Hyperparameter Bayesian Optimization of Gaussian Process Regression Applied in Speed-Sensorless Predictive Torque Control of an Autonomous Wind Energy Conversion System

This paper introduces a novel approach to speed-sensorless predictive torque control (PTC) in an autonomous wind energy conversion system, specifically utilizing an asymmetric double star induction generator (ADSIG). To achieve accurate estimation of non-linear quantities, the Gaussian Process Regre...

Full description

Saved in:
Bibliographic Details
Published in:Energies Vol. 16; no. 12; p. 4738
Main Authors: Hamoudi, Yanis, Amimeur, Hocine, Aouzellag, Djamal, Abdolrasol, Maher G. M., Ustun, Taha Selim
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.06.2023
Subjects:
ISSN:1996-1073, 1996-1073
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper introduces a novel approach to speed-sensorless predictive torque control (PTC) in an autonomous wind energy conversion system, specifically utilizing an asymmetric double star induction generator (ADSIG). To achieve accurate estimation of non-linear quantities, the Gaussian Process Regression algorithm (GPR) is employed as a powerful machine learning tool for designing speed and flux estimators. To enhance the capabilities of the GPR, two improvements were implemented, (a) hyperparametric optimization through the Bayesian optimization (BO) algorithm and (b) curation of the input vector using the gray box concept, leveraging our existing knowledge of the ADSIG. Simulation results have demonstrated that the proposed GPR-PTC would remain robust and unaffected by the absence of a speed sensor, maintaining performance even under varying magnetizing inductance. This enables a reliable and cost-effective control solution.
AbstractList This paper introduces a novel approach to speed-sensorless predictive torque control (PTC) in an autonomous wind energy conversion system, specifically utilizing an asymmetric double star induction generator (ADSIG). To achieve accurate estimation of non-linear quantities, the Gaussian Process Regression algorithm (GPR) is employed as a powerful machine learning tool for designing speed and flux estimators. To enhance the capabilities of the GPR, two improvements were implemented, (a) hyperparametric optimization through the Bayesian optimization (BO) algorithm and (b) curation of the input vector using the gray box concept, leveraging our existing knowledge of the ADSIG. Simulation results have demonstrated that the proposed GPR-PTC would remain robust and unaffected by the absence of a speed sensor, maintaining performance even under varying magnetizing inductance. This enables a reliable and cost-effective control solution.
Audience Academic
Author Yanis Hamoudi
Maher G. M. Abdolrasol
Hocine Amimeur
Djamal Aouzellag
Taha Selim Ustun
Author_xml – sequence: 1
  givenname: Yanis
  orcidid: 0000-0003-2901-5743
  surname: Hamoudi
  fullname: Hamoudi, Yanis
– sequence: 2
  givenname: Hocine
  surname: Amimeur
  fullname: Amimeur, Hocine
– sequence: 3
  givenname: Djamal
  surname: Aouzellag
  fullname: Aouzellag, Djamal
– sequence: 4
  givenname: Maher G. M.
  orcidid: 0000-0002-8763-8167
  surname: Abdolrasol
  fullname: Abdolrasol, Maher G. M.
– sequence: 5
  givenname: Taha Selim
  orcidid: 0000-0002-2413-8421
  surname: Ustun
  fullname: Ustun, Taha Selim
BackLink https://cir.nii.ac.jp/crid/1870020693211501696$$DView record in CiNii
BookMark eNptkt1q3DAQhU1JoWmamz6BoL0qbKofy5Yut0uaBAIJ3ZRemrE1XhRsyZW0gc0T9TErr1taShFoxMw5HxpmXhcnzjssireMXgih6Ud0rGK8rIV6UZwyrasVo7U4-ev9qjiP0ba0lIKXQqvT4sf1YcIwQYAREwbyCQ4YLThyNyU72mdI1jvie3IF-3gs3AffYYzkC-5CjnN5PU2DRUOsI9sJ0ay26KIPwyy7D2hsl-wTkgcfvu-RbLxLwQ8zNOPW--SdH_0-km_WGXLpMOwOs-gJw5G-PcSE45viZQ9DxPNf8az4-vnyYXO9ur27utmsb1ddqWVaGQDDGeq2qkEYVauacyYkAway1IwbA4K3qpa9LKHSXMlOSmACZMsAFIiz4mbhGg-PzRTsCOHQeLDNMeHDroGQbDdgw4wxAg1tBWJZMmglVkpybRRjnKkys94trCn43HlMzaPfB5e_33DFda2rkqqsulhUO8hQ63qfAnT5GBxtl0fc25xf11JlU1nRbKCLoQs-xoB909l0HFQ22qFhtJn3ofmzD9ny4R_L787-K36_iJ21GT3fTNWUclppwRmTlFW6Ej8BOCzENg
CitedBy_id crossref_primary_10_3390_electronics13193819
crossref_primary_10_3389_fenrg_2024_1400745
crossref_primary_10_1016_j_egyr_2024_09_056
crossref_primary_10_1016_j_etran_2024_100374
crossref_primary_10_1177_01445987241300180
crossref_primary_10_1007_s41939_023_00335_w
crossref_primary_10_3389_fenrg_2024_1421212
crossref_primary_10_3389_fenrg_2024_1421336
crossref_primary_10_1177_01445987241291180
Cites_doi 10.3390/electronics10212689
10.1109/TEC.2019.2952666
10.1109/EURCON.2007.4400678
10.1049/iet-epa.2014.0220
10.1016/j.esr.2019.01.006
10.1145/1330598.1330647
10.1007/978-0-8176-4893-0
10.3390/en11010120
10.1080/15567036.2021.1902429
10.1098/rsif.2015.1107
10.30521/jes.351269
10.1109/TSG.2017.2691707
10.30765/er.40.2.05
10.3390/su132413542
10.1109/TEC.2014.2366473
10.3390/a13010017
10.1145/2487575.2487629
10.1109/PES.2011.6039798
10.1109/TIE.2020.2984425
10.3390/en13071743
10.1109/ACCESS.2021.3071141
10.1080/0951192X.2021.1972466
10.1299/jamdsm.2021jamdsm0018
10.1016/j.isatra.2019.03.022
10.3390/sym13050826
10.1063/1.5048290
10.3390/en12122398
10.3390/su14138069
10.1016/j.ijepes.2012.05.060
10.1109/TIE.2015.2442525
10.1002/sam.11507
10.1007/s10287-020-00376-3
10.1109/IROS.2012.6385653
10.1109/TPEL.2021.3074964
10.1109/TIA.2021.3100321
10.1016/j.conengprac.2021.104881
10.1080/00207720701620043
10.1007/978-3-030-00473-6_28
10.18280/mmep.080218
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID RYH
AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en16124738
DatabaseName CiNii Complete
CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_1ddd3ed0b3ee441ab5e68529d8112184
A758282460
10_3390_en16124738
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
RYH
TR2
TUS
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c495t-daad21e9b67a3d8787221351a1a54912dda32b875f54a69285c55a13a5b1aa8a3
IEDL.DBID DOA
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001014379300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Fri Oct 03 12:45:05 EDT 2025
Mon Jun 30 07:33:28 EDT 2025
Tue Nov 04 18:38:52 EST 2025
Sat Nov 29 07:18:55 EST 2025
Tue Nov 18 22:29:21 EST 2025
Mon Nov 10 09:08:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-daad21e9b67a3d8787221351a1a54912dda32b875f54a69285c55a13a5b1aa8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2901-5743
0009-0004-8286-7640
0000-0002-8763-8167
0000-0002-2413-8421
OpenAccessLink https://doaj.org/article/1ddd3ed0b3ee441ab5e68529d8112184
PQID 2829796408
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_1ddd3ed0b3ee441ab5e68529d8112184
proquest_journals_2829796408
gale_infotracacademiconefile_A758282460
crossref_citationtrail_10_3390_en16124738
crossref_primary_10_3390_en16124738
