Bayesian cumulative shrinkage for infinite factorizations

The dimension of the parameter space is typically unknown in a variety of models that rely on factorizations. For example, in factor analysis the number of latent factors is not known and has to be inferred from the data. Although classical shrinkage priors are useful in such contexts, increasing sh...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biometrika Ročník 107; číslo 3; s. 745
Hlavní autoři: Legramanti, Sirio, Durante, Daniele, Dunson, David B
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.09.2020
ISSN:0006-3444
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The dimension of the parameter space is typically unknown in a variety of models that rely on factorizations. For example, in factor analysis the number of latent factors is not known and has to be inferred from the data. Although classical shrinkage priors are useful in such contexts, increasing shrinkage priors can provide a more effective approach that progressively penalizes expansions with growing complexity. In this article we propose a novel increasing shrinkage prior, called the cumulative shrinkage process, for the parameters that control the dimension in overcomplete formulations. Our construction has broad applicability and is based on an interpretable sequence of spike-and-slab distributions which assign increasing mass to the spike as the model complexity grows. Using factor analysis as an illustrative example, we show that this formulation has theoretical and practical advantages relative to current competitors, including an improved ability to recover the model dimension. An adaptive Markov chain Monte Carlo algorithm is proposed, and the performance gains are outlined in simulations and in an application to personality data.The dimension of the parameter space is typically unknown in a variety of models that rely on factorizations. For example, in factor analysis the number of latent factors is not known and has to be inferred from the data. Although classical shrinkage priors are useful in such contexts, increasing shrinkage priors can provide a more effective approach that progressively penalizes expansions with growing complexity. In this article we propose a novel increasing shrinkage prior, called the cumulative shrinkage process, for the parameters that control the dimension in overcomplete formulations. Our construction has broad applicability and is based on an interpretable sequence of spike-and-slab distributions which assign increasing mass to the spike as the model complexity grows. Using factor analysis as an illustrative example, we show that this formulation has theoretical and practical advantages relative to current competitors, including an improved ability to recover the model dimension. An adaptive Markov chain Monte Carlo algorithm is proposed, and the performance gains are outlined in simulations and in an application to personality data.
AbstractList The dimension of the parameter space is typically unknown in a variety of models that rely on factorizations. For example, in factor analysis the number of latent factors is not known and has to be inferred from the data. Although classical shrinkage priors are useful in such contexts, increasing shrinkage priors can provide a more effective approach that progressively penalizes expansions with growing complexity. In this article we propose a novel increasing shrinkage prior, called the cumulative shrinkage process, for the parameters that control the dimension in overcomplete formulations. Our construction has broad applicability and is based on an interpretable sequence of spike-and-slab distributions which assign increasing mass to the spike as the model complexity grows. Using factor analysis as an illustrative example, we show that this formulation has theoretical and practical advantages relative to current competitors, including an improved ability to recover the model dimension. An adaptive Markov chain Monte Carlo algorithm is proposed, and the performance gains are outlined in simulations and in an application to personality data.The dimension of the parameter space is typically unknown in a variety of models that rely on factorizations. For example, in factor analysis the number of latent factors is not known and has to be inferred from the data. Although classical shrinkage priors are useful in such contexts, increasing shrinkage priors can provide a more effective approach that progressively penalizes expansions with growing complexity. In this article we propose a novel increasing shrinkage prior, called the cumulative shrinkage process, for the parameters that control the dimension in overcomplete formulations. Our construction has broad applicability and is based on an interpretable sequence of spike-and-slab distributions which assign increasing mass to the spike as the model complexity grows. Using factor analysis as an illustrative example, we show that this formulation has theoretical and practical advantages relative to current competitors, including an improved ability to recover the model dimension. An adaptive Markov chain Monte Carlo algorithm is proposed, and the performance gains are outlined in simulations and in an application to personality data.
Author Durante, Daniele
Dunson, David B
Legramanti, Sirio
Author_xml – sequence: 1
  givenname: Sirio
  surname: Legramanti
  fullname: Legramanti, Sirio
– sequence: 2
  givenname: Daniele
  surname: Durante
  fullname: Durante, Daniele
– sequence: 3
  givenname: David B
  surname: Dunson
  fullname: Dunson, David B
BookMark eNotzDtPwzAUBWAPRaItXZkzsoT6ceM4I1S8pEosdK5u7BswJDbEDhL8eoJgOvp0js6KLUIMxNi54JeCN2rb-jhQ3mJC5Nws2JJzrksFAKdsldLrL3Wll6y5xi9KHkNhp2HqMftPKtLL6MMbPlPRxbHwofPB5xlocxz99zyKIZ2xkw77RJv_XLPD7c3T7r7cP9497K72pYWmyqVBYwRIcpXgLWiqQJm2MlhbCbMdCUWd4SRdZ1tXg2wtWEHcNY0Vcy_X7OLv932MHxOlfBx8stT3GChO6ShBaVNLLYX8AdkjTTY
CitedBy_id crossref_primary_10_1080_01621459_2025_2546577
crossref_primary_10_1080_07350015_2024_2447302
crossref_primary_10_1016_j_csda_2024_108094
crossref_primary_10_1214_23_BA1410
crossref_primary_10_1002_jae_2966
crossref_primary_10_1007_s11222_025_10703_w
crossref_primary_10_1093_jrsssb_qkad062
crossref_primary_10_1007_s11222_024_10454_0
crossref_primary_10_1214_24_BA1499
crossref_primary_10_3390_psych5030054
crossref_primary_10_1214_22_BA1349
crossref_primary_10_1002_sta4_298
crossref_primary_10_1080_10618600_2023_2301072
crossref_primary_10_1080_10618600_2024_2356173
crossref_primary_10_1080_01621459_2024_2408777
crossref_primary_10_1016_j_csda_2024_107974
crossref_primary_10_1007_s42519_021_00188_x
crossref_primary_10_1080_03610926_2020_1843055
crossref_primary_10_1214_24_BA1461
crossref_primary_10_1093_jrsssb_qkad010
crossref_primary_10_3390_econometrics11040026
crossref_primary_10_1080_10618600_2025_2551271
crossref_primary_10_1080_01621459_2023_2208390
crossref_primary_10_1080_00401706_2021_1933596
crossref_primary_10_1080_01621459_2023_2220170
crossref_primary_10_1214_25_BA1544
crossref_primary_10_1111_rssc_12589
crossref_primary_10_1007_s10260_025_00779_z
crossref_primary_10_1016_j_csda_2023_107783
crossref_primary_10_1093_biomet_asab056
crossref_primary_10_1080_10618600_2025_2509585
ContentType Journal Article
Copyright 2020 Biometrika Trust.
Copyright_xml – notice: 2020 Biometrika Trust.
DBID 7X8
DOI 10.1093/biomet/asaa008
DatabaseName MEDLINE - Academic
DatabaseTitle MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Statistics
Biology
GroupedDBID -DZ
-E4
-~X
..I
.2P
.DC
.I3
0R~
1TH
23N
3R3
4.4
482
48X
5GY
5RE
5VS
5WA
6J9
6OB
70D
79B
7X8
AAIJN
AAJKP
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
ABDFA
ABDTM
ABEJV
ABEUO
ABFAN
ABGNP
ABIXL
ABJNI
ABLJU
ABNKS
ABPFR
ABPPZ
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABYWD
ABZBJ
ACBEA
ACGFO
ACGFS
ACGOD
ACIPB
ACIWK
ACMTB
ACNCT
ACPRK
ACTMH
ACUFI
ACUXJ
ACYTK
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADLSF
ADNBA
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYJX
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AFVYC
AFXHP
AFYAG
AGINJ
AGKEF
AGQXC
AGSYK
AHGBF
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMVHM
ANAKG
APIBT
APWMN
ATGXG
AXUDD
AZVOD
BAYMD
BCRHZ
BEYMZ
BHONS
BQUQU
BTQHN
C45
CDBKE
CS3
CZ4
DAKXR
DILTD
DU5
D~K
EBS
EE~
F5P
F9B
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
IOX
J21
JAS
JXSIZ
KAQDR
KBUDW
KOP
KSI
KSN
M-Z
ML0
N9A
NGC
NMDNZ
NOMLY
NU-
O9-
ODMLO
OJQWA
OJZSN
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
TEORI
TJP
TN5
WH7
X7H
XSW
YAYTL
YKOAZ
YXANX
ZKX
~02
~91
ID FETCH-LOGICAL-c495t-8a88142ed510b46e5438b58a7c24b46de13ef80e2dfcbd742bc4c1e0d99c146d2
IEDL.DBID 7X8
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000580986600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0006-3444
IngestDate Sun Nov 09 10:37:08 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-8a88142ed510b46e5438b58a7c24b46de13ef80e2dfcbd742bc4c1e0d99c146d2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/biomet/article-pdf/107/3/745/33658376/asaa008.pdf
PQID 2436872621
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2436872621
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Biometrika
PublicationYear 2020
SSID ssj0006656
Score 2.5685852
Snippet The dimension of the parameter space is typically unknown in a variety of models that rely on factorizations. For example, in factor analysis the number of...
SourceID proquest
SourceType Aggregation Database
StartPage 745
Title Bayesian cumulative shrinkage for infinite factorizations
URI https://www.proquest.com/docview/2436872621
Volume 107
WOSCitedRecordID wos000580986600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB7UKvTioyq-WcFr6G42m82eRMXiqXhQ6K3kMYse3Gq3LfTfO8lu7cGL4G0DIYTZeX1JZj6Am9xgXBaCDMnIkgmKgYxwCDIlUwqwqJSVJpBN5MOhGo2K5_bArW6fVa58YnDUbmL9GXmf-1bpOZc8uf38Yp41yt-uthQam9BJKZXxWp2P1t3CpQzsrf6LpUKIn6aNaT8Ut8_6utY6jtUvRxyiy2Dvv_vah902r4zuGkU4gA2serDTME0ue9D1SWXTk_kQinu9RF88Gdn5R6DvWmBUv00JlpJ3iSiNjUjv3n02GjV8PKtizSN4HTy-PDyxlkKBWUI-M6a0Uong6Mj0jJCYiVSZTOncckFjh0mKpYqRu9IaRzDZWGETjF1RWPKhjh_DVjWp8AQincUOJUeJNhVW0spOxQozR9NMmchTuF4JaEwq6u8ddIWTeT1ei-jsD3POocs9pg3vuC6gU5IZ4iVs2wWJaXoV_vA35MWx-w
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+cumulative+shrinkage+for+infinite+factorizations&rft.jtitle=Biometrika&rft.au=Legramanti%2C+Sirio&rft.au=Durante%2C+Daniele&rft.au=Dunson%2C+David+B&rft.date=2020-09-01&rft.issn=0006-3444&rft.volume=107&rft.issue=3&rft.spage=745&rft_id=info:doi/10.1093%2Fbiomet%2Fasaa008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3444&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3444&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3444&client=summon