A new deep learning approach integrated with clinical data for the dermoscopic differentiation of early melanomas from atypical nevi

•The diagnosis of Atypical melanocytic skin lesions (aMSL) is worldwide challenging.•Deep convolutional neural network (DCNN) provide high accuracy in image recognition.•We developed the first hybrid DCNN model trained with aMSL images and clinical data (maximum diameter, site, age, sex).•Dermoscopi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of dermatological science Ročník 101; číslo 2; s. 115 - 122
Hlavní autori: Tognetti, Linda, Bonechi, Simone, Andreini, Paolo, Bianchini, Monica, Scarselli, Franco, Cevenini, Gabriele, Moscarella, Elvira, Farnetani, Francesca, Longo, Caterina, Lallas, Aimilios, Carrera, Cristina, Puig, Susana, Tiodorovic, Danica, Perrot, Jean Luc, Pellacani, Giovanni, Argenziano, Giuseppe, Cinotti, Elisa, Cataldo, Gennaro, Balistreri, Alberto, Mecocci, Alessandro, Gori, Marco, Rubegni, Pietro, Cartocci, Alessandra
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Elsevier B.V 01.02.2021
Predmet:
ISSN:0923-1811, 1873-569X, 1873-569X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •The diagnosis of Atypical melanocytic skin lesions (aMSL) is worldwide challenging.•Deep convolutional neural network (DCNN) provide high accuracy in image recognition.•We developed the first hybrid DCNN model trained with aMSL images and clinical data (maximum diameter, site, age, sex).•Dermoscopists would increase the diagnostic accuracy by consulting the iDCNN_aMSL.•The iDCNN_aMSL would reduce the number of inappropriate excision of benign aMSL. Timely recognition of malignant melanoma (MM) is challenging for dermatologists worldwide and represents the main determinant for mortality. Dermoscopic examination is influenced by dermatologists’ experience and fails to achieve adequate accuracy and reproducibility in discriminating atypical nevi (AN) from early melanomas (EM). We aimed to develop a Deep Convolutional Neural Network (DCNN) model able to support dermatologists in the classification and management of atypical melanocytic skin lesions (aMSL). A training set (630 images), a validation set (135) and a testing set (214) were derived from the idScore dataset of 979 challenging aMSL cases in which the dermoscopic image is integrated with clinical data (age, sex, body site and diameter) and associated with histological data. A DCNN_aMSL architecture was designed and then trained on both dermoscopic images of aMSL and the clinical/anamnestic data, resulting in the integrated “iDCNN_aMSL” model. Responses of 111 dermatologists with different experience levels on both aMSL classification (intuitive diagnosis) and management decisions (no/long follow-up; short follow-up; excision/preventive excision) were compared with the DCNNs models. In the lesion classification study, the iDCNN_aMSL achieved the best accuracy, reaching an AUC = 90.3 %, SE = 86.5 % and SP = 73.6 %, compared to DCNN_aMSL (SE = 89.2 %, SP = 65.7 %) and intuitive diagnosis of dermatologists (SE = 77.0 %; SP = 61.4 %). The iDCNN_aMSL proved to be the best support tool for management decisions reducing the ratio of inappropriate excision. The proposed iDCNN_aMSL model can represent a valid support for dermatologists in discriminating AN from EM with high accuracy and for medical decision making by reducing their rates of inappropriate excisions.
AbstractList Timely recognition of malignant melanoma (MM) is challenging for dermatologists worldwide and represents the main determinant for mortality. Dermoscopic examination is influenced by dermatologists' experience and fails to achieve adequate accuracy and reproducibility in discriminating atypical nevi (AN) from early melanomas (EM).BACKGROUNDTimely recognition of malignant melanoma (MM) is challenging for dermatologists worldwide and represents the main determinant for mortality. Dermoscopic examination is influenced by dermatologists' experience and fails to achieve adequate accuracy and reproducibility in discriminating atypical nevi (AN) from early melanomas (EM).We aimed to develop a Deep Convolutional Neural Network (DCNN) model able to support dermatologists in the classification and management of atypical melanocytic skin lesions (aMSL).OBJECTIVEWe aimed to develop a Deep Convolutional Neural Network (DCNN) model able to support dermatologists in the classification and management of atypical melanocytic skin lesions (aMSL).A training set (630 images), a validation set (135) and a testing set (214) were derived from the idScore dataset of 979 challenging aMSL cases in which the dermoscopic image is integrated with clinical data (age, sex, body site and diameter) and associated with histological data. A DCNN_aMSL architecture was designed and then trained on both dermoscopic images of aMSL and the clinical/anamnestic data, resulting in the integrated "iDCNN_aMSL" model. Responses of 111 dermatologists with different experience levels on both aMSL classification (intuitive diagnosis) and management decisions (no/long follow-up; short follow-up; excision/preventive excision) were compared with the DCNNs models.METHODSA training set (630 images), a validation set (135) and a testing set (214) were derived from the idScore dataset of 979 challenging aMSL cases in which the dermoscopic image is integrated with clinical data (age, sex, body site and diameter) and associated with histological data. A DCNN_aMSL architecture was designed and then trained on both dermoscopic images of aMSL and the clinical/anamnestic data, resulting in the integrated "iDCNN_aMSL" model. Responses of 111 dermatologists with different experience levels on both aMSL classification (intuitive diagnosis) and management decisions (no/long follow-up; short follow-up; excision/preventive excision) were compared with the DCNNs models.In the lesion classification study, the iDCNN_aMSL achieved the best accuracy, reaching an AUC = 90.3 %, SE = 86.5 % and SP = 73.6 %, compared to DCNN_aMSL (SE = 89.2 %, SP = 65.7 %) and intuitive diagnosis of dermatologists (SE = 77.0 %; SP = 61.4 %).RESULTSIn the lesion classification study, the iDCNN_aMSL achieved the best accuracy, reaching an AUC = 90.3 %, SE = 86.5 % and SP = 73.6 %, compared to DCNN_aMSL (SE = 89.2 %, SP = 65.7 %) and intuitive diagnosis of dermatologists (SE = 77.0 %; SP = 61.4 %).The iDCNN_aMSL proved to be the best support tool for management decisions reducing the ratio of inappropriate excision. The proposed iDCNN_aMSL model can represent a valid support for dermatologists in discriminating AN from EM with high accuracy and for medical decision making by reducing their rates of inappropriate excisions.CONCLUSIONSThe iDCNN_aMSL proved to be the best support tool for management decisions reducing the ratio of inappropriate excision. The proposed iDCNN_aMSL model can represent a valid support for dermatologists in discriminating AN from EM with high accuracy and for medical decision making by reducing their rates of inappropriate excisions.
•The diagnosis of Atypical melanocytic skin lesions (aMSL) is worldwide challenging.•Deep convolutional neural network (DCNN) provide high accuracy in image recognition.•We developed the first hybrid DCNN model trained with aMSL images and clinical data (maximum diameter, site, age, sex).•Dermoscopists would increase the diagnostic accuracy by consulting the iDCNN_aMSL.•The iDCNN_aMSL would reduce the number of inappropriate excision of benign aMSL. Timely recognition of malignant melanoma (MM) is challenging for dermatologists worldwide and represents the main determinant for mortality. Dermoscopic examination is influenced by dermatologists’ experience and fails to achieve adequate accuracy and reproducibility in discriminating atypical nevi (AN) from early melanomas (EM). We aimed to develop a Deep Convolutional Neural Network (DCNN) model able to support dermatologists in the classification and management of atypical melanocytic skin lesions (aMSL). A training set (630 images), a validation set (135) and a testing set (214) were derived from the idScore dataset of 979 challenging aMSL cases in which the dermoscopic image is integrated with clinical data (age, sex, body site and diameter) and associated with histological data. A DCNN_aMSL architecture was designed and then trained on both dermoscopic images of aMSL and the clinical/anamnestic data, resulting in the integrated “iDCNN_aMSL” model. Responses of 111 dermatologists with different experience levels on both aMSL classification (intuitive diagnosis) and management decisions (no/long follow-up; short follow-up; excision/preventive excision) were compared with the DCNNs models. In the lesion classification study, the iDCNN_aMSL achieved the best accuracy, reaching an AUC = 90.3 %, SE = 86.5 % and SP = 73.6 %, compared to DCNN_aMSL (SE = 89.2 %, SP = 65.7 %) and intuitive diagnosis of dermatologists (SE = 77.0 %; SP = 61.4 %). The iDCNN_aMSL proved to be the best support tool for management decisions reducing the ratio of inappropriate excision. The proposed iDCNN_aMSL model can represent a valid support for dermatologists in discriminating AN from EM with high accuracy and for medical decision making by reducing their rates of inappropriate excisions.
Timely recognition of malignant melanoma (MM) is challenging for dermatologists worldwide and represents the main determinant for mortality. Dermoscopic examination is influenced by dermatologists' experience and fails to achieve adequate accuracy and reproducibility in discriminating atypical nevi (AN) from early melanomas (EM). We aimed to develop a Deep Convolutional Neural Network (DCNN) model able to support dermatologists in the classification and management of atypical melanocytic skin lesions (aMSL). A training set (630 images), a validation set (135) and a testing set (214) were derived from the idScore dataset of 979 challenging aMSL cases in which the dermoscopic image is integrated with clinical data (age, sex, body site and diameter) and associated with histological data. A DCNN_aMSL architecture was designed and then trained on both dermoscopic images of aMSL and the clinical/anamnestic data, resulting in the integrated "iDCNN_aMSL" model. Responses of 111 dermatologists with different experience levels on both aMSL classification (intuitive diagnosis) and management decisions (no/long follow-up; short follow-up; excision/preventive excision) were compared with the DCNNs models. In the lesion classification study, the iDCNN_aMSL achieved the best accuracy, reaching an AUC = 90.3 %, SE = 86.5 % and SP = 73.6 %, compared to DCNN_aMSL (SE = 89.2 %, SP = 65.7 %) and intuitive diagnosis of dermatologists (SE = 77.0 %; SP = 61.4 %). The iDCNN_aMSL proved to be the best support tool for management decisions reducing the ratio of inappropriate excision. The proposed iDCNN_aMSL model can represent a valid support for dermatologists in discriminating AN from EM with high accuracy and for medical decision making by reducing their rates of inappropriate excisions.
Author Tiodorovic, Danica
Balistreri, Alberto
Cinotti, Elisa
Gori, Marco
Cevenini, Gabriele
Carrera, Cristina
Argenziano, Giuseppe
Rubegni, Pietro
Bonechi, Simone
Longo, Caterina
Scarselli, Franco
Puig, Susana
Farnetani, Francesca
Cataldo, Gennaro
Moscarella, Elvira
Tognetti, Linda
Lallas, Aimilios
Perrot, Jean Luc
Bianchini, Monica
Cartocci, Alessandra
Mecocci, Alessandro
Andreini, Paolo
Pellacani, Giovanni
Author_xml – sequence: 1
  givenname: Linda
  surname: Tognetti
  fullname: Tognetti, Linda
  email: linda.tognetti@dbm.unisi.it
  organization: Dermatology Unit, Department of Medical, Surgical and Neurosciences, University of Siena, Italy
– sequence: 2
  givenname: Simone
  surname: Bonechi
  fullname: Bonechi, Simone
  organization: Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
– sequence: 3
  givenname: Paolo
  surname: Andreini
  fullname: Andreini, Paolo
  organization: Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
– sequence: 4
  givenname: Monica
  surname: Bianchini
  fullname: Bianchini, Monica
  organization: Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
– sequence: 5
  givenname: Franco
  surname: Scarselli
  fullname: Scarselli, Franco
  organization: Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
– sequence: 6
  givenname: Gabriele
  surname: Cevenini
  fullname: Cevenini, Gabriele
  organization: Bioengineering Unit, Department of Medical Biotechnology, University of Siena, Italy
– sequence: 7
  givenname: Elvira
  surname: Moscarella
  fullname: Moscarella, Elvira
  organization: Dermatology Unit, University of Campania Luigi Vanvitelli, Naples, Italy
– sequence: 8
  givenname: Francesca
  surname: Farnetani
  fullname: Farnetani, Francesca
  organization: Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
– sequence: 9
  givenname: Caterina
  surname: Longo
  fullname: Longo, Caterina
  organization: Centro Oncologico ad Alta Tecnologia Diagnostica, Azienda Unità Sanitaria Locale, IRCCS di Reggio Emilia, Reggio Emilia, Italy
– sequence: 10
  givenname: Aimilios
  surname: Lallas
  fullname: Lallas, Aimilios
  organization: First Department of Dermatology, Aristotle University, Thessaloniki, Greece
– sequence: 11
  givenname: Cristina
  surname: Carrera
  fullname: Carrera, Cristina
  organization: Melanoma Unit, Department of Dermatology, University of Barcelona, Barcelona, Spain
– sequence: 12
  givenname: Susana
  surname: Puig
  fullname: Puig, Susana
  organization: Melanoma Unit, Department of Dermatology, University of Barcelona, Barcelona, Spain
– sequence: 13
  givenname: Danica
  surname: Tiodorovic
  fullname: Tiodorovic, Danica
  organization: Dermatology Clinic, Medical Faculty, Nis University, Nis, Serbia
– sequence: 14
  givenname: Jean Luc
  surname: Perrot
  fullname: Perrot, Jean Luc
  organization: Dermatology Unit, University Hospital of St-Etienne, Saint Etienne, France
– sequence: 15
  givenname: Giovanni
  surname: Pellacani
  fullname: Pellacani, Giovanni
  organization: Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
– sequence: 16
  givenname: Giuseppe
  surname: Argenziano
  fullname: Argenziano, Giuseppe
  organization: Dermatology Unit, University of Campania Luigi Vanvitelli, Naples, Italy
– sequence: 17
  givenname: Elisa
  surname: Cinotti
  fullname: Cinotti, Elisa
  organization: Dermatology Unit, Department of Medical, Surgical and Neurosciences, University of Siena, Italy
– sequence: 18
  givenname: Gennaro
  surname: Cataldo
  fullname: Cataldo, Gennaro
  organization: Bioengineering Unit, Department of Medical Biotechnology, University of Siena, Italy
– sequence: 19
  givenname: Alberto
  surname: Balistreri
  fullname: Balistreri, Alberto
  organization: Bioengineering Unit, Department of Medical Biotechnology, University of Siena, Italy
– sequence: 20
  givenname: Alessandro
  surname: Mecocci
  fullname: Mecocci, Alessandro
  organization: Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
– sequence: 21
  givenname: Marco
  surname: Gori
  fullname: Gori, Marco
  organization: Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
– sequence: 22
  givenname: Pietro
  surname: Rubegni
  fullname: Rubegni, Pietro
  organization: Dermatology Unit, Department of Medical, Surgical and Neurosciences, University of Siena, Italy
– sequence: 23
  givenname: Alessandra
  surname: Cartocci
  fullname: Cartocci, Alessandra
  organization: Dermatology Unit, Department of Medical, Surgical and Neurosciences, University of Siena, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33358096$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtPGzEUhS1EBYH2LyAvu5lgj-cpVVURKrQSUjet1J11x74mTmfsqe2Asu8PxyFkw4aurnR1zncf54wcO--QkAvOlpzx5nK9XGsMU1R2WbIyN_mSsf6ILHjXiqJu-t_HZMH6UhS84_yUnMW4ZozVZdWfkFMhRN2xvlmQf1fU4SPViDMdEYKz7p7CPAcPakWtS3gfIKGmjzatqBqtswpGqiEBNT7QtEK6W8RH5WerqLbGYECXLCTrHfWGZuq4pROO4PwEkZrgJwppOz-THD7Y9-SdgTHih5d6Tn7dfP15_a24-3H7_frqrlBVX6dCldgBdBqAtWYoUTSoVNVAJzSvGuwZ18x0YHAwtW7r2oiuHXAQWOamrlpxTj7uufm8vxuMSU42KhzzZug3UZZZU7GetX2WXrxIN8OEWs7BThC28vC5LPi0F6jgYwxopLLp-eYUwI6SM7kLSq7lISi5C0pyLnNQ2d68sh8mvGn8sjdiftSDxSCzAp1CbQOqJLW3byM-v0Iccv2D2_8BPAEsAMqa
CitedBy_id crossref_primary_10_3389_fmed_2022_965423
crossref_primary_10_1111_jdv_20740
crossref_primary_10_1007_s11912_023_01407_3
crossref_primary_10_3390_medicina57080846
crossref_primary_10_3390_diagnostics13152531
crossref_primary_10_1089_tmj_2022_0456
crossref_primary_10_3390_bioengineering11080758
crossref_primary_10_1016_j_engappai_2023_107385
crossref_primary_10_1111_jdv_19360
crossref_primary_10_4103_ds_ds_36_21
crossref_primary_10_3390_ai3020029
crossref_primary_10_3390_bioengineering11101036
crossref_primary_10_3390_cancers15194694
crossref_primary_10_1016_j_annder_2025_103365
crossref_primary_10_3390_electronics10202559
crossref_primary_10_1016_j_prp_2023_154734
crossref_primary_10_1109_TMI_2021_3120091
crossref_primary_10_1016_j_neucom_2022_12_033
crossref_primary_10_1097_CMR_0000000000000951
crossref_primary_10_1038_s41598_022_20168_w
crossref_primary_10_2196_39748
crossref_primary_10_1109_ACCESS_2022_3199613
crossref_primary_10_3389_fmed_2021_754202
crossref_primary_10_3390_jimaging10110265
crossref_primary_10_1007_s11042_021_10861_9
crossref_primary_10_1016_j_jid_2023_11_007
crossref_primary_10_3390_diagnostics14050460
crossref_primary_10_1038_s41746_024_01103_x
Cites_doi 10.1001/jamadermatol.2018.4378
10.2307/2529310
10.1111/jdv.16165
10.1097/CMR.0000000000000209
10.1001/archderm.141.11.1444
10.1177/0272989X03251246
10.1016/j.ejca.2019.07.019
10.1111/bjd.16924
10.1056/NEJMp1912079
10.1016/j.jid.2018.01.028
10.1093/annonc/mdy166
10.1111/jdv.16185
10.3390/app9112192
10.1001/jamanetworkopen.2019.13436
10.1016/S1470-2045(19)30333-X
10.1111/j.1365-2133.2005.06481.x
10.1016/j.annonc.2019.10.013
10.1001/jamadermatol.2019.1633
10.1016/j.ejca.2019.11.020
10.2307/2531595
10.1016/j.jaad.2019.06.042
10.1038/s41591-020-0942-0
10.1111/jdv.15923
10.1111/jdv.15106
10.1038/nature21056
10.1016/j.jaad.2017.08.016
10.1016/j.ejca.2019.04.001
10.1016/j.media.2017.07.005
10.1111/jdv.14129
10.1016/S0140-6736(18)31559-9
ContentType Journal Article
Copyright 2020 Japanese Society for Investigative Dermatology
Copyright © 2020 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Japanese Society for Investigative Dermatology
– notice: Copyright © 2020 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.jdermsci.2020.11.009
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-569X
EndPage 122
ExternalDocumentID 33358096
10_1016_j_jdermsci_2020_11_009
S0923181120303947
Genre Journal Article
GroupedDBID ---
--K
--M
-RU
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
D-I
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEA
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LZ2
M27
M41
MO0
N9A
O-L
O9-
OAUVE
OB.
OM~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
UHS
WUQ
Y6R
Z5R
~G-
~HD
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
9DU
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c495t-c2e8aa8daa07fb2e36ecc46a83d146e901d0f8afebf5d755f387beb3e28afd473
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000641988000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0923-1811
1873-569X
IngestDate Thu Oct 02 10:06:19 EDT 2025
Wed Feb 19 02:28:25 EST 2025
Sat Nov 29 07:10:27 EST 2025
Tue Nov 18 20:58:01 EST 2025
Fri Feb 23 02:46:05 EST 2024
Tue Oct 14 19:36:15 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords DCNN_aMSL
ST
Cutaneous melanoma
ROC
aMSL
EM
DCNNs
Dermoscopy
Non-invasive imaging
AN
AUC
CNNs
Deep learning
SE
Deep convolutional neural network
SP
iDCNN_aMSL
Integrated diagnosis
Language English
License Copyright © 2020 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c495t-c2e8aa8daa07fb2e36ecc46a83d146e901d0f8afebf5d755f387beb3e28afd473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink http://hdl.handle.net/11380/1227297
PMID 33358096
PQID 2473409079
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2473409079
pubmed_primary_33358096
crossref_citationtrail_10_1016_j_jdermsci_2020_11_009
crossref_primary_10_1016_j_jdermsci_2020_11_009
elsevier_sciencedirect_doi_10_1016_j_jdermsci_2020_11_009
elsevier_clinicalkey_doi_10_1016_j_jdermsci_2020_11_009
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
2021-Feb
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of dermatological science
PublicationTitleAlternate J Dermatol Sci
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tognetti, Fiorani, Tonini (bib0115) 2020
Tschandl, Codella, Akay (bib0185) 2019; 20
Esteva, Kuprel, Novoa (bib0065) 2017; 542
Rubegni, Burroni, Andreassi, Fimiani (bib0030) 2005; 141
Andreini, Bonechi, Bianchini (bib0050) 2019
Mehta, Katz, Jha (bib0165) 2020; 382
Novoa, Gevaert, Ko (bib0170) 2019; 155
Fink, Blum, Buhl (bib0085) 2020; 34
Landis, Koch (bib0160) 1977; 33
Tschandl, Rinner, Apalla (bib0215) 2020; 26
Hout WB (bib0195) 2003; 23
Forsea, Tschandl, Zalaudek (bib0010) 2017; 31
Codella, Gutman, Celebi (bib0125) 2018
Winkler, Sies, Fink (bib0090) 2020; 127
National Comprehensive Cancer Network (bib0135) 2019
Burroni, Sbano, Cevenini (bib0025) 2005; 152
Katostaras, Katostara (bib0200) 2013; 190
Bonechi, Bianchini, Bongini (bib0120) 2019
Hekler, Utikal, Enk (bib0190) 2019; 120
He, Zhang, Ren, Sun (bib0045) 2016
Lee, Chu, Yoo (bib0095) 2020; 34
Brinker, Hekler, Enk (bib0180) 2019; 113
Marchetti, Codella, Dusza (bib0060) 2018; 78
Han, Kim, Lim (bib0070) 2018; 138
Litjens, Kooi, Bejnordi (bib0040) 2017; 42
Phillips, Marsden, Jaffe (bib0105) 2019; 2
Bonechi, Andreini, Bianchini, Pai, Scarselli (bib0055) 2019; 9
Ronneberger, Fischer, Brox (bib0150) 2015
Abadi, Agarwal, Barham (bib0145) 2015
DeLong, DeLong, Clarke-Pearson (bib0155) 1988; 44
L. Tognetti, A. Cartocci, E. Cinotti, et al. The impact of anatomical location and sun exposure on the dermoscopic recognition of atypical nevi and early melanomas: usefulness of an integrated clinical-dermoscopic method (iDScore) [published online ahead of print, 2020 Aug 2].
Haenssle, Fink, Toberer (bib0110) 2020; 31
L. Tognetti, A. Cartocci, A. Balistreri, et al. The Comparative Use of Multiple Electronic Devices in the Teledermoscopic Diagnosis of Early Melanoma [published online ahead of print, 2020 Aug 14]. Telemed J E Health. 2020;10. h.
Fujisawa, Otomo, Ogata (bib0075) 2019; 180
Tognetti, Cevenini, Moscarella (bib0130) 2020; 34
Schadendorf, van Akkooi, Berking (bib0005) 2018; 392
Tognetti, Cevenini, Moscarella (bib0020) 2018; 32
Dinnes, Deeks, Chuchu (bib0015) 2018; 12
Haenssle, Fink, Schneiderbauer (bib0080) 2018; 29
Bonechi, Andreini, Bianchini, Scarselli (bib0140) 2019; 1911
Cui, Wei, Gong (bib0175) 2019; 81
Rubegni, Feci, Nami (bib0035) 2015; 25
Tschandl, Rosendahl, Akay (bib0100) 2019; 155
Ronneberger (10.1016/j.jdermsci.2020.11.009_bib0150) 2015
10.1016/j.jdermsci.2020.11.009_bib0210
Mehta (10.1016/j.jdermsci.2020.11.009_bib0165) 2020; 382
Bonechi (10.1016/j.jdermsci.2020.11.009_bib0055) 2019; 9
Tschandl (10.1016/j.jdermsci.2020.11.009_bib0215) 2020; 26
Haenssle (10.1016/j.jdermsci.2020.11.009_bib0110) 2020; 31
Phillips (10.1016/j.jdermsci.2020.11.009_bib0105) 2019; 2
Tschandl (10.1016/j.jdermsci.2020.11.009_bib0185) 2019; 20
Lee (10.1016/j.jdermsci.2020.11.009_bib0095) 2020; 34
Cui (10.1016/j.jdermsci.2020.11.009_bib0175) 2019; 81
10.1016/j.jdermsci.2020.11.009_bib0205
Tschandl (10.1016/j.jdermsci.2020.11.009_bib0100) 2019; 155
Burroni (10.1016/j.jdermsci.2020.11.009_bib0025) 2005; 152
Codella (10.1016/j.jdermsci.2020.11.009_bib0125) 2018
Schadendorf (10.1016/j.jdermsci.2020.11.009_bib0005) 2018; 392
Dinnes (10.1016/j.jdermsci.2020.11.009_bib0015) 2018; 12
Brinker (10.1016/j.jdermsci.2020.11.009_bib0180) 2019; 113
Tognetti (10.1016/j.jdermsci.2020.11.009_bib0115) 2020
Forsea (10.1016/j.jdermsci.2020.11.009_bib0010) 2017; 31
DeLong (10.1016/j.jdermsci.2020.11.009_bib0155) 1988; 44
Novoa (10.1016/j.jdermsci.2020.11.009_bib0170) 2019; 155
Hekler (10.1016/j.jdermsci.2020.11.009_bib0190) 2019; 120
He (10.1016/j.jdermsci.2020.11.009_bib0045) 2016
Landis (10.1016/j.jdermsci.2020.11.009_bib0160) 1977; 33
Litjens (10.1016/j.jdermsci.2020.11.009_bib0040) 2017; 42
Andreini (10.1016/j.jdermsci.2020.11.009_bib0050) 2019
Esteva (10.1016/j.jdermsci.2020.11.009_bib0065) 2017; 542
Bonechi (10.1016/j.jdermsci.2020.11.009_bib0120) 2019
Tognetti (10.1016/j.jdermsci.2020.11.009_bib0130) 2020; 34
Haenssle (10.1016/j.jdermsci.2020.11.009_bib0080) 2018; 29
Rubegni (10.1016/j.jdermsci.2020.11.009_bib0035) 2015; 25
Marchetti (10.1016/j.jdermsci.2020.11.009_bib0060) 2018; 78
Fink (10.1016/j.jdermsci.2020.11.009_bib0085) 2020; 34
Bonechi (10.1016/j.jdermsci.2020.11.009_bib0140) 2019; 1911
National Comprehensive Cancer Network (10.1016/j.jdermsci.2020.11.009_bib0135) 2019
Hout WB (10.1016/j.jdermsci.2020.11.009_bib0195) 2003; 23
Abadi (10.1016/j.jdermsci.2020.11.009_bib0145) 2015
Rubegni (10.1016/j.jdermsci.2020.11.009_bib0030) 2005; 141
Han (10.1016/j.jdermsci.2020.11.009_bib0070) 2018; 138
Katostaras (10.1016/j.jdermsci.2020.11.009_bib0200) 2013; 190
Tognetti (10.1016/j.jdermsci.2020.11.009_bib0020) 2018; 32
Fujisawa (10.1016/j.jdermsci.2020.11.009_bib0075) 2019; 180
Winkler (10.1016/j.jdermsci.2020.11.009_bib0090) 2020; 127
References_xml – year: 2019
  ident: bib0135
  article-title: NCCN Clinical Practice Guidelines in Oncology: Melanoma. Version 1.2020 — December 19
– volume: 34
  start-page: 1842
  year: 2020
  end-page: 1850
  ident: bib0095
  article-title: Augmented decision-making for acral lentiginous melanoma detection using deep convolutional neural networks
  publication-title: J. Eur. Acad. Dermatol. Venereol.
– volume: 25
  start-page: 537
  year: 2015
  end-page: 542
  ident: bib0035
  article-title: Computer-assisted melanoma diagnosis: a new integrated system
  publication-title: Melanoma Res.
– volume: 141
  start-page: 1444
  year: 2005
  end-page: 1446
  ident: bib0030
  article-title: The role of dermoscopy and digital dermoscopy analysis in the diagnosis of pigmented skin lesions
  publication-title: Arch. Dermatol.
– volume: 78
  start-page: 270
  year: 2018
  end-page: 277
  ident: bib0060
  article-title: International skin imaging collaboration. Results of the 2016 International skin imaging collaboration ISBI challenge: comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images
  publication-title: J. Am. Acad. Dermatol.
– start-page: 211
  year: 2019
  end-page: 219
  ident: bib0120
  article-title: Fusion of visual and anamnestic data for the classification of skin lesions with deep learning
  publication-title: New Trends in Image Analysis and Processing
– reference: L. Tognetti, A. Cartocci, E. Cinotti, et al. The impact of anatomical location and sun exposure on the dermoscopic recognition of atypical nevi and early melanomas: usefulness of an integrated clinical-dermoscopic method (iDScore) [published online ahead of print, 2020 Aug 2].
– volume: 2
  year: 2019
  ident: bib0105
  article-title: Assessment of accuracy of an artificial intelligence algorithm to detect melanoma in images of skin lesions
  publication-title: JAMA Netw Open
– volume: 31
  start-page: 137
  year: 2020
  end-page: 143
  ident: bib0110
  article-title: Reader study level I and level II groups. Man against machine reloaded: performance of a market approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions
  publication-title: Ann. Oncol.
– volume: 26
  start-page: 1229
  year: 2020
  end-page: 1234
  ident: bib0215
  article-title: Human–computer collaboration for skin cancer recognition
  publication-title: Nat. Med.
– volume: 9
  start-page: 2192
  year: 2019
  ident: bib0055
  article-title: Confidence measures for deep learning in domain adaptation
  publication-title: Appl Sci
– volume: 34
  start-page: 1355
  year: 2020
  end-page: 1361
  ident: bib0085
  article-title: Diagnostic performance of a deep learning convolutional neural network in the differentiation of combined naevi and melanomas
  publication-title: J. Eur. Acad. Dermatol. Venereol.
– volume: 1911
  start-page: 09026
  year: 2019
  ident: bib0140
  article-title: Weak supervision for generating pixel-level annotations in scene text segmentation
  publication-title: arXiv preprint arXiv
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  ident: bib0065
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
– start-page: 3
  year: 2020
  end-page: 24
  ident: bib0115
  article-title: Dermoscopy: fundamentals and technology advances
  publication-title: Technology in Practical Dermatology, Photorejuvenation: Concepts, Practice, Perspectives
– volume: 127
  start-page: 21
  year: 2020
  end-page: 29
  ident: bib0090
  article-title: Melanoma recognition by a deep learning convolutional neural network-performance in different melanoma subtypes and localisations
  publication-title: Eur. J. Cancer
– volume: 20
  start-page: 938
  year: 2019
  end-page: 947
  ident: bib0185
  article-title: Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study
  publication-title: Lancet Oncol.
– volume: 31
  start-page: 1148
  year: 2017
  end-page: 1156
  ident: bib0010
  article-title: Eurodermoscopy working group; Argenziano G, geller AC. The impact of dermoscopy on melanoma detection in the practice of dermatologists in Europe: results of a pan-European survey
  publication-title: J. Eur. Acad. Dermatol. Venereol.
– year: 2015
  ident: bib0145
  article-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
– volume: 155
  start-page: 58
  year: 2019
  end-page: 65
  ident: bib0100
  article-title: Expert level diagnosis of nonpigmented skin cancer by combined convolutional neural networks
  publication-title: JAMA Dermatol
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0150
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: MICCAI 2015. Lecture Notes in Computer Science
– volume: 180
  start-page: 373
  year: 2019
  end-page: 381
  ident: bib0075
  article-title: Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis
  publication-title: Br. J. Dermatol.
– volume: 12
  year: 2018
  ident: bib0015
  article-title: Cochrane skin cancer diagnostic test accuracy group. Dermoscopy, with and without visual inspection, for diagnosing melanoma in adults
  publication-title: Cochrane Database Syst Rev
– start-page: 168
  year: 2018
  end-page: 172
  ident: bib0125
  article-title: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic)
  publication-title: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)
– volume: 113
  start-page: 47
  year: 2019
  end-page: 54
  ident: bib0180
  article-title: Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task
  publication-title: Eur J Canc
– year: 2019
  ident: bib0050
  article-title: A Two Stage Gan for High Resolution Retinal Image Generation and Segmentation
– volume: 33
  start-page: 159
  year: 1977
  end-page: 174
  ident: bib0160
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
– volume: 81
  start-page: N1176
  year: 2019
  end-page: 1180
  ident: bib0175
  article-title: Assessing the effectiveness of artificial intelligence methods for melanoma: a retrospective review
  publication-title: J. Am. Acad. Dermatol.
– volume: 23
  start-page: 160
  year: 2003
  end-page: 166
  ident: bib0195
  article-title: The area under an ROC curve with limited information
  publication-title: Med. Decis. Making
– volume: 392
  start-page: 971
  year: 2018
  end-page: 984
  ident: bib0005
  article-title: Melanoma
  publication-title: The Lancet
– volume: 152
  start-page: 679
  year: 2005
  end-page: 684
  ident: bib0025
  article-title: Dysplastic naevus
  publication-title: Br. J. Dermatol.
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: bib0040
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
– volume: 29
  start-page: 1836
  year: 2018
  end-page: 1842
  ident: bib0080
  article-title: Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists
  publication-title: Ann. Oncol.
– volume: 34
  start-page: 640
  year: 2020
  end-page: 647
  ident: bib0130
  article-title: Validation of an integrated dermoscopic scoring method in an European teledermoscopy web platform: the iDScore project for early detection of melanoma
  publication-title: J. Eur. Acad. Dermatol. Venereol.
– volume: 190
  start-page: 219
  year: 2013
  end-page: 221
  ident: bib0200
  article-title: Area of the ROC curve when one point is available
  publication-title: Stud Health Technol Inform
– volume: 120
  start-page: 114
  year: 2019
  end-page: 121
  ident: bib0190
  article-title: Superior skin cancer classification by the combination of human and artificial intelligence
  publication-title: Eur J Canc
– volume: 44
  start-page: 837
  year: 1988
  end-page: 845
  ident: bib0155
  article-title: Comparing areas under two or more correlated receiver operating characteristics curves: a nonparamentric approach
  publication-title: Biometrics
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0045
  article-title: Deep residual learning for image recognition
  publication-title: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR
– volume: 155
  start-page: 1105
  year: 2019
  end-page: 1106
  ident: bib0170
  article-title: Marking the path toward artificial intelligence-based image classification in dermatology
  publication-title: JAMA Dermatol.
– volume: 32
  start-page: 2162
  year: 2018
  end-page: 2170
  ident: bib0020
  article-title: An integrated clinical-dermoscopic risk scoring system for the differentiation between early melanoma and atypical nevi: the iDScore
  publication-title: J. Eur. Acad. Dermatol. Venereol.
– volume: 138
  start-page: 1529
  year: 2018
  end-page: 1538
  ident: bib0070
  article-title: Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm
  publication-title: J. Invest. Dermatol.
– volume: 382
  start-page: 791
  year: 2020
  end-page: 793
  ident: bib0165
  article-title: Transforming global health with AI
  publication-title: N. Engl. J. Med.
– reference: L. Tognetti, A. Cartocci, A. Balistreri, et al. The Comparative Use of Multiple Electronic Devices in the Teledermoscopic Diagnosis of Early Melanoma [published online ahead of print, 2020 Aug 14]. Telemed J E Health. 2020;10. h.
– volume: 155
  start-page: 58
  issue: 1
  year: 2019
  ident: 10.1016/j.jdermsci.2020.11.009_bib0100
  article-title: Expert level diagnosis of nonpigmented skin cancer by combined convolutional neural networks
  publication-title: JAMA Dermatol
  doi: 10.1001/jamadermatol.2018.4378
– volume: 33
  start-page: 159
  issue: 1
  year: 1977
  ident: 10.1016/j.jdermsci.2020.11.009_bib0160
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
  doi: 10.2307/2529310
– volume: 34
  start-page: 1355
  issue: 6
  year: 2020
  ident: 10.1016/j.jdermsci.2020.11.009_bib0085
  article-title: Diagnostic performance of a deep learning convolutional neural network in the differentiation of combined naevi and melanomas
  publication-title: J. Eur. Acad. Dermatol. Venereol.
  doi: 10.1111/jdv.16165
– volume: 25
  start-page: 537
  issue: 6
  year: 2015
  ident: 10.1016/j.jdermsci.2020.11.009_bib0035
  article-title: Computer-assisted melanoma diagnosis: a new integrated system
  publication-title: Melanoma Res.
  doi: 10.1097/CMR.0000000000000209
– volume: 1911
  start-page: 09026
  year: 2019
  ident: 10.1016/j.jdermsci.2020.11.009_bib0140
  article-title: Weak supervision for generating pixel-level annotations in scene text segmentation
  publication-title: arXiv preprint arXiv
– start-page: 211
  year: 2019
  ident: 10.1016/j.jdermsci.2020.11.009_bib0120
  article-title: Fusion of visual and anamnestic data for the classification of skin lesions with deep learning
– volume: 141
  start-page: 1444
  issue: 11
  year: 2005
  ident: 10.1016/j.jdermsci.2020.11.009_bib0030
  article-title: The role of dermoscopy and digital dermoscopy analysis in the diagnosis of pigmented skin lesions
  publication-title: Arch. Dermatol.
  doi: 10.1001/archderm.141.11.1444
– volume: 23
  start-page: 160
  issue: 2
  year: 2003
  ident: 10.1016/j.jdermsci.2020.11.009_bib0195
  article-title: The area under an ROC curve with limited information
  publication-title: Med. Decis. Making
  doi: 10.1177/0272989X03251246
– start-page: 770
  year: 2016
  ident: 10.1016/j.jdermsci.2020.11.009_bib0045
  article-title: Deep residual learning for image recognition
  publication-title: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR
– volume: 120
  start-page: 114
  year: 2019
  ident: 10.1016/j.jdermsci.2020.11.009_bib0190
  article-title: Superior skin cancer classification by the combination of human and artificial intelligence
  publication-title: Eur J Canc
  doi: 10.1016/j.ejca.2019.07.019
– volume: 180
  start-page: 373
  issue: 2
  year: 2019
  ident: 10.1016/j.jdermsci.2020.11.009_bib0075
  article-title: Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis
  publication-title: Br. J. Dermatol.
  doi: 10.1111/bjd.16924
– volume: 382
  start-page: 791
  issue: 9
  year: 2020
  ident: 10.1016/j.jdermsci.2020.11.009_bib0165
  article-title: Transforming global health with AI
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp1912079
– ident: 10.1016/j.jdermsci.2020.11.009_bib0210
– volume: 138
  start-page: 1529
  issue: 7
  year: 2018
  ident: 10.1016/j.jdermsci.2020.11.009_bib0070
  article-title: Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm
  publication-title: J. Invest. Dermatol.
  doi: 10.1016/j.jid.2018.01.028
– volume: 29
  start-page: 1836
  issue: 8
  year: 2018
  ident: 10.1016/j.jdermsci.2020.11.009_bib0080
  article-title: Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdy166
– volume: 34
  start-page: 1842
  issue: 8
  year: 2020
  ident: 10.1016/j.jdermsci.2020.11.009_bib0095
  article-title: Augmented decision-making for acral lentiginous melanoma detection using deep convolutional neural networks
  publication-title: J. Eur. Acad. Dermatol. Venereol.
  doi: 10.1111/jdv.16185
– volume: 9
  start-page: 2192
  year: 2019
  ident: 10.1016/j.jdermsci.2020.11.009_bib0055
  article-title: Confidence measures for deep learning in domain adaptation
  publication-title: Appl Sci
  doi: 10.3390/app9112192
– volume: 2
  issue: 10
  year: 2019
  ident: 10.1016/j.jdermsci.2020.11.009_bib0105
  article-title: Assessment of accuracy of an artificial intelligence algorithm to detect melanoma in images of skin lesions
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2019.13436
– year: 2019
  ident: 10.1016/j.jdermsci.2020.11.009_bib0135
– volume: 20
  start-page: 938
  issue: 7
  year: 2019
  ident: 10.1016/j.jdermsci.2020.11.009_bib0185
  article-title: Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(19)30333-X
– volume: 12
  issue: 12
  year: 2018
  ident: 10.1016/j.jdermsci.2020.11.009_bib0015
  article-title: Cochrane skin cancer diagnostic test accuracy group. Dermoscopy, with and without visual inspection, for diagnosing melanoma in adults
  publication-title: Cochrane Database Syst Rev
– start-page: 168
  year: 2018
  ident: 10.1016/j.jdermsci.2020.11.009_bib0125
  article-title: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic)
– start-page: 3
  year: 2020
  ident: 10.1016/j.jdermsci.2020.11.009_bib0115
  article-title: Dermoscopy: fundamentals and technology advances
– volume: 152
  start-page: 679
  issue: 4
  year: 2005
  ident: 10.1016/j.jdermsci.2020.11.009_bib0025
  article-title: Dysplastic naevus vs. In situ melanoma: digital dermoscopy analysis
  publication-title: Br. J. Dermatol.
  doi: 10.1111/j.1365-2133.2005.06481.x
– year: 2015
  ident: 10.1016/j.jdermsci.2020.11.009_bib0145
– volume: 31
  start-page: 137
  issue: 1
  year: 2020
  ident: 10.1016/j.jdermsci.2020.11.009_bib0110
  publication-title: Ann. Oncol.
  doi: 10.1016/j.annonc.2019.10.013
– volume: 155
  start-page: 1105
  issue: 10
  year: 2019
  ident: 10.1016/j.jdermsci.2020.11.009_bib0170
  article-title: Marking the path toward artificial intelligence-based image classification in dermatology
  publication-title: JAMA Dermatol.
  doi: 10.1001/jamadermatol.2019.1633
– volume: 127
  start-page: 21
  year: 2020
  ident: 10.1016/j.jdermsci.2020.11.009_bib0090
  article-title: Melanoma recognition by a deep learning convolutional neural network-performance in different melanoma subtypes and localisations
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2019.11.020
– year: 2019
  ident: 10.1016/j.jdermsci.2020.11.009_bib0050
– volume: 44
  start-page: 837
  issue: 3
  year: 1988
  ident: 10.1016/j.jdermsci.2020.11.009_bib0155
  article-title: Comparing areas under two or more correlated receiver operating characteristics curves: a nonparamentric approach
  publication-title: Biometrics
  doi: 10.2307/2531595
– volume: 81
  start-page: N1176
  year: 2019
  ident: 10.1016/j.jdermsci.2020.11.009_bib0175
  article-title: Assessing the effectiveness of artificial intelligence methods for melanoma: a retrospective review
  publication-title: J. Am. Acad. Dermatol.
  doi: 10.1016/j.jaad.2019.06.042
– volume: 190
  start-page: 219
  year: 2013
  ident: 10.1016/j.jdermsci.2020.11.009_bib0200
  article-title: Area of the ROC curve when one point is available
  publication-title: Stud Health Technol Inform
– volume: 26
  start-page: 1229
  year: 2020
  ident: 10.1016/j.jdermsci.2020.11.009_bib0215
  article-title: Human–computer collaboration for skin cancer recognition
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0942-0
– volume: 34
  start-page: 640
  issue: 3
  year: 2020
  ident: 10.1016/j.jdermsci.2020.11.009_bib0130
  article-title: Validation of an integrated dermoscopic scoring method in an European teledermoscopy web platform: the iDScore project for early detection of melanoma
  publication-title: J. Eur. Acad. Dermatol. Venereol.
  doi: 10.1111/jdv.15923
– volume: 32
  start-page: 2162
  issue: 12
  year: 2018
  ident: 10.1016/j.jdermsci.2020.11.009_bib0020
  article-title: An integrated clinical-dermoscopic risk scoring system for the differentiation between early melanoma and atypical nevi: the iDScore
  publication-title: J. Eur. Acad. Dermatol. Venereol.
  doi: 10.1111/jdv.15106
– volume: 542
  start-page: 115
  issue: 7639
  year: 2017
  ident: 10.1016/j.jdermsci.2020.11.009_bib0065
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– ident: 10.1016/j.jdermsci.2020.11.009_bib0205
– volume: 78
  start-page: 270
  issue: 2
  year: 2018
  ident: 10.1016/j.jdermsci.2020.11.009_bib0060
  article-title: International skin imaging collaboration. Results of the 2016 International skin imaging collaboration ISBI challenge: comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images
  publication-title: J. Am. Acad. Dermatol.
  doi: 10.1016/j.jaad.2017.08.016
– volume: 113
  start-page: 47
  year: 2019
  ident: 10.1016/j.jdermsci.2020.11.009_bib0180
  article-title: Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task
  publication-title: Eur J Canc
  doi: 10.1016/j.ejca.2019.04.001
– volume: 42
  start-page: 60
  year: 2017
  ident: 10.1016/j.jdermsci.2020.11.009_bib0040
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– volume: 31
  start-page: 1148
  issue: 7
  year: 2017
  ident: 10.1016/j.jdermsci.2020.11.009_bib0010
  article-title: Eurodermoscopy working group; Argenziano G, geller AC. The impact of dermoscopy on melanoma detection in the practice of dermatologists in Europe: results of a pan-European survey
  publication-title: J. Eur. Acad. Dermatol. Venereol.
  doi: 10.1111/jdv.14129
– volume: 392
  start-page: 971
  issue: 10151
  year: 2018
  ident: 10.1016/j.jdermsci.2020.11.009_bib0005
  article-title: Melanoma
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(18)31559-9
– start-page: 234
  year: 2015
  ident: 10.1016/j.jdermsci.2020.11.009_bib0150
  article-title: U-net: convolutional networks for biomedical image segmentation
SSID ssj0005249
Score 2.460061
Snippet •The diagnosis of Atypical melanocytic skin lesions (aMSL) is worldwide challenging.•Deep convolutional neural network (DCNN) provide high accuracy in image...
Timely recognition of malignant melanoma (MM) is challenging for dermatologists worldwide and represents the main determinant for mortality. Dermoscopic...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 115
SubjectTerms Cutaneous melanoma
Deep convolutional neural network
Deep learning
Dermoscopy
Integrated diagnosis
Non-invasive imaging
Title A new deep learning approach integrated with clinical data for the dermoscopic differentiation of early melanomas from atypical nevi
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0923181120303947
https://dx.doi.org/10.1016/j.jdermsci.2020.11.009
https://www.ncbi.nlm.nih.gov/pubmed/33358096
https://www.proquest.com/docview/2473409079
Volume 101
WOSCitedRecordID wos000641988000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-569X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005249
  issn: 0923-1811
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6DSFeEN-Mj8lIvE0pTtzE8WOFhgCJCWlD6lvkxM5o1aXVlk3jff_j_h3u4o8URrUhxEvUurGT-H65O19_5yPkbcl1Vmpmohj83WhkFItkVaMjJ5mq6szUzBabEPv7-WQivw4GVz4X5nwumia_uJDL_ypqaANhY-rsX4g7DAoN8BmEDkcQOxxvJfgxVgnf1cYsfUmIo7BzeL87hCed-8RIZIoGyqEGdb3AfJVpFSqotNPgXJpuU-RjM1cNsotsiopqfyy7kRowtWtcXhxXtUHdOuvbB7qPGtNaesGvoYJFY6qu-PDuAUCrJwJ0bMxpV5QKXGEYtw_5A5i_u19QbTlCkgtvJLFnRPuY27W8Gxu8THgEvok9z1jVnQsepVlXmLfX7W6o6coa22rq2GaROqMf2-Toa_bEhjZmwxlOEMzKEG4RzcyQMdlb0MBrPMAbw_tKQHdyORIbZCsRqQSLsTX-tDf5vMI-sisz_yAryet_vto6v2nduqjzjw4fkPtOynRsAfmQDEzziNz94qgbj8nlmAIuKeKSelxSj0va45IiLqnHJUVcUsAlBVzSFVzS33BJFzXtcEkDLiniknpcUsTlE_Ltw97h-4-RKwESVbByb6MqMblSuVaKibpMDM9A5YwylXMNJt6AM6tZnavalHWqRZrWPBelKblJoFGPBH9KNhvA5XNCY-Q-aBkbTB0vY10yI1WlZFmX8K0S2yT1E1xUbn98LNMyLzwRclZ4wRQoGFg8FyCYbfIu9FvaHWJu7CG8_Ao_nWCxCwDdjT1l6OneUev53qrvGw-VAkwI_i-oGrM4Oy0SmKcRk0zAOc8shsKTcI48CZm9-IcrvyT3-jf7FdlsT87Ma3KnOm-npyc7ZENM8h33fvwE6o0CPA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+deep+learning+approach+integrated+with+clinical+data+for+the+dermoscopic+differentiation+of+early+melanomas+from+atypical+nevi&rft.jtitle=Journal+of+dermatological+science&rft.au=Tognetti%2C+Linda&rft.au=Bonechi%2C+Simone&rft.au=Andreini%2C+Paolo&rft.au=Bianchini%2C+Monica&rft.date=2021-02-01&rft.pub=Elsevier+B.V&rft.issn=0923-1811&rft.eissn=1873-569X&rft.volume=101&rft.issue=2&rft.spage=115&rft.epage=122&rft_id=info:doi/10.1016%2Fj.jdermsci.2020.11.009&rft.externalDocID=S0923181120303947
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0923-1811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0923-1811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0923-1811&client=summon