nii_cinii_1870020693211501696
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Goguelin (ref_28) 2021; 34
ref_58
ref_56
Perdikaris (ref_35) 2016; 13
ref_52
ref_51
Amirouche (ref_20) 2021; 8
Benlaloui (ref_14) 2014; 30
Ridhatullah (ref_23) 2021; 2
ref_19
ref_17
Myren (ref_53) 2021; 14
Ustun (ref_59) 2021; 9
Bounasla (ref_10) 2020; 53
Doucet (ref_34) 2008; Volume 3
Habibullah (ref_21) 2015; 62
ref_25
ref_24
ref_22
Galuzzi (ref_36) 2018; Volume 1
ref_27
Gielen (ref_1) 2019; 24
ref_26
Shintani (ref_29) 2021; 15
Basic (ref_12) 2019; 35
Aurora (ref_16) 2007; 38
ref_32
Mahendran (ref_43) 2012; 22
Ayala (ref_11) 2021; 68
Lizotte (ref_33) 2007; 7
Cai (ref_30) 2021; 114
ref_39
Housseini (ref_6) 2017; 9
ref_37
Wang (ref_38) 2014; 33
Abdolrasol (ref_57) 2021; 36
Meldgaard (ref_31) 2018; 149
Kumar (ref_13) 2015; 9
Abdessemed (ref_49) 2020; 40
Hamitouche (ref_8) 2020; 53
Hannan (ref_55) 2021; 57
Mousavi (ref_5) 2012; 43
Swersky (ref_40) 2013; 26
Benakcha (ref_47) 2017; 1
Dominguez (ref_18) 2013; 61
ref_45
Rasmussen (ref_50) 2010; 11
Galuzzi (ref_54) 2020; 17
Korzonek (ref_15) 2019; 93
ref_44
ref_42
ref_41
ref_3
ref_2
ref_9
Amimeur (ref_48) 2015; 6
ref_4
Benakcha (ref_46) 2018; 8
ref_7
References_xml – ident: ref_56
  doi: 10.3390/electronics10212689
– volume: 35
  start-page: 724
  year: 2019
  ident: ref_12
  article-title: Speed-Sensorless Vector Control of an Induction Generator Including Stray Load and Iron Losses and Online Parameter Tuning
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2019.2952666
– ident: ref_32
– ident: ref_25
  doi: 10.1109/EURCON.2007.4400678
– volume: 9
  start-page: 496
  year: 2015
  ident: ref_13
  article-title: Review on model reference adaptive system for sensorless vector control of induction motor drives
  publication-title: IET Electr. Power Appl.
  doi: 10.1049/iet-epa.2014.0220
– ident: ref_26
– volume: 24
  start-page: 38
  year: 2019
  ident: ref_1
  article-title: The role of renewable energy in the global energy transformation
  publication-title: Energy Strategy Rev.
  doi: 10.1016/j.esr.2019.01.006
– ident: ref_51
  doi: 10.1145/1330598.1330647
– ident: ref_17
  doi: 10.1007/978-0-8176-4893-0
– ident: ref_9
  doi: 10.3390/en11010120
– volume: 8
  start-page: 384
  year: 2018
  ident: ref_46
  article-title: Backstepping control of dual stator induction generator used in wind energy conversion system
  publication-title: Int. J. Renew. Energy Res.
– ident: ref_39
– ident: ref_42
– ident: ref_19
  doi: 10.1080/15567036.2021.1902429
– volume: 13
  start-page: 20151107
  year: 2016
  ident: ref_35
  article-title: Model inversion via multi-fidelity Bayesian optimization: A new paradigm for parameter estimation in haemodynamics, and beyond
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2015.1107
– volume: 1
  start-page: 21
  year: 2017
  ident: ref_47
  article-title: Control of dual stator induction generator integrated in wind energy conversion system
  publication-title: J. Energy Syst.
  doi: 10.30521/jes.351269
– volume: 9
  start-page: 5588
  year: 2017
  ident: ref_6
  article-title: Robust Nonlinear Controller Design for On-Grid/Off-Grid Wind Energy Battery-Storage System
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2691707
– volume: 40
  start-page: 34
  year: 2020
  ident: ref_49
  article-title: Improved field oriented control for stand alone dual star induction generator used in wind energy conversion
  publication-title: Eng. Rev.
  doi: 10.30765/er.40.2.05
– ident: ref_4
  doi: 10.3390/su132413542
– ident: ref_27
– ident: ref_52
– volume: 30
  start-page: 588
  year: 2014
  ident: ref_14
  article-title: Implementation of a New MRAS Speed Sensorless Vector Control of Induction Machine
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2014.2366473
– ident: ref_24
  doi: 10.3390/a13010017
– ident: ref_41
  doi: 10.1145/2487575.2487629
– ident: ref_45
– volume: 7
  start-page: 944
  year: 2007
  ident: ref_33
  article-title: Automatic gait optimization with Gaussian process regression
  publication-title: Int. Jt. Conf. Artif. Intell.
– ident: ref_7
  doi: 10.1109/PES.2011.6039798
– volume: 68
  start-page: 3672
  year: 2021
  ident: ref_11
  article-title: A Novel Modulated Model Predictive Control Applied to Six-Phase Induction Motor Drives
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.2984425
– ident: ref_22
  doi: 10.3390/en13071743
– volume: 9
  start-page: 56486
  year: 2021
  ident: ref_59
  article-title: Artificial Intelligence Based Intrusion Detection System for IEC 61850 Sampled Values under Symmetric and Asymmetric Faults
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3071141
– volume: 53
  start-page: 469
  year: 2020
  ident: ref_8
  article-title: A New Control Strategy of Dual Stator Induction Generator with Power Regulation
  publication-title: J. Eur. Des. Syst. Autom.
– volume: 2
  start-page: 23
  year: 2021
  ident: ref_23
  article-title: Three-Phase Induction Motor Speed Estimation Using Recurrent Neural Network Structure
  publication-title: J. Electron. Volt. Appl.
– volume: 34
  start-page: 1263
  year: 2021
  ident: ref_28
  article-title: Bayesian optimisation of part orientation in additive manufacturing
  publication-title: Int. J. Comput. Integr. Manuf.
  doi: 10.1080/0951192X.2021.1972466
– volume: 15
  start-page: 20-00169
  year: 2021
  ident: ref_29
  article-title: Surrogate modeling of waveform response using singular value decomposition and Bayesian optimization
  publication-title: J. Adv. Mech. Des. Syst. Manuf.
  doi: 10.1299/jamdsm.2021jamdsm0018
– volume: 93
  start-page: 1
  year: 2019
  ident: ref_15
  article-title: A review on MRAS-type speed estimators for reliable and efficient induction motor drives
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2019.03.022
– volume: 33
  start-page: 1005
  year: 2014
  ident: ref_38
  article-title: Bayesian Multi-Scale Optimistic Optimization
  publication-title: J. Mach. Learn. Res.
– volume: 53
  start-page: 437
  year: 2020
  ident: ref_10
  article-title: Optimum Design of Fractional Order PIα Speed Controller for Predictive Direct Torque Control of a Sensorless Five-Phase Permanent Magnet Synchronous Machine (PMSM)
  publication-title: J. Eur. Syst. Autom.
– volume: 22
  start-page: 751
  year: 2012
  ident: ref_43
  article-title: Adaptive MCMC with Bayesian optimization
  publication-title: J. Mach. Learn. Res.
– ident: ref_58
  doi: 10.3390/sym13050826
– volume: 149
  start-page: 134104
  year: 2018
  ident: ref_31
  article-title: Machine learning enhanced global optimization by clustering local environments to enable bundled atomic energies
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5048290
– ident: ref_2
  doi: 10.3390/en12122398
– ident: ref_3
  doi: 10.3390/su14138069
– volume: 43
  start-page: 1144
  year: 2012
  ident: ref_5
  article-title: An autonomous hybrid energy system of wind/tidal/microturbine/battery storage
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2012.05.060
– volume: 26
  start-page: 1
  year: 2013
  ident: ref_40
  article-title: Multi-task Bayesian optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_44
– volume: 62
  start-page: 6765
  year: 2015
  ident: ref_21
  article-title: A Speed-Sensorless FS-PTC of Induction Motors Using Extended Kalman Filters
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2442525
– volume: 11
  start-page: 3011
  year: 2010
  ident: ref_50
  article-title: Gaussian processes for machine learning (GPML) toolbox
  publication-title: J. Mach. Learn. Res.
