Simultaneous Testing of Grouped Hypotheses: Finding Needles in Multiple Haystacks

In large-scale multiple testing problems, data are often collected from heterogeneous sources and hypotheses form into groups that exhibit different characteristics. Conventional approaches, including the pooled and separate analyses, fail to efficiently utilize the external grouping information. We...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the American Statistical Association Ročník 104; číslo 488; s. 1467 - 1481
Hlavní autoři: Cai, T. Tony, Sun, Wenguang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Alexandria, VA Taylor & Francis 01.12.2009
American Statistical Association
Assoc
Taylor & Francis Ltd
Témata:
ISSN:0162-1459, 1537-274X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In large-scale multiple testing problems, data are often collected from heterogeneous sources and hypotheses form into groups that exhibit different characteristics. Conventional approaches, including the pooled and separate analyses, fail to efficiently utilize the external grouping information. We develop a compound decision theoretic framework for testing grouped hypotheses and introduce an oracle procedure that minimizes the false nondiscovery rate subject to a constraint on the false discovery rate. It is shown that both the pooled and separate analyses can be uniformly improved by the oracle procedure. We then propose a data-driven procedure that is shown to be asymptotically optimal. Simulation studies show that our procedures enjoy superior performance and yield the most accurate results in comparison with both the pooled and separate procedures. A real-data example with grouped hypotheses is studied in detail using different methods. Both theoretical and numerical results demonstrate that exploiting external information of the sample can greatly improve the efficiency of a multiple testing procedure. The results also provide insights on how the grouping information is incorporated for optimal simultaneous inference.
AbstractList In large-scale multiple testing problems, data are often collected from heterogeneous sources and hypotheses form into groups that exhibit different characteristics. Conventional approaches, including the pooled and separate analyses, fail to efficiently utilize the external grouping information. We develop a compound decision theoretic framework for testing grouped hypotheses and introduce an oracle procedure that minimizes the false nondiscovery rate subject to a constraint on the false discovery rate. It is shown that both the pooled and separate analyses can be uniformly improved by the oracle procedure. We then propose a data-driven procedure that is shown to be asymptotically optimal. Simulation studies show that our procedures enjoy superior performance and yield the most accurate results in comparison with both the pooled and separate procedures. A real-data example with grouped hypotheses is studied in detail using different methods. Both theoretical and numerical results demonstrate that exploiting external information of the sample can greatly improve the efficiency of a multiple testing procedure. The results also provide insights on how the grouping information is incorporated for optimal simultaneous inference.
In large-scale multiple testing problems, data are often collected from heterogeneous sources and hypotheses form into groups that exhibit different characteristics. Conventional approaches, including the pooled and separate analyses, fail to efficiently utilize the external grouping information. We develop a compound decision theoretic framework for testing grouped hypotheses and introduce an oracle procedure that minimizes the false nondiscovery rate subject to a constraint on the false discovery rate. It is shown that both the pooled and separate analyses can be uniformly improved by the oracle procedure. We then propose a data-driven procedure that is shown to be asymptotically optimal. Simulation studies show that our procedures enjoy superior performance and yield the most accurate results in comparison with both the pooled and separate procedures. A real-data example with grouped hypotheses is studied in detail using different methods. Both theoretical and numerical results demonstrate that exploiting external information of the sample can greatly improve the efficiency of a multiple testing procedure. The results also provide insights on how the grouping information is incorporated for optimal simultaneous inference. [PUBLICATION ABSTRACT]
Author Sun, Wenguang
Cai, T. Tony
Author_xml – sequence: 1
  givenname: T. Tony
  surname: Cai
  fullname: Cai, T. Tony
– sequence: 2
  givenname: Wenguang
  surname: Sun
  fullname: Sun, Wenguang
BackLink http://www.econis.eu/PPNSET?PPN=632808519$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22328065$$DView record in Pascal Francis
BookMark eNp9kUGL1TAUhYOM4JvRH-BCLIKz6zNJk6YRNzI484RREUdwF27TVPNsk5qkyPv3k9I3IgOaTRbnOyf35pyiE-edQegpwVtCZPNqDxG2FGO5TSNuGOEP0IbwSpRUsG8naINJTUvCuHyETmPc43xE02zQ5y92nIcEzvg5FjcmJuu-F74vroKfJ9MVu8Pk0w8TTXxdXFrXLfJHY7rBxMK64kM222kwxQ4OMYH-GR-jhz0M0Tw53mfo6-W7m4tdef3p6v3F2-tSM8lTmV-nXLfC9NDLtqbYCCYq0kpNWCN4A61uZQWsFwCcC0Eaw0yLAerWdKbqqzN0vuZOwf-a8-BqtFGbYVh3UZWgkhNOMvjiHrj3c3B5NpU_p6aS4AV6eYQgahj6AE7bqKZgRwgHRWlFG1zzzD1fOaO9-wuoF73hRGZCrIQOPsZgeqVtgmS9SwHsoAhWS2NqaUwtjaljY9lJ7jnv0v_nebZ69jH58MfAMJe04izrb1bdut6HEX77MHQqwWHw4W7J6t_xt9sxumY
CODEN JSTNAL
CitedBy_id crossref_primary_10_1080_03610926_2017_1361982
crossref_primary_10_1080_01621459_2020_1859379
crossref_primary_10_1080_01621459_2020_1840992
crossref_primary_10_1214_23_AOS2338
crossref_primary_10_1038_s41467_019_11247_0
crossref_primary_10_1111_biom_12586
crossref_primary_10_1093_biostatistics_kxx048
crossref_primary_10_1080_00224065_2024_2393869
crossref_primary_10_1111_insr_12098
crossref_primary_10_1371_journal_pgen_1009853
crossref_primary_10_1038_nmeth_3885
crossref_primary_10_1002_sim_9900
crossref_primary_10_1016_j_finmar_2020_100598
crossref_primary_10_1007_s10463_025_00930_3
crossref_primary_10_1016_j_jmva_2019_06_003
crossref_primary_10_1016_j_jspi_2014_04_004
crossref_primary_10_1080_00224065_2023_2210320
crossref_primary_10_1080_01621459_2017_1336443
crossref_primary_10_1093_biomet_asad047
crossref_primary_10_1080_01621459_2021_1955688
crossref_primary_10_1016_j_csda_2015_12_013
crossref_primary_10_1016_j_jspi_2016_07_004
crossref_primary_10_1093_biostatistics_kxz010
crossref_primary_10_1002_qre_3787
crossref_primary_10_1007_s00181_024_02694_w
crossref_primary_10_1016_j_jspi_2023_07_008
crossref_primary_10_1214_24_AOS2404
crossref_primary_10_1186_s13059_019_1716_1
crossref_primary_10_1007_s11749_023_00886_7
crossref_primary_10_4137_EBO_S13099
crossref_primary_10_1080_00031305_2021_1999857
crossref_primary_10_1214_21_AOS2141
crossref_primary_10_1111_biom_12060
crossref_primary_10_1080_00401706_2019_1575284
crossref_primary_10_1007_s00180_018_0833_8
crossref_primary_10_1109_TSIPN_2023_3290399
crossref_primary_10_1186_s12859_024_05736_3
crossref_primary_10_1002_nav_22008
crossref_primary_10_1111_rssb_12411
crossref_primary_10_1111_biom_12329
crossref_primary_10_1146_annurev_economics_063016_104355
crossref_primary_10_1080_02664763_2024_2344260
crossref_primary_10_1016_j_jkss_2017_08_001
crossref_primary_10_1111_biom_13222
crossref_primary_10_1002_bimj_202300198
crossref_primary_10_1534_genetics_114_167817
crossref_primary_10_1080_01621459_2019_1611585
crossref_primary_10_1080_24725854_2024_2330077
crossref_primary_10_1371_journal_pone_0245824
crossref_primary_10_1080_03610918_2013_809097
crossref_primary_10_1111_rssb_12304
crossref_primary_10_1093_biomtc_ujaf035
crossref_primary_10_1371_journal_pcbi_1004509
crossref_primary_10_1093_biomet_asaf007
crossref_primary_10_1016_j_spl_2014_08_011
crossref_primary_10_1016_j_jmva_2014_01_007
crossref_primary_10_1080_01621459_2012_664505
crossref_primary_10_1016_j_jspi_2023_03_003
crossref_primary_10_1214_09_AOS764
crossref_primary_10_1214_23_STS901
crossref_primary_10_1186_s13059_020_02001_7
crossref_primary_10_1080_01621459_2020_1783273
crossref_primary_10_1109_TIT_2025_3529457
crossref_primary_10_1002_bimj_201900216
crossref_primary_10_1214_19_AOS1897
crossref_primary_10_1214_21_AOS2128
Cites_doi 10.1111/1467-9868.00346
10.1214/aoms/1177692621
10.1198/016214507000000545
10.1214/08-AOAS158
10.3102/10769986025001060
10.1093/biomet/93.3.509
10.1111/j.1467-9868.2008.00694.x
10.1177/144078302128756543
10.1093/biostatistics/5.2.155
10.1111/1467-9868.00347
10.1198/016214501753382129
10.1214/aos/1176342626
10.1214/009053604000000283
10.1111/j.1467-9868.2007.005592.x
10.1214/08-STS236D
10.1214/07-AOAS133
10.2307/2291733
10.1198/016214504000000089
10.1198/016214507000000167
10.1214/07-STS236
10.1214/07-AOAS141
ContentType Journal Article
Copyright 2009 American Statistical Association 2009
2009 American Statistical Association
2015 INIST-CNRS
Copyright American Statistical Association Dec 2009
Copyright_xml – notice: 2009 American Statistical Association 2009
– notice: 2009 American Statistical Association
– notice: 2015 INIST-CNRS
– notice: Copyright American Statistical Association Dec 2009
DBID AAYXX
CITATION
OQ6
IQODW
8BJ
FQK
JBE
K9.
DOI 10.1198/jasa.2009.tm08415
DatabaseName CrossRef
ECONIS
Pascal-Francis
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
DatabaseTitleList

International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-274X
EndPage 1481
ExternalDocumentID 1951007771
22328065
632808519
10_1198_jasa_2009_tm08415
40592354
10710713
Genre Research Article
Feature
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
2AX
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABTAI
ABUFD
ABXSQ
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACTCW
ACTIO
ACTMH
ACUBG
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADULT
AEISY
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFRVT
AFVYC
AFXHP
AGCQS
AGDLA
AGLNM
AGMYJ
AHDZW
AIHAF
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
FEDTE
FJW
FVMVE
GTTXZ
H13
HF~
HQ6
HZ~
H~9
H~P
IPNFZ
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
KYCEM
LU7
M4Z
MS~
MVM
MW2
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UPT
UQL
UT5
UU3
WH7
WZA
YQT
YYM
YYP
ZGOLN
~S~
ADYSH
AFSUE
ALIPV
AMPGV
.-4
.GJ
07G
1OL
3R3
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
AAAVZ
AAFWJ
AAIKQ
AAKBW
AAYXX
ABEFU
ABJCF
ABRLO
ABUWG
ACAGQ
ACGEE
ADBBV
ADXHL
AEUMN
AFFHD
AFKRA
AFQQW
AGLEN
AGROQ
AHMOU
AI.
ALCKM
AMATQ
AMEWO
AMVHM
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CITATION
CRFIH
DMQIW
DWIFK
DWQXO
E.L
FRNLG
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
HVGLF
IVXBP
K9-
KQ8
L6V
LJTGL
M0C
M0R
M0T
M1P
M2O
M2P
M7S
NHB
NUSFT
P-O
PADUT
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RNS
S0X
SJN
TAQ
TFMCV
UB9
UKHRP
VH1
VOH
WHG
YXB
ZCG
ZGI
ZUP
ZXP
OQ6
IQODW
8BJ
FQK
JBE
K9.
ID FETCH-LOGICAL-c495t-78825cb7efaf9b620e74731b9c148758abcb93a4f7aa557718e4eb0aa6bede3f3
IEDL.DBID TFW
ISICitedReferencesCount 82
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000273995500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-1459
IngestDate Sun Nov 09 10:50:16 EST 2025
Tue Nov 11 01:40:44 EST 2025
Mon Jul 21 09:11:40 EDT 2025
Sat Mar 08 16:22:32 EST 2025
Sat Nov 29 05:11:11 EST 2025
Tue Nov 18 22:18:57 EST 2025
Thu May 29 08:44:08 EDT 2025
Mon Oct 20 23:43:34 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 488
Keywords Discriminant analysis
Data analysis
Conditional distribution
Grouped data
Asymptotic optimality
Non parametric estimation
Statistical estimation
Statistical decision
Multivariate analysis
Statistical simulation
Multiple decision
Statistical method
Hypothesis test
Statistical test
Compound decision problem
Decision theory
Grouped hypotheses
Large-scale multiple testing
False discovery rate
Oracle
Application
Conditional local false discovery rate
Exchangeability
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-78825cb7efaf9b620e74731b9c148758abcb93a4f7aa557718e4eb0aa6bede3f3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 274629101
PQPubID 41715
PageCount 15
ParticipantIDs econis_primary_632808519
informaworld_taylorfrancis_310_1198_jasa_2009_tm08415
crossref_citationtrail_10_1198_jasa_2009_tm08415
pascalfrancis_primary_22328065
jstor_primary_40592354
proquest_miscellaneous_37295151
proquest_journals_274629101
crossref_primary_10_1198_jasa_2009_tm08415
PublicationCentury 2000
PublicationDate 2009-12-01
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: 2009-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2009
Publisher Taylor & Francis
American Statistical Association
Assoc
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: American Statistical Association
– name: Assoc
– name: Taylor & Francis Ltd
References p_16
p_27
Benjamini Y. (p_1) 1995; 57
p_17
p_4
p_12
p_23
p_3
p_13
p_24
p_14
p_25
p_5
p_15
p_26
p_8
p_7
p_9
Benjamini Y. (p_2) 2000; 25
Efron B. (p_6) 2007; 65
p_10
p_21
p_11
References_xml – volume: 65
  start-page: 3
  year: 2007
  ident: p_6
  publication-title: METRON Internal Journal of Statistics
– ident: p_24
  doi: 10.1111/1467-9868.00346
– ident: p_23
  doi: 10.1214/aoms/1177692621
– ident: p_26
  doi: 10.1198/016214507000000545
– ident: p_10
  doi: 10.1214/08-AOAS158
– volume: 25
  start-page: 60
  year: 2000
  ident: p_2
  publication-title: Journal of Educational and Behavioral Statistics
  doi: 10.3102/10769986025001060
– ident: p_13
  doi: 10.1093/biomet/93.3.509
– ident: p_27
  doi: 10.1111/j.1467-9868.2008.00694.x
– ident: p_3
  doi: 10.1177/144078302128756543
– ident: p_17
  doi: 10.1093/biostatistics/5.2.155
– ident: p_11
  doi: 10.1111/1467-9868.00347
– ident: p_9
  doi: 10.1198/016214501753382129
– ident: p_4
  doi: 10.1214/aos/1176342626
– ident: p_12
  doi: 10.1214/009053604000000283
– ident: p_25
  doi: 10.1111/j.1467-9868.2007.005592.x
– volume: 57
  start-page: 289
  year: 1995
  ident: p_1
  publication-title: Journal of the Royal Statistical Society, Ser. B
– ident: p_16
  doi: 10.1214/08-STS236D
– ident: p_21
  doi: 10.1214/07-AOAS133
– ident: p_15
  doi: 10.2307/2291733
– ident: p_5
  doi: 10.1198/016214504000000089
– ident: p_14
  doi: 10.1198/016214507000000167
– ident: p_8
  doi: 10.1214/07-STS236
– ident: p_7
  doi: 10.1214/07-AOAS141
SSID ssj0000788
Score 2.3251467
Snippet In large-scale multiple testing problems, data are often collected from heterogeneous sources and hypotheses form into groups that exhibit different...
SourceID proquest
pascalfrancis
econis
crossref
jstor
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1467
SubjectTerms Applications
Applied statistics
Compound decision problem
Conditional local false discovery rate
Consistent estimators
Data
Data collection
Decision making
Decision theory
Error
Estimation
Exact sciences and technology
Exchangeability
Exploration
False discovery rate
False information
False positive errors
General topics
Group size
Grouped hypotheses
Heterogeneity
Hypotheses
Hypothesis testing
Inference
Information
Large-scale multiple testing
Mathematical procedures
Mathematics
Multiple criteria decision making
Nonparametric inference
Oracles
Parametric inference
Probability and statistics
Sampling
Sciences and techniques of general use
Simulation
Small schools
Statistical methods
Statistical theories
Statistics
Tests
Theory and Methods
Title Simultaneous Testing of Grouped Hypotheses: Finding Needles in Multiple Haystacks
URI https://www.tandfonline.com/doi/abs/10.1198/jasa.2009.tm08415
https://www.jstor.org/stable/40592354
http://www.econis.eu/PPNSET?PPN=632808519
https://www.proquest.com/docview/274629101
https://www.proquest.com/docview/37295151
Volume 104
WOSCitedRecordID wos000273995500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: TFW
  dateStart: 19220301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQ1UMvvKuGluIDJ6SIJHYSuzeEWO0BViAW0ZtlO2O00GareovUf8_4sYEC6gHOcZzE34znm8x4hpDnvK86YYUuB2a7kuuBlcbAULadQUxcr7WJ1fXf9ouFOD2V73Nujs9plcGHdqlQRNyrg3JrkzuQSPHyq_Y6VZrcnFciHTFHsx_Ucjn7_HMf7mPXSeQ0TVnzVuaY5l9nuGGVdoMruvK_FS_dJiyG7EntcQFd6nzxxyYeLdPs3n9-031yN1NS-irJ0ANyB8aHZC-w0FTE-RH58HEVEg_1COsrT5ehMMf4ha4djX-uYKDz64twksuDP6GzVTwoQxdoF8_A09VI3-WsRTrX18hG7Tf_mHyavVm-npe5F0Np0YXahKTDprWmB6edNF1TAfohrDbS1sHlEdpYI5nmAd227dHiAQdTad0h8sAc2yc743qEA0KhZ1BrDmyQhjvjBKDPA0bIzjrnmCxItcVC2VyoPPTLOFPRYZFChcUK_TOlyotVkBfTLRepSsdtgw8SwNPQjjUiUE98dPsr5GoT_5pkoBW7Zcr9KBvTjEiDkTm3vCDHN4RlGoCsLMa0C3K4lR6Vdw-vmp53DfK4uiDPpquo9iGWk6BWIdqKVLR-8o9vfEj2mtwJo6qPyM7m8gqekl37HUXr8jgq0g_fniOq
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQW4leeFcNhdYHTkgRSZyHza1CrBaxXYFYRG-W7dhooWSreovUf8-M7Q0UUA9wXq-TeF7f2ONvCHlWd0XLDVd5z0yb16pnuda2z5tWg0xcp5QO7Pqzbj7np6fiXdpw86msEnNoF4kigq9G48bN6Gjhgr_4oryKVJPrbwUPd8y3G4izyJ2_mHz66Ym70HcSUE2Vl3Uj0qnmX6e4Fpd2MBld-t_oSzcli1g_qTwsoYu9L_5w4yE2Te7-71fdI3cSKqXHUY3uk1t2eEB2EYhGHueH5P2HJdYeqsGuLj1dIDfH8JmuHA2bV7an06tzvMzlrX9JJ8twV4bOITSeWU-XAz1JhYt0qq4AkJqv_hH5OHm9eDXNUzuG3EAWtca6w6oxurNOOaHbqrCQirBSC1Ni1sOVNlowVaOAm6aDoGdrqwulWhC-ZY7tka1hNdh9Qm3HbKlqy3qha6cdt5D2WM1Fa5xzTGSk2AhDmsRVji0zzmTIWQSXuFjYQlPItFgZeT7-5TwSddw0eD9KeBzasooj-oRHN7_KXK7DxkmStGQ3TLkXlGOcEZAwgOemzsjhNW0ZBwAwC8faGTnYqI9MDsTLqqvbCqBcmZGj8VewfDzOiaKWeOAKaLR8_I9vfERuTxcnMzl7M397QHar1BijKJ-QrfXFpX1Kdsx3ULOLw2BVPwAglSfU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQqVAvfFcNpa0PnJAikthxbG5VabSIsipiEb1ZtmNXCyW7qrdI_feMHW-ggHqAcxwn8ZsZv8mMZxB6QZuCccNV3hHDcqo6kmttu7xmGjBxjVI6Vtc_aaZTfnYmTlNujk9plcGHdkOhiGirg3IvOzcouOCvviivhkqTq28Fj0fM7wJtZkHAZ-3nn4a4iW0ngdRUeUlrkYKaf53ixra0GXzRuf-teuk6YzGkTyoPK-iG1hd_WPG4NbUP_vOjHqL7iZPiw0GIHqE7tn-MtgINHao4P0EfPs5D5qHq7eLK41mozNGf44XD8deV7fDkehmOcnnrX-N2Hk_K4ClsjBfW43mP36e0RTxR10BHzVf_FH1qj2dHkzw1Y8gN-FCrkHVY1UY31iknNKsKC44IKbUwZfB5uNJGC6JogLeuG9jyLLW6UIoB9JY4so02-kVvdxC2DbGlopZ0QlOnHbeAntVcMOOcIyJDxRoLaVKl8tAw40JGj0VwGRYrNNAUMi1Whl6OtyyHMh23Dd4ZAB6HMlLxwD3h0fWvkMtV_G2SgJbklim3o2yMMwIPBupc0wzt3xCWcQDQshjUztDuWnpkMh9eVg1lFRC5MkMH41XQ-xDMGaCWIdwKXLR89o9vfIDunb5p5cnb6btdtFWlrhhF-RxtrC6v7B7aNN9Byi73o079AJ5YJoY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+testing+of+grouped+hypotheses%3A+finding+needles+in+multiple+haystacks&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Cai%2C+T+Tony&rft.au=Sun%2C+Wenguang&rft.date=2009-12-01&rft.issn=0162-1459&rft.volume=104&rft.issue=488&rft.spage=1467&rft.epage=1481&rft_id=info:doi/10.1198%2Fjasa.2009.tm08415&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon