Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot

This paper describes a collection of optimization algorithms for achieving dynamic planning, control, and state estimation for a bipedal robot designed to operate reliably in complex environments. To make challenging locomotion tasks tractable, we describe several novel applications of convex, mixed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Autonomous robots Jg. 40; H. 3; S. 429 - 455
Hauptverfasser: Kuindersma, Scott, Deits, Robin, Fallon, Maurice, Valenzuela, Andrés, Dai, Hongkai, Permenter, Frank, Koolen, Twan, Marion, Pat, Tedrake, Russ
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.03.2016
Springer Nature B.V
Schlagworte:
ISSN:0929-5593, 1573-7527
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes a collection of optimization algorithms for achieving dynamic planning, control, and state estimation for a bipedal robot designed to operate reliably in complex environments. To make challenging locomotion tasks tractable, we describe several novel applications of convex, mixed-integer, and sparse nonlinear optimization to problems ranging from footstep placement to whole-body planning and control. We also present a state estimator formulation that, when combined with our walking controller, permits highly precise execution of extended walking plans over non-flat terrain. We describe our complete system integration and experiments carried out on Atlas, a full-size hydraulic humanoid robot built by Boston Dynamics, Inc.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0929-5593
1573-7527
DOI:10.1007/s10514-015-9479-3