Microstructure Generation via Generative Adversarial Network for Heterogeneous, Topologically Complex 3D Materials

Using a large-scale, experimentally captured 3D microstructure data set, we implement the generative adversarial network (GAN) framework to learn and generate 3D microstructures of solid oxide fuel cell electrodes. The generated microstructures are visually, statistically, and topologically realisti...

Full description

Saved in:
Bibliographic Details
Published in:JOM (1989) Vol. 73; no. 1; pp. 90 - 102
Main Authors: Hsu, Tim, Epting, William K., Kim, Hokon, Abernathy, Harry W., Hackett, Gregory A., Rollett, Anthony D., Salvador, Paul A., Holm, Elizabeth A.
Format: Journal Article
Language:English
Published: New York Springer US 01.01.2021
Springer Nature B.V
Springer
Subjects:
ISSN:1047-4838, 1543-1851
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Using a large-scale, experimentally captured 3D microstructure data set, we implement the generative adversarial network (GAN) framework to learn and generate 3D microstructures of solid oxide fuel cell electrodes. The generated microstructures are visually, statistically, and topologically realistic, with distributions of microstructural parameters, including volume fraction, particle size, surface area, tortuosity, and triple-phase boundary density, being highly similar to those of the original microstructure. These results are compared and contrasted with those from an established, grain-based generation algorithm (DREAM.3D). Importantly, simulations of electrochemical performance, using a locally resolved finite element model, demonstrate that the GAN-generated microstructures closely match the performance distribution of the original, while DREAM.3D leads to significant differences. The ability of the generative machine learning model to recreate microstructures with high fidelity suggests that the essence of complex microstructures may be captured and represented in a compact and manipulatable form.
AbstractList Using a large-scale, experimentally captured 3D microstructure dataset, we implement the generative adversarial network (GAN) framework to learn and generate 3D microstructures of solid oxide fuel cell electrodes. The generated microstructures are visually, statistically, and topologically realistic, with distributions of microstructural parameters, including volume fraction, particle size, surface area, tortuosity, and triple phase boundary density, being highly similar to those of the original microstructure. These results are compared and contrasted with those from an established, grain-based generation algorithm (DREAM.3D). Importantly, simulations of electrochemical performance, using a locally resolved finite element model, demonstrate that the GAN generated microstructures closely match the performance distribution of the original, while DREAM.3D leads to significant differences. Finally, the ability of the generative machine learning model to recreate microstructures with high fidelity suggests that the essence of complex microstructures may be captured and represented in a compact and manipulatable form.
Using a large-scale, experimentally captured 3D microstructure data set, we implement the generative adversarial network (GAN) framework to learn and generate 3D microstructures of solid oxide fuel cell electrodes. The generated microstructures are visually, statistically, and topologically realistic, with distributions of microstructural parameters, including volume fraction, particle size, surface area, tortuosity, and triple-phase boundary density, being highly similar to those of the original microstructure. These results are compared and contrasted with those from an established, grain-based generation algorithm (DREAM.3D). Importantly, simulations of electrochemical performance, using a locally resolved finite element model, demonstrate that the GAN-generated microstructures closely match the performance distribution of the original, while DREAM.3D leads to significant differences. The ability of the generative machine learning model to recreate microstructures with high fidelity suggests that the essence of complex microstructures may be captured and represented in a compact and manipulatable form.
Author Abernathy, Harry W.
Epting, William K.
Holm, Elizabeth A.
Hackett, Gregory A.
Salvador, Paul A.
Kim, Hokon
Hsu, Tim
Rollett, Anthony D.
Author_xml – sequence: 1
  givenname: Tim
  surname: Hsu
  fullname: Hsu, Tim
  organization: US DOE National Energy Technology Laboratory, Materials Science and Engineering, Carnegie Mellon University, Lawrence Livermore National Laboratory
– sequence: 2
  givenname: William K.
  surname: Epting
  fullname: Epting, William K.
  organization: US DOE National Energy Technology Laboratory, Leidos Research Support Team
– sequence: 3
  givenname: Hokon
  surname: Kim
  fullname: Kim, Hokon
  organization: US DOE National Energy Technology Laboratory, Materials Science and Engineering, Carnegie Mellon University
– sequence: 4
  givenname: Harry W.
  surname: Abernathy
  fullname: Abernathy, Harry W.
  organization: US DOE National Energy Technology Laboratory, Leidos Research Support Team
– sequence: 5
  givenname: Gregory A.
  surname: Hackett
  fullname: Hackett, Gregory A.
  organization: US DOE National Energy Technology Laboratory
– sequence: 6
  givenname: Anthony D.
  surname: Rollett
  fullname: Rollett, Anthony D.
  organization: US DOE National Energy Technology Laboratory, Materials Science and Engineering, Carnegie Mellon University
– sequence: 7
  givenname: Paul A.
  surname: Salvador
  fullname: Salvador, Paul A.
  organization: US DOE National Energy Technology Laboratory, Materials Science and Engineering, Carnegie Mellon University
– sequence: 8
  givenname: Elizabeth A.
  orcidid: 0000-0003-3064-5769
  surname: Holm
  fullname: Holm, Elizabeth A.
  email: eaholm@andrew.cmu.edu
  organization: US DOE National Energy Technology Laboratory, Materials Science and Engineering, Carnegie Mellon University
BackLink https://www.osti.gov/servlets/purl/1777200$$D View this record in Osti.gov
BookMark eNp9kcFu1DAQhi1UJNrCC3Cy4EpgHNuxc6wWaCu1cClny-tOFpc0XsbOwr493gYViUNPY0vfZ8_Mf8KOpjQhY68FvBcA5kMWwkrTQAsNKGVVs3_GjoVWshFWi6N6BmUaZaV9wU5yvoMqqV4cM7qOgVIuNIcyE_JznJB8iWniu-gfrzvkZ7c7pOwp-pF_wfIr0Q8-JOIXWJDSpoJpzu_4TdqmMW1i8OO456t0vx3xN5cf-bWvXJXzS_Z8qAVf_a2n7NvnTzeri-bq6_nl6uyqCarXpbGqHzrRdn5tUUDbaa-FBA0ddL3REHqj2t54hVoDrHUYpA1glYd152_VepCn7M3ybh0vuhxiwfA9pGnCUJwwxrQAFXq7QFtKP2fMxd2lmabal2uV7Y0F2R2odqEOu8qEg9tSvPe0dwLcIQC3BOBqAO4hALevkv1Pqi08rLaQj-PTqlzUXP-ZNkj_unrC-gNVxJ15
CitedBy_id crossref_primary_10_1002_aenm_202300244
crossref_primary_10_1016_j_actamat_2024_120220
crossref_primary_10_1038_s41598_022_12845_7
crossref_primary_10_1016_j_commatsci_2023_112512
crossref_primary_10_1016_j_mfglet_2023_08_083
crossref_primary_10_1039_D5DD00159E
crossref_primary_10_1146_annurev_matsci_080921_085947
crossref_primary_10_1016_j_ijhydene_2024_02_029
crossref_primary_10_1515_mim_2024_0016
crossref_primary_10_1016_j_commatsci_2022_111612
crossref_primary_10_1038_s41598_023_28970_w
crossref_primary_10_1016_j_addma_2024_104478
crossref_primary_10_1016_j_jngse_2022_104411
crossref_primary_10_1038_s41524_022_00734_6
crossref_primary_10_1016_j_actamat_2024_120431
crossref_primary_10_1016_j_ijhydene_2024_11_158
crossref_primary_10_1016_j_mtcomm_2024_110691
crossref_primary_10_1016_j_matchar_2024_114600
crossref_primary_10_1038_s41467_024_53865_3
crossref_primary_10_1038_s41524_024_01219_4
crossref_primary_10_1299_jtst_24_00500
crossref_primary_10_1002_admi_202101734
crossref_primary_10_1007_s11661_024_07386_9
crossref_primary_10_1080_09506608_2023_2246766
crossref_primary_10_1016_j_commatsci_2022_111527
crossref_primary_10_1002_aenm_202503842
crossref_primary_10_1016_j_jpowsour_2023_233411
crossref_primary_10_1098_rsos_231606
crossref_primary_10_1016_j_ijplas_2023_103776
crossref_primary_10_1007_s11831_025_10313_9
crossref_primary_10_1038_s41524_024_01228_3
crossref_primary_10_1021_acs_chemrev_4c00614
crossref_primary_10_1016_j_compstruct_2024_118360
crossref_primary_10_1016_j_commatsci_2024_113504
crossref_primary_10_1016_j_cma_2022_115741
crossref_primary_10_1016_j_matchar_2025_115201
crossref_primary_10_1007_s40192_023_00340_4
crossref_primary_10_1016_j_ynexs_2024_100026
crossref_primary_10_1016_j_compstruct_2025_119419
crossref_primary_10_1016_j_pmatsci_2023_101165
crossref_primary_10_1038_s41598_024_59252_8
crossref_primary_10_3365_KJMM_2021_59_11_838
crossref_primary_10_1016_j_compositesb_2022_110208
crossref_primary_10_1016_j_ijsolstr_2023_112249
crossref_primary_10_3390_ijms26189178
crossref_primary_10_1016_j_jmps_2023_105231
crossref_primary_10_1002_mgea_30
crossref_primary_10_1007_s40192_021_00244_1
crossref_primary_10_1016_j_actamat_2023_118966
crossref_primary_10_1088_2632_2153_acd6d8
crossref_primary_10_1007_s40192_024_00375_1
crossref_primary_10_1016_j_compscitech_2024_110539
crossref_primary_10_1016_j_ijplas_2022_103467
crossref_primary_10_1002_aenm_202102904
crossref_primary_10_1007_s11837_022_05206_2
crossref_primary_10_1007_s00339_025_08804_4
crossref_primary_10_1016_j_cma_2022_115497
crossref_primary_10_1016_j_jmps_2025_106253
crossref_primary_10_1016_j_actamat_2024_119746
crossref_primary_10_1016_j_mtla_2023_101976
crossref_primary_10_1007_s40192_023_00335_1
crossref_primary_10_1038_s41598_023_38719_0
crossref_primary_10_1061_JMCEE7_MTENG_15418
crossref_primary_10_3390_jcs7090364
crossref_primary_10_1063_5_0272071
crossref_primary_10_1016_j_actamat_2023_119406
crossref_primary_10_1016_j_jhydrol_2020_125443
crossref_primary_10_1016_j_inoche_2024_113577
crossref_primary_10_1038_s43246_024_00493_5
Cites_doi 10.1149/07801.2159ecst
10.1016/j.commatsci.2013.12.046
10.1016/j.jpowsour.2018.03.025
10.1002/adfm.201101525
10.1016/j.scriptamat.2017.11.034
10.1111/jace.14775
10.1115/1.1483342
10.1149/07801.2711ecst
10.1149/2.0102005JES
10.1016/j.actamat.2015.09.044
10.1111/jmi.12077
10.1007/s11242-018-1039-9
10.1103/PhysRevE.96.043309
10.1038/nnano.2011.38
10.1016/j.actamat.2017.05.014
10.1038/nmat1668
10.1016/j.pmatsci.2018.01.005
10.1016/j.ijhydene.2018.06.076
10.1007/s40192-017-0105-4
10.1016/j.electacta.2020.136191
10.1115/1.4041371
10.1149/2.0721802jes
10.1039/B801151F
10.1016/j.commatsci.2018.03.074
10.1149/1.1837252
10.1103/PhysRevE.77.031135
10.1002/fuce.201300008
10.23915/distill.00003
10.1016/j.mex.2020.100822
ContentType Journal Article
Copyright The Minerals, Metals & Materials Society 2020
Copyright Springer Nature B.V. Jan 2021
Copyright_xml – notice: The Minerals, Metals & Materials Society 2020
– notice: Copyright Springer Nature B.V. Jan 2021
CorporateAuthor National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)
CorporateAuthor_xml – name: National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)
DBID AAYXX
CITATION
3V.
4T-
4U-
7SR
7TA
7WY
7XB
883
88I
8BQ
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
D1I
DWQXO
FRNLG
GNUQQ
HCIFZ
JG9
K60
K6~
KB.
L.-
M0F
M2P
PDBOC
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
S0X
OIOZB
OTOTI
DOI 10.1007/s11837-020-04484-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Docstoc
University Readers
Engineered Materials Abstracts
Materials Business File
ABI/INFORM Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Trade & Industry (Alumni)
Science Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Business Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Materials Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Collection (ProQuest)
Science Database (ProQuest)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
SIRS Editorial
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
University Readers
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SIRS Editorial
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
Materials Business File
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
Business Premium Collection
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Trade & Industry (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
METADEX
ProQuest One Academic UKI Edition
Docstoc
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ABI/INFORM Trade & Industry
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1543-1851
EndPage 102
ExternalDocumentID 1777200
10_1007_s11837_020_04484_y
Genre Feature
GrantInformation_xml – fundername: National Science Foundation
  grantid: CMMI-1826218
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: National Energy Technology Laboratory
  grantid: 89243318CFE000003
  funderid: http://dx.doi.org/10.13039/100013165
– fundername: Air Force Research Laboratory
  grantid: FA8650-19-2-5209
  funderid: http://dx.doi.org/10.13039/100006602
GroupedDBID -58
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.4S
.86
.DC
06C
06D
0R~
0VY
199
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
6TJ
78A
7WY
883
88I
8FE
8FG
8FL
8FW
8R4
8R5
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAEWM
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABEFU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBEA
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMXK
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BKOMP
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FAC
FAL
FERAY
FFXSO
FIGPU
FINBP
FJD
FJW
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HZ~
H~9
I-F
IJ-
IKXTQ
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K60
K6~
KB.
KDC
KOV
LLZTM
M0F
M2P
M4Y
MA-
MK~
MQGED
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9N
PDBOC
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
RXW
S0X
S16
S1Z
S27
S3B
SAP
SCG
SCLPG
SCM
SCV
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TAE
TSG
TSK
TSV
TUC
TUS
U2A
UAO
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
~02
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKWF
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
4T-
4U-
7SR
7TA
7XB
8BQ
8FD
8FK
JG9
L.-
PKEHL
PQEST
PQUKI
PRINS
Q9U
AAFGU
AAPBV
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ADMDM
AEFTE
AESTI
AEVTX
AGGBP
AIMYW
AJDOV
AKQUC
OIOZB
OTOTI
UNUBA
ID FETCH-LOGICAL-c495t-849f6126ab8e10265a5130506069750c974297a4e5500b5cf38c084a0b6ad4bf3
IEDL.DBID RSV
ISICitedReferencesCount 81
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000595372900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1047-4838
IngestDate Thu May 18 22:32:18 EDT 2023
Wed Nov 05 00:47:15 EST 2025
Sat Nov 29 01:51:07 EST 2025
Tue Nov 18 21:19:39 EST 2025
Fri Feb 21 02:31:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-849f6126ab8e10265a5130506069750c974297a4e5500b5cf38c084a0b6ad4bf3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
89243318CFE000003; CMMI-1826218; FA8650-19-2-5209
USDOE Office of Fossil Energy (FE)
National Science Foundation (NSF)
ORCID 0000-0003-3064-5769
0000000330645769
OpenAccessLink http://dx.doi.org/10.1007/s11837-020-04484-y
PQID 2489780360
PQPubID 42295
PageCount 13
ParticipantIDs osti_scitechconnect_1777200
proquest_journals_2489780360
crossref_primary_10_1007_s11837_020_04484_y
crossref_citationtrail_10_1007_s11837_020_04484_y
springer_journals_10_1007_s11837_020_04484_y
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle The Journal of The Minerals, Metals & Materials Society (TMS)
PublicationTitle JOM (1989)
PublicationTitleAbbrev JOM
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Springer
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer
References CR39
CR38
CR37
CR36
DeCost, Francis, Holm (CR31) 2017; 133
CR35
Hsu, Mason, Mahbub, Epting, Abernathy, Hackett, Rollett, Litster, Salvador (CR28) 2020; 345
CR34
CR33
Dimiduk, Holm, Niezgoda (CR1) 2018; 7
CR32
Mason, Celik, Lee, Abernathy, Hackett (CR50) 2018; 165
Hsu (CR52) 2017; 78
Yang, Li, Catherine Brinson, Choudhary, Chen, Agrawal (CR13) 2018; 140
Rolison (CR45) 2009; 38
Mahbub (CR29) 2020; 167
Wilson (CR44) 2006; 5
CR2
CR3
CR6
Adler (CR49) 1996; 143
CR48
CR47
Cang, Li, Yao, Jiao, Ren (CR14) 2018; 150
Mahbub (CR25) 2017; 78
Litster, Epting, Wargo, Kalidindi, Kumbur (CR41) 2013; 13
Torquato, Haslach (CR4) 2002; 55
Yang (CR51) 2018; 43
Mosser, Dubrule, Blunt (CR21) 2018; 125
Mosser, Dubrule, Blunt (CR22) 2017; 96
CR19
CR18
CR17
CR16
CR15
Xu, Dikin, Burkhart, Chen (CR7) 2014; 85
CR12
CR11
Jiang, Chen, Burkhart (CR8) 2013; 252
Bostanabad (CR10) 2018; 95
Hsu (CR26) 2018; 386
Szeliski (CR30) 2010
Zhang, Yu, Braun (CR46) 2011; 6
Mandal, Lao, Donegan, Rollett (CR5) 2018; 146
Epting (CR42) 2017; 100
Minh, Takahashi (CR43) 1995
CR27
CR24
CR23
Bostanabad, Bui, Xie, Apley, Chen (CR9) 2016; 103
CR20
Epting, Gelb, Litster (CR40) 2012; 22
4484_CR48
4484_CR47
R Mahbub (4484_CR29) 2020; 167
Z Yang (4484_CR13) 2018; 140
D Dimiduk (4484_CR1) 2018; 7
Z Jiang (4484_CR8) 2013; 252
J Mason (4484_CR50) 2018; 165
S Litster (4484_CR41) 2013; 13
BL DeCost (4484_CR31) 2017; 133
L Mosser (4484_CR21) 2018; 125
R Cang (4484_CR14) 2018; 150
T Hsu (4484_CR52) 2017; 78
4484_CR16
4484_CR15
4484_CR12
4484_CR11
R Bostanabad (4484_CR9) 2016; 103
SB Adler (4484_CR49) 1996; 143
4484_CR19
4484_CR18
4484_CR17
T Hsu (4484_CR28) 2020; 345
H Xu (4484_CR7) 2014; 85
4484_CR27
NQ Minh (4484_CR43) 1995
4484_CR24
4484_CR23
4484_CR20
L Mosser (4484_CR22) 2017; 96
WK Epting (4484_CR40) 2012; 22
S Torquato (4484_CR4) 2002; 55
S Mandal (4484_CR5) 2018; 146
R Szeliski (4484_CR30) 2010
T Hsu (4484_CR26) 2018; 386
WK Epting (4484_CR42) 2017; 100
4484_CR38
4484_CR37
4484_CR36
4484_CR35
4484_CR34
4484_CR33
4484_CR32
H Zhang (4484_CR46) 2011; 6
T Yang (4484_CR51) 2018; 43
R Mahbub (4484_CR25) 2017; 78
4484_CR39
R Bostanabad (4484_CR10) 2018; 95
JR Wilson (4484_CR44) 2006; 5
4484_CR3
4484_CR2
DR Rolison (4484_CR45) 2009; 38
4484_CR6
References_xml – ident: CR39
– ident: CR16
– ident: CR12
– volume: 78
  start-page: 2159
  year: 2017
  end-page: 2170
  ident: CR25
  article-title: A method for quantitative 3d mesoscale analysis of solid oxide fuel cell microstructures using xe-plasma focused ion beam (pfib) coupled with sem
  publication-title: ECS Transactions
  doi: 10.1149/07801.2159ecst
– ident: CR35
– volume: 85
  start-page: 206
  year: 2014
  end-page: 216
  ident: CR7
  article-title: Descriptor-based methodology for statistical characterization and 3D reconstruction of microstructural materials
  publication-title: Computational Materials Science
  doi: 10.1016/j.commatsci.2013.12.046
– volume: 386
  start-page: 1
  year: 2018
  end-page: 9
  ident: CR26
  article-title: Mesoscale characterization of local property distributions in heterogeneous electrodes
  publication-title: Journal of Power Sources
  doi: 10.1016/j.jpowsour.2018.03.025
– volume: 22
  start-page: 555
  year: 2012
  end-page: 560
  ident: CR40
  article-title: Resolving the Three-Dimensional Microstructure of Polymer Electrolyte Fuel Cell Electrodes using Nanometer-Scale X-ray Computed Tomography
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201101525
– volume: 146
  start-page: 128
  year: 2018
  end-page: 132
  ident: CR5
  article-title: Generation of statistically representative synthetic three-dimensional microstructures
  publication-title: Scripta Materialia
  doi: 10.1016/j.scriptamat.2017.11.034
– volume: 100
  start-page: 2232
  year: 2017
  end-page: 2242
  ident: CR42
  article-title: Quantifying intermediate-frequency heterogeneities of SOFC electrodes using X-ray computed tomography
  publication-title: Journal of the American Ceramic Society
  doi: 10.1111/jace.14775
– volume: 55
  start-page: B62
  year: 2002
  end-page: B63
  ident: CR4
  article-title: Random heterogeneous materials: microstructure and macroscopic properties
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.1483342
– ident: CR19
– volume: 78
  start-page: 2711
  year: 2017
  ident: CR52
  article-title: Towards quantification of local electrochemical parameters in microstructures of solid oxide fuel cell electrodes using high performance computations
  publication-title: ECS Transactions
  doi: 10.1149/07801.2711ecst
– volume: 167
  start-page: 054506
  year: 2020
  ident: CR29
  article-title: Quantitative Analysis of Multi-Scale Heterogeneities in Complex Electrode Microstructures
  publication-title: Journal of The Electrochemical Society
  doi: 10.1149/2.0102005JES
– ident: CR15
– volume: 103
  start-page: 89
  year: 2016
  end-page: 102
  ident: CR9
  article-title: Stochastic microstructure characterization and reconstruction via supervised learning
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2015.09.044
– ident: CR11
– ident: CR32
– volume: 13
  start-page: 935
  year: 2013
  end-page: 945
  ident: CR41
  article-title: Morphological analyses of polymer electrolyte fuel cell electrodes with nano-scale computed tomography imaging
  publication-title: Fuel Cells
– volume: 252
  start-page: 135
  year: 2013
  end-page: 148
  ident: CR8
  article-title: Efficient 3D porous microstructure reconstruction via Gaussian random field and hybrid optimization
  publication-title: Journal of microscopy
  doi: 10.1111/jmi.12077
– volume: 125
  start-page: 81
  year: 2018
  end-page: 103
  ident: CR21
  article-title: Stochastic reconstruction of an oolitic limestone by generative adversarial networks
  publication-title: Transport in Porous Media
  doi: 10.1007/s11242-018-1039-9
– ident: CR36
– volume: 96
  start-page: 043309
  year: 2017
  ident: CR22
  article-title: Reconstruction of three-dimensional porous media using generative adversarial neural networks
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.96.043309
– ident: CR18
– volume: 6
  start-page: 277
  year: 2011
  end-page: 281
  ident: CR46
  article-title: Three-dimensional bicontinuous ultrafast-charge and-discharge bulk battery electrodes
  publication-title: Nature nanotechnology
  doi: 10.1038/nnano.2011.38
– ident: CR47
– ident: CR2
– ident: CR37
– year: 1995
  ident: CR43
  publication-title: Science and technology of ceramic fuel cells
– volume: 133
  start-page: 30
  year: 2017
  end-page: 40
  ident: CR31
  article-title: Exploring the microstructure manifold: image texture representations applied to ultrahigh carbon steel microstructures
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2017.05.014
– ident: CR33
– volume: 5
  start-page: 541
  year: 2006
  end-page: 544
  ident: CR44
  article-title: Three-dimensional reconstruction of a solid-oxide fuel-cell anode
  publication-title: Nature materials
  doi: 10.1038/nmat1668
– ident: CR6
– volume: 95
  start-page: 1
  year: 2018
  end-page: 41
  ident: CR10
  article-title: Computational microstructure characterization and reconstruction: Review of the state-of-the-art techniques
  publication-title: Progress in Materials Science
  doi: 10.1016/j.pmatsci.2018.01.005
– volume: 43
  start-page: 15445
  year: 2018
  end-page: 15456
  ident: CR51
  article-title: An efficient approach for prediction of Warburg-type resistance under working currents
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.06.076
– volume: 7
  start-page: 1
  year: 2018
  end-page: 16
  ident: CR1
  article-title: Perspectives on the Impact of Machine Learning, Deep Learning, and Artificial Intelligence on Materials, Processes, and Structures Engineering
  publication-title: Integrated Materials and Manufacturing Innovation
  doi: 10.1007/s40192-017-0105-4
– ident: CR27
– ident: CR23
– volume: 345
  year: 2020
  ident: CR28
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.136191
– volume: 140
  issue: 11
  year: 2018
  ident: CR13
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4041371
– ident: CR48
– volume: 165
  start-page: F64
  year: 2018
  end-page: F74
  ident: CR50
  article-title: Performance Degradation Predictions Based on Microstructural Evolution Due to Grain Coarsening Effects in Solid Oxide Fuel Cell Electrodes
  publication-title: Journal of The Electrochemical Society
  doi: 10.1149/2.0721802jes
– ident: CR3
– ident: CR38
– ident: CR17
– volume: 38
  start-page: 226
  year: 2009
  end-page: 252
  ident: CR45
  article-title: Multifunctional 3D nanoarchitectures for energy storage and conversion
  publication-title: Chemical Society Reviews
  doi: 10.1039/B801151F
– ident: CR34
– year: 2010
  ident: CR30
  publication-title: Computer vision: algorithms and applications 1–812
– volume: 150
  start-page: 212
  year: 2018
  end-page: 221
  ident: CR14
  article-title: Improving direct physical properties prediction of heterogeneous materials from imaging data via convolutional neural network and a morphology-aware generative model
  publication-title: Computational Materials Science
  doi: 10.1016/j.commatsci.2018.03.074
– volume: 143
  start-page: 3554
  year: 1996
  end-page: 3564
  ident: CR49
  article-title: Electrode Kinetics of Porous Mixed-Conducting Oxygen Electrodes
  publication-title: Journal of The Electrochemical Society
  doi: 10.1149/1.1837252
– ident: CR24
– ident: CR20
– ident: 4484_CR3
  doi: 10.1103/PhysRevE.77.031135
– volume: 100
  start-page: 2232
  year: 2017
  ident: 4484_CR42
  publication-title: Journal of the American Ceramic Society
  doi: 10.1111/jace.14775
– ident: 4484_CR6
– volume: 103
  start-page: 89
  year: 2016
  ident: 4484_CR9
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2015.09.044
– volume: 78
  start-page: 2159
  year: 2017
  ident: 4484_CR25
  publication-title: ECS Transactions
  doi: 10.1149/07801.2159ecst
– ident: 4484_CR34
– ident: 4484_CR11
– ident: 4484_CR18
– ident: 4484_CR37
– volume: 22
  start-page: 555
  year: 2012
  ident: 4484_CR40
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201101525
– volume: 13
  start-page: 935
  year: 2013
  ident: 4484_CR41
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201300008
– volume: 167
  start-page: 054506
  year: 2020
  ident: 4484_CR29
  publication-title: Journal of The Electrochemical Society
  doi: 10.1149/2.0102005JES
– volume: 55
  start-page: B62
  year: 2002
  ident: 4484_CR4
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.1483342
– volume: 95
  start-page: 1
  year: 2018
  ident: 4484_CR10
  publication-title: Progress in Materials Science
  doi: 10.1016/j.pmatsci.2018.01.005
– volume: 7
  start-page: 1
  year: 2018
  ident: 4484_CR1
  publication-title: Integrated Materials and Manufacturing Innovation
  doi: 10.1007/s40192-017-0105-4
– ident: 4484_CR48
– volume: 125
  start-page: 81
  year: 2018
  ident: 4484_CR21
  publication-title: Transport in Porous Media
  doi: 10.1007/s11242-018-1039-9
– ident: 4484_CR17
– ident: 4484_CR35
– volume: 146
  start-page: 128
  year: 2018
  ident: 4484_CR5
  publication-title: Scripta Materialia
  doi: 10.1016/j.scriptamat.2017.11.034
– volume: 386
  start-page: 1
  year: 2018
  ident: 4484_CR26
  publication-title: Journal of Power Sources
  doi: 10.1016/j.jpowsour.2018.03.025
– ident: 4484_CR38
– volume: 165
  start-page: F64
  year: 2018
  ident: 4484_CR50
  publication-title: Journal of The Electrochemical Society
  doi: 10.1149/2.0721802jes
– volume: 78
  start-page: 2711
  year: 2017
  ident: 4484_CR52
  publication-title: ECS Transactions
  doi: 10.1149/07801.2711ecst
– ident: 4484_CR24
– volume-title: Computer vision: algorithms and applications 1–812
  year: 2010
  ident: 4484_CR30
– ident: 4484_CR20
– volume: 140
  issue: 11
  year: 2018
  ident: 4484_CR13
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4041371
– volume: 133
  start-page: 30
  year: 2017
  ident: 4484_CR31
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2017.05.014
– volume: 43
  start-page: 15445
  year: 2018
  ident: 4484_CR51
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.06.076
– volume: 150
  start-page: 212
  year: 2018
  ident: 4484_CR14
  publication-title: Computational Materials Science
  doi: 10.1016/j.commatsci.2018.03.074
– volume: 96
  start-page: 043309
  year: 2017
  ident: 4484_CR22
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.96.043309
– ident: 4484_CR16
– ident: 4484_CR32
– ident: 4484_CR39
– volume: 345
  year: 2020
  ident: 4484_CR28
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.136191
– volume: 5
  start-page: 541
  year: 2006
  ident: 4484_CR44
  publication-title: Nature materials
  doi: 10.1038/nmat1668
– ident: 4484_CR36
  doi: 10.23915/distill.00003
– ident: 4484_CR23
– volume: 85
  start-page: 206
  year: 2014
  ident: 4484_CR7
  publication-title: Computational Materials Science
  doi: 10.1016/j.commatsci.2013.12.046
– volume: 6
  start-page: 277
  year: 2011
  ident: 4484_CR46
  publication-title: Nature nanotechnology
  doi: 10.1038/nnano.2011.38
– ident: 4484_CR27
  doi: 10.1016/j.mex.2020.100822
– volume: 143
  start-page: 3554
  year: 1996
  ident: 4484_CR49
  publication-title: Journal of The Electrochemical Society
  doi: 10.1149/1.1837252
– volume: 252
  start-page: 135
  year: 2013
  ident: 4484_CR8
  publication-title: Journal of microscopy
  doi: 10.1111/jmi.12077
– ident: 4484_CR33
– volume: 38
  start-page: 226
  year: 2009
  ident: 4484_CR45
  publication-title: Chemical Society Reviews
  doi: 10.1039/B801151F
– ident: 4484_CR19
– ident: 4484_CR12
– ident: 4484_CR15
– ident: 4484_CR2
– ident: 4484_CR47
– volume-title: Science and technology of ceramic fuel cells
  year: 1995
  ident: 4484_CR43
SSID ssj0007491
Score 2.594011
Snippet Using a large-scale, experimentally captured 3D microstructure data set, we implement the generative adversarial network (GAN) framework to learn and generate...
Using a large-scale, experimentally captured 3D microstructure dataset, we implement the generative adversarial network (GAN) framework to learn and generate...
SourceID osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 90
SubjectTerms Algorithms
Augmenting Physics-based Models in ICME with Machine Learning and Uncertainty Quantification
Chemistry/Food Science
Datasets
Earth Sciences
Electrochemical analysis
Engineering
Environment
Finite element method
Generative adversarial networks
Machine learning
MATERIALS SCIENCE
Mathematical models
Microstructure
Neural networks
Particle size
Physics
Simulation
Solid oxide fuel cells
Tortuosity
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61C4dygJaHukArH3orFiZxHOeEoIA4lBVCVOJmOY4tIa02dLOs2H_PTOLdhUpw6TGK85C-z_Owx98A_EiUC1mZp9xidsHR30quQ15xL1OpSpd471sR19_5YKDv7orruODWxLLKuU1sDXVVO1ojP0ykJrGcVInjh7-cukbR7mpsofERVkipTPZg5fR8cH2zsMW5bHvmtXoEUqc6HpvpDs8hm3NO6ZPAHEXy2SvX1Ktxir0KO__ZKW0d0MXG__76Z1iPoSc76bjyBT740SasvRAk3ILxFdXndZqyj2PPOlFqwo5N7-3icupZ28i5sURfNuhKyRnGv-ySymtqZKWvH5sDdtv1YCAmDGeMjM_QP7H0jF3ZScf9bfhzcX7765LHrgzcYTI14VoWAcMiZUvtMTpRmc3QD5JOoSow_HCYoCRFbqXH3EeUmQupdkJLK0plK1mGdAd6o3rkvwITwWY6KBGkDjigwDFOSF8p9KuVlrIPR3NAjIuS5dQ5Y2iWYssEokEQTQuimfXh5-KZh06w493Re4SzwXCDNHMdFRe5iTnKMekQog_7c0BNnNqNWaLZh4M5JZa33_7W7vtv24NPCdXLtMs7-9BDqP03WHXTyX0z_h6J_QwOSP52
  priority: 102
  providerName: ProQuest
Title Microstructure Generation via Generative Adversarial Network for Heterogeneous, Topologically Complex 3D Materials
URI https://link.springer.com/article/10.1007/s11837-020-04484-y
https://www.proquest.com/docview/2489780360
https://www.osti.gov/servlets/purl/1777200
Volume 73
WOSCitedRecordID wos000595372900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1543-1851
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007491
  issn: 1047-4838
  databaseCode: 7WY
  dateStart: 19960701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Collection (ProQuest)
  customDbUrl:
  eissn: 1543-1851
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007491
  issn: 1047-4838
  databaseCode: M0F
  dateStart: 19960701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abitrade
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1543-1851
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007491
  issn: 1047-4838
  databaseCode: KB.
  dateStart: 19960701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1543-1851
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007491
  issn: 1047-4838
  databaseCode: BENPR
  dateStart: 19960701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1543-1851
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007491
  issn: 1047-4838
  databaseCode: M2P
  dateStart: 19960701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1543-1851
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007491
  issn: 1047-4838
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbxMxDLdYNyR44GOAVjaqPOyNBWV3uVzukcGqSdCq2gaMpyiXJtKkqkW9rlr_e-zcXcvQQIKXSFF8H4rt2E6cnwEOE-VCVuYptxhdcLS3kuuQj7mXqVSlS7z3EcT1cz4c6qurYtRcCqvabPf2SDKu1JvLbih9OadwR2BMIflqC7bR3GlSx_OLr-v1N5exTl7EIJA61c1VmfvfccccdWaoVndczd9OR6PR6T_9v999Bk8aJ5O9r6XiOTzw0114_Av04C48jKmfrnoB8wHl5NU4sjdzz2ogauIXW17bdXfpWSzeXFkSWTas08cZ-rzsjFJqZiiJfnZTHbHLuu4CcX-yYrTgTPwtSz-ygV3U8v4SvvRPLz-c8aYSA3cYQC24lkVAV0jZUnv0SFRmM7R9hE2oCnQ5HAYlSZFb6THeEWXmQqqd0NKKUtmxLEP6CjrT2dTvARPBZjooEaQOSFAgjRPSjxXa0rGWsgvHLUOMa2DKqVrGxGwAlmlmDc6siTNrVl14u37mRw3S8VfqfeKzQReDcHIdJRS5hTnOMdAQogsHLftNo86VSaQmpKZU4fBRy-7N8J-_9frfyPfhUUI5M3GL5wA6yHr_BnbccnFdzXuwlX_73oPtk9Ph6Bx7n07eYTsQfWqTUS-qwU8wrfw3
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aBQk48I1WNsAHODELL3ES54AQYlSd1lYcirSbcRxHmlQ1W9MV-k_xN_KenbQMid124BjFcZT4977s934P4E2U2iopspgbjC442lvJVZWV3MlYpoWNnHOexHWUTSbq9DT_ugO_uloYSqvsdKJX1GVtaY_8fSQVkeXEqfh4fsGpaxSdrnYtNAIsTtz6B4ZszYfjI1zft1E0-DL9PORtVwFuMRhYciXzCs16agrl0LqmiUlQjxPPXpqj-bToYEd5ZqRD310Uia1iZYWSRhSpKWVRxTjvLbgtpYiJq38sBhvNn0nfoc-zH0gVq7ZIJ5TqoexknII1gRGR5OsrhrBXo0BfcXL_Opf15m7w8H_7UY_gQetYs09BEh7Djps_gft_0C0-hcWYsg8DY-7lwrFAuU3IZKszs7lcOebbVDeGhJNNQqI8Q--eDSl5qEaZc_Vlc8CmocME4Xy2ZqRaZ-4ni4_Y2CyDZD-Dbzfy0c-hN6_nbheYqEyiqlRUUlU4IMcxVkhXpug1lErKPhx2ANC2JWSnviAzvaWSJtBoBI32oNHrPrzbPHMe6EiuHb1HuNLoTBEjsKXUKbvUhxmGVEL0Yb8DkG4VV6O36OnDQQfB7e1_v-vF9bO9hrvD6XikR8eTkz24F1FmkN_I2oceLrt7CXfsannWLF55kWLw_aah-RvbMVY-
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VBSE4lG-xtIAPcKJW3cRJnAOqEMuqVdtVD0WUk3EcW6q02pTNdtv9a_w6ZuJklyLRWw8coziOEr83H8n4DcC7KLU-KbKYG8wuOPpbyZXPSu5kLNPCRs65RsT1MBuN1OlpfrwGv7q9MFRW2dnExlCXlaVv5NuRVCSWE6di27dlEceD4e75T04dpOhPa9dOI0DkwC0uMX2rP-4PcK3fR9Hwy8nnPd52GOAWE4MZVzL36OJTUyiHnjZNTII2nTT30hxdqcVgO8ozIx3G8aJIrI-VFUoaUaSmlIWPcd47cDcj3COXsm_fl14gk023vkYJQapYtRt2wrY95FHGKXETmB1JvrjmFHsVkvtawPvXP9rG9Q0f_c8v7TGstwE3-xQY8gTW3OQpPPxDhvEZTI-oKjEo6V5MHQtS3IRYNj8zy8O5Y0376toQadkoFNAzjPrZHhUVVchFV13UW-wkdJ4g_I8XjEzu2F2xeMCOzCww_jl8vZWHfgG9STVxL4EJbxLlU-Gl8jggxzFWSFemGE2USso-7HRg0LYVaqd-IWO9kpgmAGkEkG4ApBd9-LC85jzIlNw4eoMwpjHIIqVgSyVVdqZ3Mky1hOjDZgcm3Rq0Wq-Q1IetDo6r0_--16ubZ3sL9xGR-nB_dLABDyIqGGq-b21CD1fdvYZ7dj47q6dvGnYx-HHbyPwNo15fUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microstructure+Generation+via+Generative+Adversarial+Network+for+Heterogeneous%2C+Topologically+Complex+3D+Materials&rft.jtitle=JOM+%281989%29&rft.au=Hsu%2C+Tim&rft.au=Epting%2C+William+K.&rft.au=Kim%2C+Hokon&rft.au=Abernathy%2C+Harry+W.&rft.date=2021-01-01&rft.pub=Springer+US&rft.issn=1047-4838&rft.eissn=1543-1851&rft.volume=73&rft.issue=1&rft.spage=90&rft.epage=102&rft_id=info:doi/10.1007%2Fs11837-020-04484-y&rft.externalDocID=10_1007_s11837_020_04484_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-4838&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-4838&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-4838&client=summon