– volume: 14
  start-page: 606
  year: 2021
  ident: ref_53
  article-title: A comparison of Gaussian processes and neural networks for computer model emulation and calibration
  publication-title: Stat. Anal. Data Min. ASA Data Sci. J.
  doi: 10.1002/sam.11507
– volume: 17
  start-page: 495
  year: 2020
  ident: ref_54
  article-title: Hyperparameter optimization for recommender systems through Bayesian optimization
  publication-title: Comput. Manag. Sci.
  doi: 10.1007/s10287-020-00376-3
– ident: ref_37
  doi: 10.1109/IROS.2012.6385653
– volume: 36
  start-page: 12151
  year: 2021
  ident: ref_57
  article-title: Artificial Neural Network Based Particle Swarm Optimization for Microgrid Optimal Energy Scheduling
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2021.3074964
– volume: 57
  start-page: 5603
  year: 2021
  ident: ref_55
  article-title: ANN-Based Binary Backtracking Search Algorithm for VPP Optimal Scheduling and Cost-Effective Evaluation
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2021.3100321
– volume: 114
  start-page: 104881
  year: 2021
  ident: ref_30
  article-title: Bayesian optimization assisted meal bolus decision based on Gaussian processes learning and risk-sensitive control
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2021.104881
– volume: 38
  start-page: 913
  year: 2007
  ident: ref_16
  article-title: A sliding mode observer for sensorless induction motor speed regulation
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207720701620043
– volume: Volume 1
  start-page: 257
  year: 2018
  ident: ref_36
  article-title: Bayesian Optimization for Full Waveform Inversion
  publication-title: AIRO Springer Series
  doi: 10.1007/978-3-030-00473-6_28
– volume: 61
  start-page: 2678
  year: 2013
  ident: ref_18
  article-title: Sensorless High Order Sliding Mode Control of Induction Motors with Core Loss
  publication-title: IEEE Trans. Ind. Electron.
– volume: Volume 3
  start-page: 321
  year: 2008
  ident: ref_34
  article-title: Active Policy Learning for Robot Planning and Exploration under Uncertainty
  publication-title: Robotics
– volume: 6
  start-page: 1
  year: 2015
  ident: ref_48
  article-title: Modeling and Analysis of Dual-Stator Windings Self-Excited Induction Generator
  publication-title: J. Electr. Eng.
– volume: 8
  start-page: 293
  year: 2021
  ident: ref_20
  article-title: Improved Control Strategy of DS-PMSG Based Standalone Tidal Turbine System Using Sensorless Field Oriented Control
  publication-title: Math. Model. Eng. Probl.
  doi: 10.18280/mmep.080218
SSID ssib045324398
ssib045324465
ssj0000331333
ssib045316222
ssib045317840
ssib045318874
ssib045321338
ssib045320965
ssib045316771
ssib045318900
ssib045321345
ssib045316202
ssib045316213
ssib045316785
ssib045320970
ssib045321341
ssib045315868
ssib045318903
ssib045316910
ssib045318846
ssib045321370
ssib045317828
ssib045317827
Score 2.389576
Snippet This paper introduces a novel approach to speed-sensorless predictive torque control (PTC) in an autonomous wind energy conversion system, specifically...
SourceID doaj
proquest
gale
crossref
nii
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4738
SubjectTerms Algorithms
Alternative energy sources
Buildings and facilities
Climate change
Explicit knowledge
Gaussian Process Regression
Gaussian processes
hyperparameter Bayesian optimization
Machine learning
Mathematical models
Optimization
predictive torque control
predictive torque control; supervised learning algorithm; Gaussian Process Regression; sensorless speed control; hyperparameter Bayesian optimization
sensorless speed control
Sensors
Simulation
supervised learning algorithm
T
Technology
Wind power
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBVN0kNz6HeJ26QIWig9mFiSZUunshs2zWkbkpTmJmRLDobG3tq7gf6j_szO2NpNoKGXXHywByOj8dM8aeYNIR-l51oWWI3DKrjkrIqVcD6ueOG4c7lWohqaTeTzubq81Kdhw60PaZVrTByA2rUl7pEf4okflk0m6sviV4xdo_B0NbTQ2CI7qFQGfr4znc1Pzza7LIkQQMLEqEsqgN8f-gZiHJ4OBSl3VqJBsH8Dy1tNXf8DzsOKc_zsoWN9Tp6GWJNORud4QR755iXZvaNA-Ir8OQEe2qH-9zXmxdCp_e2xrJJ-Ayi5DjWatK3oV7vqhwehsoCe-asxhbahIZKldUPPF7AaxufAjVs8xe_BHE-CEFPpRdvBR9CjMTkeXwqvm6yWWFbRrnr6o24cnQ21iGh0M-7k0VFT_TX5fjy7ODqJQ_OGuATOtYydtY4zr4sst8IpwAXOsRugZRYoKQM_sIIXwJYqmdpMcyVLKS0TVhbMWmXFG7LdtI3fI5QhC1ICuJfQqUoKXao8Z46X1icwkWlEPq8n0pRB2RwbbPw0wHBw0s3tpEfkw8Z2Mep53Gs1RX_YWKAG93Cj7a5M-KUNc84J75JCeA9BpS2kz5Tk2imIYYE4R-QTepNBpIDhlDYUPMBHoeaWmeR4ZMnTLInIATgcjB2vDBAUYvgMAmuM1lmms4jsr_3MBIjpza2Tvf3_43fkCYfIbMxv2yfby27lD8jj8mZZ99378Mf8Bd8NH8s
  priority: 102
  providerName: ProQuest
Title Hyperparameter Bayesian Optimization of Gaussian Process Regression Applied in Speed-Sensorless Predictive Torque Control of an Autonomous Wind Energy Conversion System
URI https://cir.nii.ac.jp/crid/1870020693211501696
https://www.proquest.com/docview/2829796408
https://doaj.org/article/1ddd3ed0b3ee441ab5e68529d8112184
Volume 16
WOSCitedRecordID wos001014379300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgcIADKl8i0FaWQEIcosZ2nNjH3Wrbcuiyaosop8iJnWolmlSb3Upc-D38TGZsd7tSkbhw8SE7imZ3xuN565k3hHyQjmtZYzcOa2EpWZsqYV3a8tpya0utROuHTZTTqbq40LONUV9YExbogcMPt8-stcLZrBbOwdFtaukKJbm2CjIFgCcYfbNSb4ApH4OFAPAlAh-pAFy_7zrIbXjuG1E2TiBP1L8Oxw-7-fxeUPYnzeE2eRZTRDoKqj0nD1z3gjzdIA58SX4fA3xcIG33FZaz0LH56bAbkn6BCHAVWytp39Ijsxr8B7EhgJ66y1D52tGYgNJ5R8-u4RBLzwDS9nj5PoA4XuBgKKTn_QLUpAehph1fCq8brZbYDdGvBvoNUD2d-BZCFLoJf8DRQIX-inw9nJwfHKdx5kLaAFRaptYYy5nTdVEaYRVsZ85xiJ9hBpAkA_MZwWsAOa3MTaG5ko2Uhgkja2aMMuI12er6zr0hlCF4UQIgk9C5ymrdqLJkljfGZWCHPCGfbu1QNZGQHOdi_KgAmKDNqjubJeT9WvY60HD8VWqM5lxLIHW2fwAOVUWHqv7lUAn5iM5Q4QYHdRoT-xTgSyFVVjUq8aaR50WWkF3wF9AdVwaBD1LvAvJhTLJZoYuE7Nx6UhUjw1DhzTW2_2bq7f_Q9h15wiHtCsVrO2RruVi5XfK4uVnOh8UeeTSeTGene35zwHryawLPZp9PZt__AA_wFMg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61KRLlwBs10MJKgBAHq95dP9YHhNLSkqhtiGgQ5WTW3nVlidohTor6jzjxG5mxnbQSiFsPXHywR6v1-vPMfLvzAHjhWxH5CWXj8AwvIc8cJY11MpEYYUwYKZnVzSbC4VCdnESjFfi1yIWhsMqFTqwVtSlT2iPfphM_Spt01dvJd4e6RtHp6qKFRgOLA3vxAylb9WbwDr_vSyH298a7faftKuCkSAZmjtHaCG6jJAi1NAoBKwS1qdNcI1fiOEEtRYJufOZ7OoiE8lPf11xqP-FaKy1x3FVY8wjsHVgbDY5GX5a7Oq6USPpkUwdVysjdtgX6VMKrE2CuWL66QcDSDKwWef6HMagt3P6d_21t7sLt1pdmvQb892DFFvfh1pUKiw_gZx959pTqm59R3A_b0ReW0kbZB1SVZ20OKisz9l7Pq_pBmznBPtrTJkS4YK2nzvKCHU_Q2jvHyP1LilKoUJxOushmsHE5xUVju03wPw2Kw_XmM0obKecV-5wXhu3VuZYkdN7sVLKmZvxD-HQtS_UIOkVZ2A1gnFieksgtZeQpN4lSFYbciFRbF4HjdeH1Ajhx2lZupwYi32JkcASy-BJkXXi-lJ009Ur-KrVD-FtKUI3x-kY5PY1blRVzY4y0xk2kteg068S3gfJFZBT66FzhtF4RemPShDidVLcJHfhSVFMs7oV0JCu8wO3CFgIc505XjhYCOUqAxIHYCA-ioAubC1zHrQqt4ktQP_7342dwsz8-OowPB8ODJ7Au0AttYvk2oTObzu0W3EjPZ3k1fdr-rQy-XvdP8Btwu3vX
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61KUJw4I0ItLASIMTBinfXj_UBofQRGhVKRFtRTmbtXVeRqB3ipKj_iN_Ar2PG3qSVQNx64OJDPFpt1t_OzLc7D4AXoRVJmFE2Di_wEfPCU9JYrxCZEcbEiZJF02wi3t9Xx8fJaAV-LXJhKKxyoRMbRW2qnM7Ie3TjR2mTvuoVLixitD14O_nuUQcpumldtNNoIbJnz38gfavfDLfxW78UYrBzuLXruQ4DXo7EYOYZrY3gNsmiWEujELxCUMs6zTXyJo6T1VJk6NIXYaCjRKgwD0PNpQ4zrrXSEsddhTV0yQPRgbXR8MPoy_KEx5cSCaBsa6JKmfg9W6J_JYImGeaSFWyaBSxNwmo5Hv9hGBprN7j9P6_THbjlfGzWbzfFXVix5T24eany4n34uYv8e0p1z08pHoht6nNL6aTsI6rQU5ebyqqCvdPzunnhMirYJ3vShg6XzHnwbFyygwl6Ad6BLeuKohdqFKcbMLIl7LCa4gKyrTYpgAbF4frzGaWTVPOafR6Xhu00OZgkdNaeYLK2lvwDOLqSpXoInbIq7SNgnNifksg5ZRIoP0tyFcfciFxbH0EUdOH1AkRp7iq6U2ORbykyOwJcegG4Ljxfyk7aOiZ_ldokLC4lqPZ480M1PUmdKku5MUZa42fSWnSmdRbaSIUiMQp9d65wWq8IySlpSJxOrl2iB_4pqjWW9mO6qhVB5HdhA8GOc6cnR8uB3CVCQkEshUdJ1IX1BcZTp1rr9ALgj__9-hlcR-Sn74f7e0_ghkDntA3xW4fObDq3G3AtP5uN6-lTt3EZfL3qPfAbyPeElw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperparameter+Bayesian+Optimization+of+Gaussian+Process+Regression+Applied+in+Speed-Sensorless+Predictive+Torque+Control+of+an+Autonomous+Wind+Energy+Conversion+System&rft.jtitle=Energies+%28Basel%29&rft.au=Hamoudi%2C+Yanis&rft.au=Amimeur%2C+Hocine&rft.au=Aouzellag%2C+Djamal&rft.au=Abdolrasol%2C+Maher+G.+M.&rft.date=2023-06-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=16&rft.issue=12&rft.spage=4738&rft_id=info:doi/10.3390%2Fen16124738&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en16124738
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon