Hyperparameter Bayesian Optimization of Gaussian Process Regression Applied in Speed-Sensorless Predictive Torque Control of an Autonomous Wind Energy Conversion System
This paper introduces a novel approach to speed-sensorless predictive torque control (PTC) in an autonomous wind energy conversion system, specifically utilizing an asymmetric double star induction generator (ADSIG). To achieve accurate estimation of non-linear quantities, the Gaussian Process Regre...
Gespeichert in:
| Veröffentlicht in: | Energies Jg. 16; H. 12; S. 4738 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.06.2023
|
| Schlagworte: | |
| ISSN: | 1996-1073, 1996-1073 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper introduces a novel approach to speed-sensorless predictive torque control (PTC) in an autonomous wind energy conversion system, specifically utilizing an asymmetric double star induction generator (ADSIG). To achieve accurate estimation of non-linear quantities, the Gaussian Process Regression algorithm (GPR) is employed as a powerful machine learning tool for designing speed and flux estimators. To enhance the capabilities of the GPR, two improvements were implemented, (a) hyperparametric optimization through the Bayesian optimization (BO) algorithm and (b) curation of the input vector using the gray box concept, leveraging our existing knowledge of the ADSIG. Simulation results have demonstrated that the proposed GPR-PTC would remain robust and unaffected by the absence of a speed sensor, maintaining performance even under varying magnetizing inductance. This enables a reliable and cost-effective control solution. |
|---|---|
| AbstractList | This paper introduces a novel approach to speed-sensorless predictive torque control (PTC) in an autonomous wind energy conversion system, specifically utilizing an asymmetric double star induction generator (ADSIG). To achieve accurate estimation of non-linear quantities, the Gaussian Process Regression algorithm (GPR) is employed as a powerful machine learning tool for designing speed and flux estimators. To enhance the capabilities of the GPR, two improvements were implemented, (a) hyperparametric optimization through the Bayesian optimization (BO) algorithm and (b) curation of the input vector using the gray box concept, leveraging our existing knowledge of the ADSIG. Simulation results have demonstrated that the proposed GPR-PTC would remain robust and unaffected by the absence of a speed sensor, maintaining performance even under varying magnetizing inductance. This enables a reliable and cost-effective control solution. |
| Audience | Academic |
| Author | Yanis Hamoudi Maher G. M. Abdolrasol Hocine Amimeur Djamal Aouzellag Taha Selim Ustun |
| Author_xml | – sequence: 1 givenname: Yanis orcidid: 0000-0003-2901-5743 surname: Hamoudi fullname: Hamoudi, Yanis – sequence: 2 givenname: Hocine surname: Amimeur fullname: Amimeur, Hocine – sequence: 3 givenname: Djamal surname: Aouzellag fullname: Aouzellag, Djamal – sequence: 4 givenname: Maher G. M. orcidid: 0000-0002-8763-8167 surname: Abdolrasol fullname: Abdolrasol, Maher G. M. – sequence: 5 givenname: Taha Selim orcidid: 0000-0002-2413-8421 surname: Ustun fullname: Ustun, Taha Selim |
| BackLink | https://cir.nii.ac.jp/crid/1870020693211501696$$DView record in CiNii |
| BookMark | eNptkt1q3DAQhU1JoWmamz6BoL0qbKofy5Yut0uaBAIJ3ZRemrE1XhRsyZW0gc0T9TErr1taShFoxMw5HxpmXhcnzjssireMXgih6Ud0rGK8rIV6UZwyrasVo7U4-ev9qjiP0ba0lIKXQqvT4sf1YcIwQYAREwbyCQ4YLThyNyU72mdI1jvie3IF-3gs3AffYYzkC-5CjnN5PU2DRUOsI9sJ0ay26KIPwyy7D2hsl-wTkgcfvu-RbLxLwQ8zNOPW--SdH_0-km_WGXLpMOwOs-gJw5G-PcSE45viZQ9DxPNf8az4-vnyYXO9ur27utmsb1ddqWVaGQDDGeq2qkEYVauacyYkAway1IwbA4K3qpa9LKHSXMlOSmACZMsAFIiz4mbhGg-PzRTsCOHQeLDNMeHDroGQbDdgw4wxAg1tBWJZMmglVkpybRRjnKkys94trCn43HlMzaPfB5e_33DFda2rkqqsulhUO8hQ63qfAnT5GBxtl0fc25xf11JlU1nRbKCLoQs-xoB909l0HFQ22qFhtJn3ofmzD9ny4R_L787-K36_iJ21GT3fTNWUclppwRmTlFW6Ej8BOCzENg |
| CitedBy_id | crossref_primary_10_3390_electronics13193819 crossref_primary_10_3389_fenrg_2024_1400745 crossref_primary_10_1016_j_egyr_2024_09_056 crossref_primary_10_1016_j_etran_2024_100374 crossref_primary_10_1177_01445987241300180 crossref_primary_10_1007_s41939_023_00335_w crossref_primary_10_3389_fenrg_2024_1421212 crossref_primary_10_3389_fenrg_2024_1421336 crossref_primary_10_1177_01445987241291180 |
| Cites_doi | 10.3390/electronics10212689 10.1109/TEC.2019.2952666 10.1109/EURCON.2007.4400678 10.1049/iet-epa.2014.0220 10.1016/j.esr.2019.01.006 10.1145/1330598.1330647 10.1007/978-0-8176-4893-0 10.3390/en11010120 10.1080/15567036.2021.1902429 10.1098/rsif.2015.1107 10.30521/jes.351269 10.1109/TSG.2017.2691707 10.30765/er.40.2.05 10.3390/su132413542 10.1109/TEC.2014.2366473 10.3390/a13010017 10.1145/2487575.2487629 10.1109/PES.2011.6039798 10.1109/TIE.2020.2984425 10.3390/en13071743 10.1109/ACCESS.2021.3071141 10.1080/0951192X.2021.1972466 10.1299/jamdsm.2021jamdsm0018 10.1016/j.isatra.2019.03.022 10.3390/sym13050826 10.1063/1.5048290 10.3390/en12122398 10.3390/su14138069 10.1016/j.ijepes.2012.05.060 10.1109/TIE.2015.2442525 10.1002/sam.11507 10.1007/s10287-020-00376-3 10.1109/IROS.2012.6385653 10.1109/TPEL.2021.3074964 10.1109/TIA.2021.3100321 10.1016/j.conengprac.2021.104881 10.1080/00207720701620043 10.1007/978-3-030-00473-6_28 10.18280/mmep.080218 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | RYH AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/en16124738 |
| DatabaseName | CiNii Complete CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_1ddd3ed0b3ee441ab5e68529d8112184 A758282460 10_3390_en16124738 |
| GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH ABDBF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC RYH TR2 TUS AAYXX CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c495t-daad21e9b67a3d8787221351a1a54912dda32b875f54a69285c55a13a5b1aa8a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001014379300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1073 |
| IngestDate | Fri Oct 03 12:45:05 EDT 2025 Mon Jun 30 07:33:28 EDT 2025 Tue Nov 04 18:38:52 EST 2025 Sat Nov 29 07:18:55 EST 2025 Tue Nov 18 22:29:21 EST 2025 Mon Nov 10 09:08:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c495t-daad21e9b67a3d8787221351a1a54912dda32b875f54a69285c55a13a5b1aa8a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2901-5743 0009-0004-8286-7640 0000-0002-8763-8167 0000-0002-2413-8421 |
| OpenAccessLink | https://doaj.org/article/1ddd3ed0b3ee441ab5e68529d8112184 |
| PQID | 2829796408 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1ddd3ed0b3ee441ab5e68529d8112184 proquest_journals_2829796408 gale_infotracacademiconefile_A758282460 crossref_citationtrail_10_3390_en16124738 crossref_primary_10_3390_en16124738 nii_cinii_1870020693211501696 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Goguelin (ref_28) 2021; 34 ref_58 ref_56 Perdikaris (ref_35) 2016; 13 ref_52 ref_51 Amirouche (ref_20) 2021; 8 Benlaloui (ref_14) 2014; 30 Ridhatullah (ref_23) 2021; 2 ref_19 ref_17 Myren (ref_53) 2021; 14 Ustun (ref_59) 2021; 9 Bounasla (ref_10) 2020; 53 Doucet (ref_34) 2008; Volume 3 Habibullah (ref_21) 2015; 62 ref_25 ref_24 ref_22 Galuzzi (ref_36) 2018; Volume 1 ref_27 Gielen (ref_1) 2019; 24 ref_26 Shintani (ref_29) 2021; 15 Basic (ref_12) 2019; 35 Aurora (ref_16) 2007; 38 ref_32 Mahendran (ref_43) 2012; 22 Ayala (ref_11) 2021; 68 Lizotte (ref_33) 2007; 7 Cai (ref_30) 2021; 114 ref_39 Housseini (ref_6) 2017; 9 ref_37 Wang (ref_38) 2014; 33 Abdolrasol (ref_57) 2021; 36 Meldgaard (ref_31) 2018; 149 Kumar (ref_13) 2015; 9 Abdessemed (ref_49) 2020; 40 Hamitouche (ref_8) 2020; 53 Hannan (ref_55) 2021; 57 Mousavi (ref_5) 2012; 43 Swersky (ref_40) 2013; 26 Benakcha (ref_47) 2017; 1 Dominguez (ref_18) 2013; 61 ref_45 Rasmussen (ref_50) 2010; 11 Galuzzi (ref_54) 2020; 17 Korzonek (ref_15) 2019; 93 ref_44 ref_42 ref_41 ref_3 ref_2 ref_9 Amimeur (ref_48) 2015; 6 ref_4 Benakcha (ref_46) 2018; 8 ref_7 |
| References_xml | – ident: ref_56 doi: 10.3390/electronics10212689 – volume: 35 start-page: 724 year: 2019 ident: ref_12 article-title: Speed-Sensorless Vector Control of an Induction Generator Including Stray Load and Iron Losses and Online Parameter Tuning publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2019.2952666 – ident: ref_32 – ident: ref_25 doi: 10.1109/EURCON.2007.4400678 – volume: 9 start-page: 496 year: 2015 ident: ref_13 article-title: Review on model reference adaptive system for sensorless vector control of induction motor drives publication-title: IET Electr. Power Appl. doi: 10.1049/iet-epa.2014.0220 – ident: ref_26 – volume: 24 start-page: 38 year: 2019 ident: ref_1 article-title: The role of renewable energy in the global energy transformation publication-title: Energy Strategy Rev. doi: 10.1016/j.esr.2019.01.006 – ident: ref_51 doi: 10.1145/1330598.1330647 – ident: ref_17 doi: 10.1007/978-0-8176-4893-0 – ident: ref_9 doi: 10.3390/en11010120 – volume: 8 start-page: 384 year: 2018 ident: ref_46 article-title: Backstepping control of dual stator induction generator used in wind energy conversion system publication-title: Int. J. Renew. Energy Res. – ident: ref_39 – ident: ref_42 – ident: ref_19 doi: 10.1080/15567036.2021.1902429 – volume: 13 start-page: 20151107 year: 2016 ident: ref_35 article-title: Model inversion via multi-fidelity Bayesian optimization: A new paradigm for parameter estimation in haemodynamics, and beyond publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2015.1107 – volume: 1 start-page: 21 year: 2017 ident: ref_47 article-title: Control of dual stator induction generator integrated in wind energy conversion system publication-title: J. Energy Syst. doi: 10.30521/jes.351269 – volume: 9 start-page: 5588 year: 2017 ident: ref_6 article-title: Robust Nonlinear Controller Design for On-Grid/Off-Grid Wind Energy Battery-Storage System publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2017.2691707 – volume: 40 start-page: 34 year: 2020 ident: ref_49 article-title: Improved field oriented control for stand alone dual star induction generator used in wind energy conversion publication-title: Eng. Rev. doi: 10.30765/er.40.2.05 – ident: ref_4 doi: 10.3390/su132413542 – ident: ref_27 – ident: ref_52 – volume: 30 start-page: 588 year: 2014 ident: ref_14 article-title: Implementation of a New MRAS Speed Sensorless Vector Control of Induction Machine publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2014.2366473 – ident: ref_24 doi: 10.3390/a13010017 – ident: ref_41 doi: 10.1145/2487575.2487629 – ident: ref_45 – volume: 7 start-page: 944 year: 2007 ident: ref_33 article-title: Automatic gait optimization with Gaussian process regression publication-title: Int. Jt. Conf. Artif. Intell. – ident: ref_7 doi: 10.1109/PES.2011.6039798 – volume: 68 start-page: 3672 year: 2021 ident: ref_11 article-title: A Novel Modulated Model Predictive Control Applied to Six-Phase Induction Motor Drives publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.2984425 – ident: ref_22 doi: 10.3390/en13071743 – volume: 9 start-page: 56486 year: 2021 ident: ref_59 article-title: Artificial Intelligence Based Intrusion Detection System for IEC 61850 Sampled Values under Symmetric and Asymmetric Faults publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3071141 – volume: 53 start-page: 469 year: 2020 ident: ref_8 article-title: A New Control Strategy of Dual Stator Induction Generator with Power Regulation publication-title: J. Eur. Des. Syst. Autom. – volume: 2 start-page: 23 year: 2021 ident: ref_23 article-title: Three-Phase Induction Motor Speed Estimation Using Recurrent Neural Network Structure publication-title: J. Electron. Volt. Appl. – volume: 34 start-page: 1263 year: 2021 ident: ref_28 article-title: Bayesian optimisation of part orientation in additive manufacturing publication-title: Int. J. Comput. Integr. Manuf. doi: 10.1080/0951192X.2021.1972466 – volume: 15 start-page: 20-00169 year: 2021 ident: ref_29 article-title: Surrogate modeling of waveform response using singular value decomposition and Bayesian optimization publication-title: J. Adv. Mech. Des. Syst. Manuf. doi: 10.1299/jamdsm.2021jamdsm0018 – volume: 93 start-page: 1 year: 2019 ident: ref_15 article-title: A review on MRAS-type speed estimators for reliable and efficient induction motor drives publication-title: ISA Trans. doi: 10.1016/j.isatra.2019.03.022 – volume: 33 start-page: 1005 year: 2014 ident: ref_38 article-title: Bayesian Multi-Scale Optimistic Optimization publication-title: J. Mach. Learn. Res. – volume: 53 start-page: 437 year: 2020 ident: ref_10 article-title: Optimum Design of Fractional Order PIα Speed Controller for Predictive Direct Torque Control of a Sensorless Five-Phase Permanent Magnet Synchronous Machine (PMSM) publication-title: J. Eur. Syst. Autom. – volume: 22 start-page: 751 year: 2012 ident: ref_43 article-title: Adaptive MCMC with Bayesian optimization publication-title: J. Mach. Learn. Res. – ident: ref_58 doi: 10.3390/sym13050826 – volume: 149 start-page: 134104 year: 2018 ident: ref_31 article-title: Machine learning enhanced global optimization by clustering local environments to enable bundled atomic energies publication-title: J. Chem. Phys. doi: 10.1063/1.5048290 – ident: ref_2 doi: 10.3390/en12122398 – ident: ref_3 doi: 10.3390/su14138069 – volume: 43 start-page: 1144 year: 2012 ident: ref_5 article-title: An autonomous hybrid energy system of wind/tidal/microturbine/battery storage publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2012.05.060 – volume: 26 start-page: 1 year: 2013 ident: ref_40 article-title: Multi-task Bayesian optimization publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_44 – volume: 62 start-page: 6765 year: 2015 ident: ref_21 article-title: A Speed-Sensorless FS-PTC of Induction Motors Using Extended Kalman Filters publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2015.2442525 – volume: 11 start-page: 3011 year: 2010 ident: ref_50 article-title: Gaussian processes for machine learning (GPML) toolbox publication-title: J. Mach. Learn. Res. – volume: 14 start-page: 606 year: 2021 ident: ref_53 article-title: A comparison of Gaussian processes and neural networks for computer model emulation and calibration publication-title: Stat. Anal. Data Min. ASA Data Sci. J. doi: 10.1002/sam.11507 – volume: 17 start-page: 495 year: 2020 ident: ref_54 article-title: Hyperparameter optimization for recommender systems through Bayesian optimization publication-title: Comput. Manag. Sci. doi: 10.1007/s10287-020-00376-3 – ident: ref_37 doi: 10.1109/IROS.2012.6385653 – volume: 36 start-page: 12151 year: 2021 ident: ref_57 article-title: Artificial Neural Network Based Particle Swarm Optimization for Microgrid Optimal Energy Scheduling publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2021.3074964 – volume: 57 start-page: 5603 year: 2021 ident: ref_55 article-title: ANN-Based Binary Backtracking Search Algorithm for VPP Optimal Scheduling and Cost-Effective Evaluation publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2021.3100321 – volume: 114 start-page: 104881 year: 2021 ident: ref_30 article-title: Bayesian optimization assisted meal bolus decision based on Gaussian processes learning and risk-sensitive control publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2021.104881 – volume: 38 start-page: 913 year: 2007 ident: ref_16 article-title: A sliding mode observer for sensorless induction motor speed regulation publication-title: Int. J. Syst. Sci. doi: 10.1080/00207720701620043 – volume: Volume 1 start-page: 257 year: 2018 ident: ref_36 article-title: Bayesian Optimization for Full Waveform Inversion publication-title: AIRO Springer Series doi: 10.1007/978-3-030-00473-6_28 – volume: 61 start-page: 2678 year: 2013 ident: ref_18 article-title: Sensorless High Order Sliding Mode Control of Induction Motors with Core Loss publication-title: IEEE Trans. Ind. Electron. – volume: Volume 3 start-page: 321 year: 2008 ident: ref_34 article-title: Active Policy Learning for Robot Planning and Exploration under Uncertainty publication-title: Robotics – volume: 6 start-page: 1 year: 2015 ident: ref_48 article-title: Modeling and Analysis of Dual-Stator Windings Self-Excited Induction Generator publication-title: J. Electr. Eng. – volume: 8 start-page: 293 year: 2021 ident: ref_20 article-title: Improved Control Strategy of DS-PMSG Based Standalone Tidal Turbine System Using Sensorless Field Oriented Control publication-title: Math. Model. Eng. Probl. doi: 10.18280/mmep.080218 |
| SSID | ssib045324398 ssib045324465 ssj0000331333 ssib045316222 ssib045317840 ssib045318874 ssib045321338 ssib045320965 ssib045316771 ssib045318900 ssib045321345 ssib045316202 ssib045316213 ssib045316785 ssib045320970 ssib045321341 ssib045315868 ssib045318903 ssib045316910 ssib045318846 ssib045321370 ssib045317828 ssib045317827 |
| Score | 2.3894892 |
| Snippet | This paper introduces a novel approach to speed-sensorless predictive torque control (PTC) in an autonomous wind energy conversion system, specifically... |
| SourceID | doaj proquest gale crossref nii |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4738 |
| SubjectTerms | Algorithms Alternative energy sources Buildings and facilities Climate change Explicit knowledge Gaussian Process Regression Gaussian processes hyperparameter Bayesian optimization Machine learning Mathematical models Optimization predictive torque control predictive torque control; supervised learning algorithm; Gaussian Process Regression; sensorless speed control; hyperparameter Bayesian optimization sensorless speed control Sensors Simulation supervised learning algorithm T Technology Wind power |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF7RlgMceCNcWrQSSIiD1eyu148TSqqUHlCo2gK9WbOPVJaondpJJf4RP5MZe5NWAnHhkkM8stba2W_n-Q1j7yRonwAeQA-FjRMv0hgKl8QZ3m1gikzbPg757XM2m-UXF8VJCLh1oaxyjYk9ULvGUoz8gDJ-1DY5yj8urmOaGkXZ1TBCY4vtEFMZ6vnOZDo7Od1EWUZKoROmBl5Shf79ga_RxpFJ35By5ybqCfs3sLxVV9Uf4NzfOEeP_3etT9ijYGvy8aAcT9k9Xz9jD-8wED5nv47RD22J__uK6mL4BH56aqvkXxBKrkKPJm_m_BOsuv5B6Czgp_5yKKGtebBkeVXzswXehvEZ-sYNZfE7FKdMEGEqP29a_Ah-OBTH00vxdePVktoqmlXHv1e149O-F5GEboZIHh841V-wr0fT88PjOAxviC36XMvYATgpfGHSDJTLERekpGmAIABdUiGdAyUNektzjbpSyFxb1A6hQBsBkIN6ybbrpvavGNfWaJX5DC1LkxibQapQs1Kt5kbBPDER-7DeyNIGZnMasPGjRA-HNr283fSIvd3ILgY-j79KTUgfNhLEwd3_0bSXZTjSpXDOKe9GRnmPRiUY7dNcy8LlaMOi4xyx96RNJSEFLsdCaHjAjyLOrXKcUcpSJukoYvuocLh2-hWIoGjDp2hYk7Uu0iKN2N5az8oAMV15q2S7_378mj2QaJkN9W17bHvZrvw-u29vllXXvgkn5jfFTyE_ priority: 102 providerName: ProQuest |
| Title | Hyperparameter Bayesian Optimization of Gaussian Process Regression Applied in Speed-Sensorless Predictive Torque Control of an Autonomous Wind Energy Conversion System |
| URI | https://cir.nii.ac.jp/crid/1870020693211501696 https://www.proquest.com/docview/2829796408 https://doaj.org/article/1ddd3ed0b3ee441ab5e68529d8112184 |
| Volume | 16 |
| WOSCitedRecordID | wos001014379300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5B4QCHiqdq-tBKICEOVuNd79o-JlVKkWiI2gLlZM0-giJRu4qTSlz4PfxMZnbdEAkkLlx8cEbWxDM7M5935lvGXglQPgdcgB4qm-Y-0ylULk8LzG1gqkLZ8B3y0_tiMikvL6vpxlFf1BMW6YHjizvMnHPSu4GR3mPqBqO8LpWoXImVAsITir6DotoAUyEGS4ngS0Y-Uom4_tA3WNuIPAyibGSgQNS_Dsd3m_n8j6AcMs3xI7bdl4h8GFV7zO745gl7uEEc-JT9PEH4uCDa7itqZ-Ej-O5pGpJ_wAhw1Y9W8nbG38KqCz_0AwH8zH-Nna8N7wtQPm_4-TUmsfQcIW1Lm-8ditMGDoVCftEuUE1-FHva6aH4uOFqSdMQ7arjnxHV83EYISShm_gBjkcq9Gfs4_H44ugk7c9cSC1CpWXqAJzIfGV0AdKVuJyFoEP8IANEkplwDqQwCHJmCk1ciVJZNGomQZkMoAT5nG01beN3GFfWKFn4AgtCkxtbgJboEFrJmZEwy03C3tzaobY9ITmdi_GtRmBCNqt_2yxhL9ey15GG469SIzLnWoKos8MNdKi6d6j6Xw6VsNfkDDUtcFTHQj-ngH-KqLLqYUE7jSLXg4Tto7-g7nTNMPBh6a2xHqYiO9OVTtjerSfVfWToatq5pvHfQfnif2i7yx4ILLti89oe21ouVn6f3bc3y3m3OGD3RuPJ9OwgLA68nv4Y473pu9Ppl19NVBY8 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61KRJw4I0ItLASIMTBarzr5wGhtLQkahoimkI5mVnvpopE7RAnRf1HnPobO2M7aSUQtx645BCPVuv1tzPz7c4D4JVE33pIG9BinDqedQMHY-M5Idk21HHop-U55Jde2O9HR0fxYAXOF7kwHFa50ImlojZ5ymfkm3zjx2mTrej95KfDXaP4dnXRQqOCxZ49-0WUrXjX_UDf97WUuzvD7Y5TdxVwUiIDM8cgGunaWAchKhMRYKXkNnXoInElVxqDSmpy40c-vUQsIz-labsKfe0iRqho3FVY8xjsDVgbdPcH35anOi2liPSpqg6qUnFr02bkU0mvTIC5YvnKBgFLM7Cajcd_GIPSwu3e_d_W5h7cqX1p0a7Afx9WbPYAbl-psPgQfneIZ0-5vvkJx_2ILTyznDYqPpGqPKlzUEU-Eh9xXpQP6swJ8dkeVyHCmag9dTHOxMGErL1zQNw_5yiFgsT5potthhjmU1o0sV0F__OgNFx7PuO0kXxeiK_jzIidMteShU6rk0pR1Yx_BIfXslSPoZHlmX0Cwk-1r0IbkuesPZ2GGCjaOYGvRlrhyNNNeLsATpLWldu5gciPhBgcgyy5BFkTXi5lJ1W9kr9KbTH-lhJcY7z8I58eJ7XKSlxjjLKmpZW15DSj9m0Q-TI2EfnobuQ14Q2jN2FNSNNJsU7ooJfimmJJO-QrWekFrSZsEMBp7vzrkoUgjhIQcWA24gZx0IT1Ba6TWoUWySWon_778Qu42Rnu95Jet7_3DG5J8kKrWL51aMymc7sBN9LT2biYPq93q4Dv170JLgDviX1L |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61KUJw4I0ItLASIMTBir3r5wGh9BEatYSItlBOZte7qSxRO9hJUf8Rv4Ffx4y9SSuBuPXAJYd4tPKuv535ZnceAC-4DIwvcQMamWSOb7zQkYn2nQhtm1RJFGTNOeSn_Wg0io-Pk_EK_FrkwlBY5UInNopalxmdkffoxo_SJt24N7FhEePtwdvpd4c6SNFN66KdRguRPXP-A923-s1wG7_1S84HO4dbu47tMOBk6BjMHC2l5p5JVBhJoWMEL-fUsk56Ev0mj2stBVdI6ScBTijhcZDhFDwhA-VJGUuB467CGlJyn3dgbTx8P_6yPOFxhUAHULQ1UYVI3J4pkF9xv0mGuWQFm2YBS5OwWuT5H4ahsXaD2__zOt2BW5Zjs367Ke7Ciinuwc1LlRfvw89d9L8rqnt-SvFAbFOeG0onZR9QhZ7a3FRWTtg7Oa-bBzajgn00J23ocMEsg2d5wQ6myAKcA1PUJUUv1ChON2BkS9hhWeECsq02KYAGxeH68xmlk5Tzmn3OC812mhxMEjprTzBZW0v-ARxdyVI9hE5RFuYRsCBTgYhMhIxa-SqLZChwR4WBmCghJ77qwusFiNLMVnSnxiLfUvTsCHDpBeC68HwpO23rmPxVapOwuJSg2uPNH2V1klpVlnpaa2G0q4QxSKalCkwYBzzRMXJ3L_a78IqQnJKGxNfJpE30wElRrbG0H9FVLfdDtwsbCHZ8d_r10HKg7xKiQ0FeihcmYRfWFxhPrWqt0wuAP_7342dwHZGf7g9He0_gBkdy2ob4rUNnVs3NBlzLzmZ5XT21G5fB16veA78BRXCGCw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperparameter+Bayesian+Optimization+of+Gaussian+Process+Regression+Applied+in+Speed-Sensorless+Predictive+Torque+Control+of+an+Autonomous+Wind+Energy+Conversion+System&rft.jtitle=Energies+%28Basel%29&rft.au=Yanis+Hamoudi&rft.au=Hocine+Amimeur&rft.au=Djamal+Aouzellag&rft.au=Maher+G.+M.+Abdolrasol&rft.date=2023-06-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=16&rft.issue=12&rft.spage=4738&rft_id=info:doi/10.3390%2Fen16124738&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1ddd3ed0b3ee441ab5e68529d8112184 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |