-9 – ident: e_1_2_7_30_1 doi: 10.1016/j.femsec.2004.06.015 – ident: e_1_2_7_35_1 – ident: e_1_2_7_79_1 doi: 10.1016/0077-7579(75)90008-3 – ident: e_1_2_7_49_1 doi: 10.1099/mic.0.2007/008250-0 – ident: e_1_2_7_50_1 doi: 10.1111/j.1462-2920.2007.01407.x – ident: e_1_2_7_84_1 doi: 10.1038/nature05192 – start-page: 195 volume-title: Environmental Microbiology year: 2008 ident: e_1_2_7_71_1 – ident: e_1_2_7_75_1 doi: 10.1128/AEM.01817-06 – ident: e_1_2_7_34_1 doi: 10.4319/lo.2008.53.1.0014 – ident: e_1_2_7_80_1 doi: 10.1146/annurev.micro.60.080805.142115 – ident: e_1_2_7_39_1 doi: 10.1007/BF02328096 – ident: e_1_2_7_81_1 doi: 10.1002/cyto.990140205 – ident: e_1_2_7_15_1 doi: 10.1128/JB.187.4.1392-1404.2005 – ident: e_1_2_7_22_1 doi: 10.1080/08927010601108725 – ident: e_1_2_7_25_1 doi: 10.1128/AEM.00466-07 – ident: e_1_2_7_51_1 doi: 10.1016/j.syapm.2005.12.006 – ident: e_1_2_7_3_1 doi: 10.1128/AEM.71.4.1709-1716.2005 – ident: e_1_2_7_55_1 doi: 10.1128/JB.187.20.7126-7137.2005 – ident: e_1_2_7_68_1 doi: 10.1128/AEM.67.1.387-395.2001 – ident: e_1_2_7_36_1 doi: 10.1128/AEM.00163-06 – ident: e_1_2_7_43_1 doi: 10.1111/j.1462-2920.2008.01712.x – ident: e_1_2_7_17_1 doi: 10.1128/AEM.67.11.5134-5142.2001 – ident: e_1_2_7_57_1 doi: 10.1038/msb4100131 – ident: e_1_2_7_16_1 doi: 10.1016/S0723-2020(99)80053-8 – ident: e_1_2_7_4_1 doi: 10.1007/s10236-009-0186-5 – ident: e_1_2_7_23_1 doi: 10.1093/biomet/40.3-4.237 – ident: e_1_2_7_85_1 – ident: e_1_2_7_45_1 doi: 10.1890/06-0219 – ident: e_1_2_7_18_1 doi: 10.1111/j.1574-6941.2009.00772.x – ident: e_1_2_7_6_1 doi: 10.1128/AEM.71.6.2925-2933.2005 – volume: 71 start-page: A461 year: 2007 ident: e_1_2_7_37_1 article-title: Dynamics of zero‐valent sulfur species, including polysulfides, in Wadden Sea tidal flat pools publication-title: Geochim Cosmochim Acta – ident: e_1_2_7_88_1 doi: 10.1128/aem.62.2.316-322.1996 – ident: e_1_2_7_26_1 doi: 10.1006/ecss.1999.0482 – ident: e_1_2_7_73_1 doi: 10.1128/AEM.71.3.1501-1506.2005 – ident: e_1_2_7_66_1 doi: 10.1093/nar/gkm864 – ident: e_1_2_7_54_1 doi: 10.1111/j.1462-2920.2005.00708.x – ident: e_1_2_7_64_1 doi: 10.1099/00221287-144-7-1881 – ident: e_1_2_7_32_1 doi: 10.1038/296643a0 – ident: e_1_2_7_70_1 doi: 10.1111/j.1462-2920.2007.01496.x – ident: e_1_2_7_48_1 doi: 10.1128/AEM.01272-07 – ident: e_1_2_7_76_1 doi: 10.1128/aem.63.7.2884-2896.1997 – ident: e_1_2_7_28_1 doi: 10.1093/bioinformatics/bth226 – ident: e_1_2_7_69_1 doi: 10.1128/AEM.72.3.2014-2021.2006 – ident: e_1_2_7_72_1 doi: 10.1007/BF00034558 – ident: e_1_2_7_12_1 doi: 10.1016/S0016-7037(03)00275-8 – ident: e_1_2_7_21_1 doi: 10.1128/AEM.66.6.2491-2501.2000 – ident: e_1_2_7_29_1 doi: 10.1093/bioinformatics/17.8.754 – ident: e_1_2_7_87_1 doi: 10.1128/AEM.70.12.7126-7139.2004 – ident: e_1_2_7_31_1 doi: 10.1007/s10236-009-0179-4 – ident: e_1_2_7_41_1 doi: 10.1128/AEM.72.4.2679-2690.2006 – ident: e_1_2_7_67_1 doi: 10.1128/AEM.65.9.3982-3989.1999 – ident: e_1_2_7_11_1 doi: 10.1099/00207713-49-2-385 – ident: e_1_2_7_60_1 doi: 10.1128/AEM.70.9.5426-5433.2004 – ident: e_1_2_7_77_1 doi: 10.1016/j.syapm.2005.05.006 |
| SSID | ssj0017370 |
| Score | 2.377167 |
| Snippet | The oxidation of hydrogen sulfide is essential to sulfur cycling in marine habitats. However, the role of microbial sulfur oxidation in marine sediments and... Summary The oxidation of hydrogen sulfide is essential to sulfur cycling in marine habitats. However, the role of microbial sulfur oxidation in marine... |
| SourceID | proquest pubmed crossref wiley istex fao |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 758 |
| SubjectTerms | adenylyl-sulfate reductase bacteria Biocatalysis carbon Carbon Cycle classification DNA libraries endosymbionts fluorescence in situ hybridization gamma-Proteobacteria Gammaproteobacteria Gammaproteobacteria - classification Gammaproteobacteria - genetics Gammaproteobacteria - metabolism genes Genes, rRNA genetics Geologic Sediments Geologic Sediments - microbiology habitats hydrogen sulfide Hydrogensulfite Reductase Hydrogensulfite Reductase - genetics marine sediments metabolism microbiology molecular cloning Molecular Sequence Data nucleotide sequences Oligobrachia oxidation Oxidation-Reduction Phylogeny primary productivity ribosomal RNA RNA, Ribosomal, 16S RNA, Ribosomal, 16S - genetics sequence analysis Sulfides Sulfides - metabolism sulfur Sulfur - metabolism |
| Title | Novel groups of Gammaproteobacteria catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment |
| URI | https://api.istex.fr/ark:/67375/WNG-18CS0J1Q-T/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-2920.2010.02380.x https://www.ncbi.nlm.nih.gov/pubmed/21134098 https://www.proquest.com/docview/1365035154 https://www.proquest.com/docview/1439217454 https://www.proquest.com/docview/860398965 |
| Volume | 13 |
| WOSCitedRecordID | wos000287852900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1462-2920 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017370 issn: 1462-2912 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1da9UwNLg7BV_81tWPEUF8stI0TdI-yvRORC7qdvG-hSRtpdi10u6Ou3_vOWlXuGPKEN_SNgnJ6fnOyTmEvLJOCsM4C6UQLkxA5IXG5ibMbVZYoeIyG4tNqMUiXa2yL2P8E96FGfJDTA43pAzPr5HAje0vE3kcYrWlMUILpE_0FvTJ3RjQWMzI7vtv8-Xn6UxBcV86bhzFLsX1XDnXlrDaKU0LKixCf3OVPrqt3nr5NL_7P3d2j9wZtVT6bkCr--RG0Twgt4a6lecPSb9oz4qa-hshPW1LemhOToxP-QDswad_NtQ7hs77gvbrulx3tN1UQ_0mapocvnYWmmW1Gd5V8Jq61oCyWr-hlQ9VgP417UG6ogfzEVnOPxwffAzH6g2hS8AsCsES4lh7k-dc5QaQILIlPJU2LkXJJBjG0jGRR0bayCUOzHRh40jG1iphM1vwx2TWtE2xR6jJuXMM-TbLE-GkFcwqCWJWFJmKUhcQdfGbtBtTm2OFjVpvmTixRpBqBKn2INWbgLBp5K8hvcc1xuwBJmjzA7iwXh7FePbLQFHlIg3Ia48e01ym-4mRc0ro74tDzdKDo-gT-6qPA_LyAn800DMe0pimaNe9xrBDPN0VyV_6ADTRlMQ-9A99UhnxLM2kCMiTAT-nRYHNz8Gsh9VKj4bX3rkG1oCtp_868Bm5PfjkMYbvOZmdduviBbnpzk6rvtsnO2qV7o9k-xtExDng |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagBcGFN214GglxIlUcx05yRIVtgWUFdFf0ZtlOgqKmCUq61fbfM-OkkbYqqELc8rAjZzJvT-Yj5LWxUmjGmS-FsH4EJs_XJtN-ZtLciDgs0gFsIp7NksPD9OsAB4T_wvT9IcaEG0qG09co4JiQvijloY9wS0OJFpifYAccys0IuArYffP998liOm4qxNxhxw2z2IXCnkuftWatrhe6AR8Wyb-6zCFd92-dgZrc_a-vdo_cGfxU-q5nrPvkWl4_IDd75Mqzh6SbNad5Rd0_IR1tCrqnj4-1a_oACsI1gNbUpYbOupx2y6pYtrRZlT2CE9V1BndbA4dFueqvlXCZ2kaDu1q9paUrVoDxFe3AvmIO8xFZTD7Md_f9Ab_BtxEERj7EQhzRN3nG40wDGwSmgLPChIUomITQWFomskBLE9jIQqAuTBjI0JhYmNTk_DHZqJs63yZUZ9xahpqbZZGw0ghmYgmGVuRpHCTWI_H5d1J2aG6OGBuVWgtyQoUkVUhS5UiqVh5h48xffYOPK8zZBlZQ-ifoYbU4CHH3l4GrykXikTeOP8Zn6fYIa-dioX7M9hRLdg-CT-ybmnvk1TkDKZBo3KbRdd4sO4WFh7i_K6K_jAFqYjCJY-gfxiQy4GmSSuGRrZ5Bx0VB1M8hsIfVSseHV35zBcoBj57868SX5Nb-_MtUTT_OPj8lt_sMPVb0PSMbJ-0yf05u2NOTsmtfDNL7G7yEPOg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db5UwFG_0To0vfuvwsybGJzEUaIFHs3nnx0Km2417a9pCDZHBArvL3X_vOYWR3GWaxfhWoG3K4Xy2h_Mj5I02gisWMV9wbvwYTJ6vdKH8Qmel5klosxFsIsnz9PAw2xvhgPBfmKE-xLThhpLh9DUKeHlc2ItSHvoItzSmaIH5Cd6DQ7kRI6bMjGxsf58vdqdDhSRy2HHjKHYhsefSudas1XWrWvBhkfyryxzSdf_WGaj53f_6avfIndFPpR8GxrpPrpXNA3JzQK48e0j6vD0ta-r-Celpa-mOOjpSrugDKAhXAFpRtzV01pe0X9Z22dF2VQ0ITlQ1BTztNDRttRruVXCbmlaBu1q_o5VLVoD-Ne3BvuIe5iOymH882Prkj_gNvokhMPIhFooQfTMqoqRQwAaBtnBldWi5ZQJCY2EYLwIldGBiA4E612EgQq0TrjNdRo_JrGmbcpNQVUTGMNTcrIi5EZoznQgwtLzMkiA1HknOv5M0Y3FzxNio5VqQE0okqUSSSkdSufIIm0YeDwU-rjBmE1hBqp-gh-ViP8TTXwauasRTj7x1_DHNpbpfmDuXcPkj35Es3doPvrBv8sAjr88ZSIJE4zGNasp22UtMPMTzXR7_pQ9QE4NJ7EP_0CcVQZSlmeAeeTIw6LQoiPojCOxhtcLx4ZXfXIJywNbTfx34itza257L3c_512fk9rBBjwl9z8nspFuWL8gNc3pS9d3LUXh_A-m_PGM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+groups+of+Gammaproteobacteria+catalyse+sulfur+oxidation+and+carbon+fixation+in+a+coastal%2C+intertidal+sediment&rft.jtitle=Environmental+microbiology&rft.au=Lenk%2C+Sabine&rft.au=Arnds%2C+Julia&rft.au=Zerjatke%2C+Katrice&rft.au=Musat%2C+Niculina&rft.date=2011-03-01&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=13&rft.issue=3&rft.spage=758&rft.epage=774&rft_id=info:doi/10.1111%2Fj.1462-2920.2010.02380.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1462_2920_2010_02380_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon |