Acceleration of the alternating least squares algorithm for principal components analysis

Principal components analysis (PCA) is a popular descriptive multivariate method for handling quantitative data and it can be extended to deal with qualitative data and mixed measurement level data. The existing algorithms for extended PCA are PRINCIPALS of Young et al. (1978) and PRINCALS of Gifi (...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational statistics & data analysis Ročník 55; číslo 1; s. 143 - 153
Hlavní autori: Kuroda, Masahiro, Mori, Yuichi, Iizuka, Masaya, Sakakihara, Michio
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 2011
Elsevier
Edícia:Computational Statistics & Data Analysis
Predmet:
ISSN:0167-9473, 1872-7352
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Principal components analysis (PCA) is a popular descriptive multivariate method for handling quantitative data and it can be extended to deal with qualitative data and mixed measurement level data. The existing algorithms for extended PCA are PRINCIPALS of Young et al. (1978) and PRINCALS of Gifi (1989) in which the alternating least squares algorithm is utilized. These algorithms based on the least squares estimation may require many iterations in their application to very large data sets and variable selection problems and may take a long time to converge. In this paper, we derive a new iterative algorithm for accelerating the convergence of PRINCIPALS and PRINCALS by using the vector ε algorithm of Wynn (1962). The proposed acceleration algorithm speeds up the convergence of the sequence of the parameter estimates obtained from PRINCIPALS or PRINCALS. Numerical experiments illustrate the potential of the proposed acceleration algorithm.
AbstractList Principal components analysis (PCA) is a popular descriptive multivariate method for handling quantitative data and it can be extended to deal with qualitative data and mixed measurement level data. The existing algorithms for extended PCA are PRINCIPALS of Young et al. (1978) and PRINCALS of Gifi (1989) in which the alternating least squares algorithm is utilized. These algorithms based on the least squares estimation may require many iterations in their application to very large data sets and variable selection problems and may take a long time to converge. In this paper, we derive a new iterative algorithm for accelerating the convergence of PRINCIPALS and PRINCALS by using the vector ε algorithm of Wynn (1962). The proposed acceleration algorithm speeds up the convergence of the sequence of the parameter estimates obtained from PRINCIPALS or PRINCALS. Numerical experiments illustrate the potential of the proposed acceleration algorithm.
Principal components analysis (PCA) is a popular descriptive multivariate method for handling quantitative data and it can be extended to deal with qualitative data and mixed measurement level data. The existing algorithms for extended PCA are PRINCIPALS of and PRINCALS of in which the alternating least squares algorithm is utilized. These algorithms based on the least squares estimation may require many iterations in their application to very large data sets and variable selection problems and may take a long time to converge. In this paper, we derive a new iterative algorithm for accelerating the convergence of PRINCIPALS and PRINCALS by using the vector e algorithm of . The proposed acceleration algorithm speeds up the convergence of the sequence of the parameter estimates obtained from PRINCIPALS or PRINCALS. Numerical experiments illustrate the potential of the proposed acceleration algorithm.
Principal components analysis (PCA) is a popular descriptive multivariate method for handling quantitative data and it can be extended to deal with qualitative data and mixed measurement level data. The existing algorithms for extended PCA are PRINCIPALS of Young et al. (1978) and PRINCALS of Gifi (1989) in which the alternating least squares algorithm is utilized. These algorithms based on the least squares estimation may require many iterations in their application to very large data sets and variable selection problems and may take a long time to converge. In this paper, we derive a new iterative algorithm for accelerating the convergence of PRINCIPALS and PRINCALS by using the vector [epsilon] algorithm of Wynn (1962). The proposed acceleration algorithm speeds up the convergence of the sequence of the parameter estimates obtained from PRINCIPALS or PRINCALS. Numerical experiments illustrate the potential of the proposed acceleration algorithm.
Author Iizuka, Masaya
Kuroda, Masahiro
Sakakihara, Michio
Mori, Yuichi
Author_xml – sequence: 1
  givenname: Masahiro
  surname: Kuroda
  fullname: Kuroda, Masahiro
  email: kuroda@soci.ous.ac.jp
  organization: Department of Socio-Information, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
– sequence: 2
  givenname: Yuichi
  surname: Mori
  fullname: Mori, Yuichi
  organization: Department of Socio-Information, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
– sequence: 3
  givenname: Masaya
  surname: Iizuka
  fullname: Iizuka, Masaya
  organization: Graduate School of Environmental Science, Okayama University 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
– sequence: 4
  givenname: Michio
  surname: Sakakihara
  fullname: Sakakihara, Michio
  organization: Department of Information Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23321082$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeecsdana/v_3a55_3ay_3a2011_3ai_3a1_3ap_3a143-153.htm$$DView record in RePEc
BookMark eNp9Ubtu3DAQJAIHyNnJD6RSE6S6Cx-iRAFpDCNPGEjjJhWxolY-HiRSJnkG7u-9yjkpUrhYDrCcGS5nL9lFiAEZey_4TnDRfDrsXB5gJzk1eLPjXLxiG2FauW2VlhdsQ6R229WtesMucz5wzmXdmg37fe0cTpig-BiqOFZljxVMBVOgVrivJoRcqvxwhISZbu5j8mU_V2NM1ZJ8cH6BqXJxXmiiUIgSYDpln9-y1yNMGd894xW7-_rl7ub79vbXtx8317dbV3e6bEGKejSt7rth6JQ0UjfSCYfYC1PzvhcjGNACGtNL5ZyWXd-0IEapgSiNumIfz7ZLig9HzMXOPtOXJggYj9mauqtrLpQm5s8zM-GCztLwM6STRcQ1uwD20SrQmo4TFUUpCDzVisuKtbJCK7svM5l9eH4WsoNpTEBJ5H-mUikpuJHEM2eeSzHnhKN1vvwJuyTwkxXcrgu0B7sOYdcFWt5YWiBJ5X_Sv-4vij6fRUiRP3pMNjuPweHgE7pih-hfkj8B0US3Ig
CitedBy_id crossref_primary_10_1016_j_bspc_2015_05_014
crossref_primary_10_5194_ms_14_361_2023
crossref_primary_10_1177_1687814021992954
crossref_primary_10_1080_00207543_2014_997400
crossref_primary_10_1109_TNNLS_2014_2339222
crossref_primary_10_2528_PIER13121310
crossref_primary_10_1007_s00180_022_01225_4
crossref_primary_10_1002_ima_22144
crossref_primary_10_1093_imaman_dpae006
crossref_primary_10_1016_j_chemosphere_2015_05_015
crossref_primary_10_1121_1_4726072
crossref_primary_10_1177_1687814016634243
crossref_primary_10_1016_j_coelec_2019_03_015
crossref_primary_10_1155_2023_3455637
crossref_primary_10_1002_wics_1279
crossref_primary_10_1155_2015_696015
Cites_doi 10.1016/S0167-9473(02)00142-1
10.1007/BF02293871
10.1016/j.csda.2005.09.003
10.1090/S0025-5718-1962-0145647-X
10.1016/j.csda.2006.05.004
10.1007/s00180-007-0089-1
10.1007/BF02293796
10.1214/ss/1028905828
ContentType Journal Article
Copyright 2010 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DKI
X2L
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.csda.2010.06.001
DatabaseName CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Statistics
EISSN 1872-7352
EndPage 153
ExternalDocumentID eeecsdana_v_3a55_3ay_3a2011_3ai_3a1_3ap_3a143_153_htm
23321082
10_1016_j_csda_2010_06_001
S0167947310002458
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
02
0R
1
8P
ABFLS
ABPTK
ADALY
DKI
G-
HZ
IPNFZ
K
M
STF
X
X2L
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c495t-a214f875b9dd93282562c1ceeb1840bb1fa8a51a68b23cc529b67a1f25aeb163
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000283017900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-9473
IngestDate Sun Sep 28 01:16:49 EDT 2025
Wed Aug 18 04:17:17 EDT 2021
Mon Jul 21 09:14:14 EDT 2025
Sat Nov 29 03:40:38 EST 2025
Tue Nov 18 21:54:30 EST 2025
Fri Feb 23 02:19:48 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Vector ε algorithm
Alternating least squares algorithm
PRINCIPALS
PRINCALS
Acceleration of convergence
Data analysis
Convergence acceleration
Estimation
Iterative method
Iteration
Multivariate analysis
Algorithm
Convergence
Convergence speed
Selection problem
Numerical analysis
Statistical computation
Least squares method
Algorithm analysis
Principal component analysis
Variable selection
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c495t-a214f875b9dd93282562c1ceeb1840bb1fa8a51a68b23cc529b67a1f25aeb163
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 849440135
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_849440135
repec_primary_eeecsdana_v_3a55_3ay_3a2011_3ai_3a1_3ap_3a143_153_htm
pascalfrancis_primary_23321082
crossref_citationtrail_10_1016_j_csda_2010_06_001
crossref_primary_10_1016_j_csda_2010_06_001
elsevier_sciencedirect_doi_10_1016_j_csda_2010_06_001
PublicationCentury 2000
PublicationDate 2011
2011-1-00
20110101
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – year: 2011
  text: 2011
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle Computational Statistics & Data Analysis
PublicationTitle Computational statistics & data analysis
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Mori, Tanaka, Tarumi (b7) 1997
Wynn (b14) 1962; 16
Michailidis, de Leeuw (b6) 1998; 13
Young (b11) 1981; 46
Kuroda, Sakakihara (b5) 2006; 51
Young, Takane, de Leeuw (b12) 1978; 43
Kiers (b3) 2002; 41
R Development Core Team (b9) 2008
Brezinski, Zaglia (b1) 1991
Wang, Kuroda, Sakakihara, Geng (b13) 2008; 23
Mori, Y., Matsumoto, Y., Iizuka, M., Tanaka, Y., 2007. A variable selection in modified principal component analysis for qualitative data. In: The 56th Session of the International Statistical Institute. Abstract Book, 337, Proceedings CD-ROM.
Gifi, A., 1989. Algorithm descriptions for ANACOR, HOMALS, PRINCIPALS, and OVERALS. Report RR 89-01. Department of Data Theory, University of Leiden, Leiden.
Krijnen (b4) 2006; 51
Tanaka, Mori (b10) 1997; 17
10.1016/j.csda.2010.06.001_b2
R Development Core Team (10.1016/j.csda.2010.06.001_b9) 2008
Kiers (10.1016/j.csda.2010.06.001_b3) 2002; 41
Tanaka (10.1016/j.csda.2010.06.001_b10) 1997; 17
10.1016/j.csda.2010.06.001_b8
Michailidis (10.1016/j.csda.2010.06.001_b6) 1998; 13
Mori (10.1016/j.csda.2010.06.001_b7) 1997
Young (10.1016/j.csda.2010.06.001_b11) 1981; 46
Wynn (10.1016/j.csda.2010.06.001_b14) 1962; 16
Kuroda (10.1016/j.csda.2010.06.001_b5) 2006; 51
Brezinski (10.1016/j.csda.2010.06.001_b1) 1991
Krijnen (10.1016/j.csda.2010.06.001_b4) 2006; 51
Wang (10.1016/j.csda.2010.06.001_b13) 2008; 23
Young (10.1016/j.csda.2010.06.001_b12) 1978; 43
References_xml – start-page: 547
  year: 1997
  end-page: 554
  ident: b7
  article-title: Principal component analysis based on a subset of variables for qualitative data
  publication-title: Data Science, Classification, and Related Methods (Proceedings of IFCS-96)
– volume: 41
  start-page: 157
  year: 2002
  end-page: 170
  ident: b3
  article-title: Setting up alternating least squares and iterative majorization algorithm for solving various matrix optimization problems
  publication-title: Computational Statistics and Data Analysis
– year: 1991
  ident: b1
  article-title: Extrapolation Methods: Theory and Practice
– volume: 16
  start-page: 301
  year: 1962
  end-page: 322
  ident: b14
  article-title: Acceleration techniques for iterated vector and matrix problems
  publication-title: Mathematics of Computation
– volume: 51
  start-page: 1549
  year: 2006
  end-page: 1561
  ident: b5
  article-title: Accelerating the convergence of the EM algorithm using the vector epsilon algorithm
  publication-title: Computational Statistics and Data Analysis
– year: 2008
  ident: b9
  article-title: R: A language and environment for statistical computing
– volume: 17
  start-page: 61
  year: 1997
  end-page: 89
  ident: b10
  article-title: Principal component analysis based on a subset of variables: variable selection and sensitivity analysis
  publication-title: The American Journal of Mathematical and Management Sciences
– volume: 13
  start-page: 307
  year: 1998
  end-page: 336
  ident: b6
  article-title: The Gifi system of descriptive multivariate analysis
  publication-title: Statistical Science
– reference: Mori, Y., Matsumoto, Y., Iizuka, M., Tanaka, Y., 2007. A variable selection in modified principal component analysis for qualitative data. In: The 56th Session of the International Statistical Institute. Abstract Book, 337, Proceedings CD-ROM.
– volume: 46
  start-page: 357
  year: 1981
  end-page: 388
  ident: b11
  article-title: Quantitative analysis of qualitative data
  publication-title: Psychometrika
– volume: 23
  start-page: 469
  year: 2008
  end-page: 486
  ident: b13
  article-title: Acceleration of the EM algorithm using the vector epsilon algorithm
  publication-title: Computational Statistics
– reference: Gifi, A., 1989. Algorithm descriptions for ANACOR, HOMALS, PRINCIPALS, and OVERALS. Report RR 89-01. Department of Data Theory, University of Leiden, Leiden.
– volume: 51
  start-page: 481
  year: 2006
  end-page: 489
  ident: b4
  article-title: Convergence of the sequence of parameters generated by alternating least squares algorithms
  publication-title: Computational Statistics and Data Analysis
– volume: 43
  start-page: 279
  year: 1978
  end-page: 281
  ident: b12
  article-title: Principal components of mixed measurement level multivariate data: an alternating least squares method with optimal scaling features
  publication-title: Psychometrika
– volume: 41
  start-page: 157
  year: 2002
  ident: 10.1016/j.csda.2010.06.001_b3
  article-title: Setting up alternating least squares and iterative majorization algorithm for solving various matrix optimization problems
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/S0167-9473(02)00142-1
– volume: 43
  start-page: 279
  year: 1978
  ident: 10.1016/j.csda.2010.06.001_b12
  article-title: Principal components of mixed measurement level multivariate data: an alternating least squares method with optimal scaling features
  publication-title: Psychometrika
  doi: 10.1007/BF02293871
– ident: 10.1016/j.csda.2010.06.001_b8
– volume: 17
  start-page: 61
  year: 1997
  ident: 10.1016/j.csda.2010.06.001_b10
  article-title: Principal component analysis based on a subset of variables: variable selection and sensitivity analysis
  publication-title: The American Journal of Mathematical and Management Sciences
– volume: 51
  start-page: 481
  year: 2006
  ident: 10.1016/j.csda.2010.06.001_b4
  article-title: Convergence of the sequence of parameters generated by alternating least squares algorithms
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2005.09.003
– year: 2008
  ident: 10.1016/j.csda.2010.06.001_b9
– year: 1991
  ident: 10.1016/j.csda.2010.06.001_b1
– ident: 10.1016/j.csda.2010.06.001_b2
– volume: 16
  start-page: 301
  year: 1962
  ident: 10.1016/j.csda.2010.06.001_b14
  article-title: Acceleration techniques for iterated vector and matrix problems
  publication-title: Mathematics of Computation
  doi: 10.1090/S0025-5718-1962-0145647-X
– start-page: 547
  year: 1997
  ident: 10.1016/j.csda.2010.06.001_b7
  article-title: Principal component analysis based on a subset of variables for qualitative data
– volume: 51
  start-page: 1549
  year: 2006
  ident: 10.1016/j.csda.2010.06.001_b5
  article-title: Accelerating the convergence of the EM algorithm using the vector epsilon algorithm
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2006.05.004
– volume: 23
  start-page: 469
  year: 2008
  ident: 10.1016/j.csda.2010.06.001_b13
  article-title: Acceleration of the EM algorithm using the vector epsilon algorithm
  publication-title: Computational Statistics
  doi: 10.1007/s00180-007-0089-1
– volume: 46
  start-page: 357
  year: 1981
  ident: 10.1016/j.csda.2010.06.001_b11
  article-title: Quantitative analysis of qualitative data
  publication-title: Psychometrika
  doi: 10.1007/BF02293796
– volume: 13
  start-page: 307
  year: 1998
  ident: 10.1016/j.csda.2010.06.001_b6
  article-title: The Gifi system of descriptive multivariate analysis
  publication-title: Statistical Science
  doi: 10.1214/ss/1028905828
SSID ssj0002478
Score 2.071498
Snippet Principal components analysis (PCA) is a popular descriptive multivariate method for handling quantitative data and it can be extended to deal with qualitative...
SourceID proquest
repec
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 143
SubjectTerms Acceleration
Acceleration of convergence
Algorithms
Alternating least squares algorithm
Alternating least squares algorithm Vector [epsilon] algorithm Acceleration of convergence PRINCIPALS PRINCALS
Convergence
Exact sciences and technology
General topics
Least squares method
Mathematical analysis
Mathematical models
Mathematics
Multivariate analysis
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in probability and statistics
PRINCALS
Principal component analysis
PRINCIPALS
Probability and statistics
Sciences and techniques of general use
Statistics
Vector [formula omitted] algorithm
Title Acceleration of the alternating least squares algorithm for principal components analysis
URI https://dx.doi.org/10.1016/j.csda.2010.06.001
http://econpapers.repec.org/article/eeecsdana/v_3a55_3ay_3a2011_3ai_3a1_3ap_3a143-153.htm
https://www.proquest.com/docview/849440135
Volume 55
WOSCitedRecordID wos000283017900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002478
  issn: 0167-9473
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db5swELe6ZA-bpmlf1bKPyg97q6gGmGAeo67TOmnVpOUhfbKMMQ1tQxgkUbs_ftodBgc6rdqmTQoQYQzG98N3Pt8HIW-A4zAes9gJY1c5jPnS4UpKR_kpD1Ie6STmdbKJ8OSEz2bR552d760vzOYyzHN-dRUV_5XUcA6Ija6zf0Bue1M4Af-B6LAHssP-twg_UQpYSWlFQZQs6zVx1PvlZ5gnolrtV1_X6HkEJWfLMlvNF7W9YWFU73XMkEWxzGv3N9nELenKsSYZRKtIRK-kJuAzIgmtTvu1jFVvbThwus7UPLOKHXkBIiwGjW5t-I1dWLO6tEzMeVnJeVbakuPs2_rCllwbzoKdq6sbLfvSb9k7bNmk27Kk1eBu9W-NsNBVh8IwHzGTDOVAmyGchzBn8IPeGG9CAfewbAZsl_kd3u-awMU_sRWj4Tg_UFUiG3PAeg1ry0StaaPWGq_KpdgIXwYB7K5hwxeBQwYbHgs8Ml_AA8V8tbhDhl4IU7sBGU6Oj2YfrSzhMSNLtO_ZuH0ZC8WbrfmVaPWgkBV88KnJ1NKbSg1LXWjVkaimj8jDZipEJwbCj8mOzp-Q-59sHOHqKTntgpkuUwpltANmWoOZNmCmFswUwEwtmOkWzLSF5TMyfX80PfzgNMlAHAVz-JUjPZelMLmOoySBOQcHUd1TLoh4Meoo4thNJZeBK8c89nylAi-Kx6F0Uy-QcMnY3yWDHJ70nNDorZRKx57yZcJkHMpUhxiuP40CiYveI-K23ShUEygf87VcitYi8lxg1wvsemHMQkdk39YpTJiYW68OWuqIRtA1AqwAwN1ab69HSvsoz0dXPO6NCG1pK4BN4NqfzPVyXQnOIoaqlGBEDmua27p_BdgX_-QuL8k9s0SDv1dksCrX-jW5qzYwMpR7zbfwAzNGCXM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acceleration+of+the+alternating+least+squares+algorithm+for+principal+components+analysis&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Mori%2C+Yuichi&rft.au=Sakakihara%2C+Michio&rft.au=Kuroda%2C+Masahiro&rft.au=Iizuka%2C+Masaya&rft.series=Computational+Statistics+%26+Data+Analysis&rft.date=2011&rft.pub=Elsevier&rft.issn=0167-9473&rft.eissn=1872-7352&rft.volume=55&rft.issue=1&rft.spage=143&rft.epage=153&rft_id=info:doi/10.1016%2Fj.csda.2010.06.001&rft.externalDocID=eeecsdana_v_3a55_3ay_3a2011_3ai_3a1_3ap_3a143_153_htm
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon