Highly efficient nonprecious metal catalyst prepared with metal-organic framework in a continuous carbon nanofibrous network
Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NP...
Uložené v:
| Vydané v: | Proceedings of the National Academy of Sciences - PNAS Ročník 112; číslo 34; s. 10629 - 10634 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
25.08.2015
|
| Predmet: | |
| ISSN: | 1091-6490 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NPMCs) represent attractive low-cost alternatives. However, a significantly lower turnover frequency at the individual catalytic site renders the traditional carbon-supported NPMCs inadequate in reaching the desired performance afforded by Pt. Unconventional catalyst design aiming at maximizing the active site density at much improved mass and charge transports is essential for the next-generation NPMC. We report here a method of preparing highly efficient, nanofibrous NPMC for cathodic oxygen reduction reaction by electrospinning a polymer solution containing ferrous organometallics and zeolitic imidazolate framework followed by thermal activation. The catalyst offers a carbon nanonetwork architecture made of microporous nanofibers decorated by uniformly distributed high-density active sites. In a single-cell test, the membrane electrode containing such a catalyst delivered unprecedented volumetric activities of 3.3 A ⋅ cm(-3) at 0.9 V or 450 A ⋅ cm(-3) extrapolated at 0.8 V, representing the highest reported value in the literature. Improved fuel cell durability was also observed. |
|---|---|
| AbstractList | Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NPMCs) represent attractive low-cost alternatives. However, a significantly lower turnover frequency at the individual catalytic site renders the traditional carbon-supported NPMCs inadequate in reaching the desired performance afforded by Pt. Unconventional catalyst design aiming at maximizing the active site density at much improved mass and charge transports is essential for the next-generation NPMC. We report here a method of preparing highly efficient, nanofibrous NPMC for cathodic oxygen reduction reaction by electrospinning a polymer solution containing ferrous organometallics and zeolitic imidazolate framework followed by thermal activation. The catalyst offers a carbon nanonetwork architecture made of microporous nanofibers decorated by uniformly distributed high-density active sites. In a single-cell test, the membrane electrode containing such a catalyst delivered unprecedented volumetric activities of 3.3 A ⋅ cm(-3) at 0.9 V or 450 A ⋅ cm(-3) extrapolated at 0.8 V, representing the highest reported value in the literature. Improved fuel cell durability was also observed. |
| Author | Chen, Chen Zhao, Dan Shui, Jianglan Liu, Di-Jia Grabstanowicz, Lauren |
| Author_xml | – sequence: 1 givenname: Jianglan surname: Shui fullname: Shui, Jianglan organization: Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439; School of Materials Science and Engineering, Beihang University, Beijing 100191, People's Republic of China – sequence: 2 givenname: Chen surname: Chen fullname: Chen, Chen organization: Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 – sequence: 3 givenname: Lauren surname: Grabstanowicz fullname: Grabstanowicz, Lauren organization: Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439; Alcoa Technical Center, New Kensington, PA 15068 – sequence: 4 givenname: Dan surname: Zhao fullname: Zhao, Dan organization: Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576 – sequence: 5 givenname: Di-Jia surname: Liu fullname: Liu, Di-Jia email: djliu@anl.gov organization: Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439; djliu@anl.gov |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26261338$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1kL1PwzAQxS0Eoh8wsyGPLCm2E9v1iCqgSJVYYK4c59waEifYjqpK_PEkalnupHc_Pd17M3TpWw8I3VGyoETmj53XcUE5kZQrStkFmlKiaCYKRSZoFuMXIUTxJblGEyaYoHm-nKLftdvt6yMGa51x4BMeXLsAxrV9xA0kXWOjh3mMCQ96pwNU-ODS_nTM2rDT3hlsg27g0IZv7DzW2LQ-Od-PJkaHsvXYa99aV4ZR8pBG9AZdWV1HuD3vOfp8ef5YrbPN--vb6mmTmULxlAkgICUVzPCqKDU3lS1JZRTnzBaGCSXLnORAl6qsBCdKWyMgHxNSGCoo2Bw9nHy70P70ENO2cdFAXWsPwztbKonkXEhGBvT-jPZlA9W2C67R4bj9b4z9AU40cMw |
| CitedBy_id | crossref_primary_10_1016_j_jechem_2019_03_025 crossref_primary_10_1002_ange_201912275 crossref_primary_10_1007_s12274_020_2702_3 crossref_primary_10_1016_j_jechem_2018_01_019 crossref_primary_10_1002_aic_16140 crossref_primary_10_1002_celc_201800420 crossref_primary_10_1016_j_ijhydene_2022_08_003 crossref_primary_10_1039_C8CY01973H crossref_primary_10_1126_science_aau0630 crossref_primary_10_1039_C5CC08439C crossref_primary_10_1002_celc_201700939 crossref_primary_10_1016_j_apcatb_2019_117849 crossref_primary_10_1016_j_apcatb_2016_02_028 crossref_primary_10_1155_2023_9148994 crossref_primary_10_1016_j_ijhydene_2016_08_193 crossref_primary_10_1002_ange_202106661 crossref_primary_10_1002_adma_201600979 crossref_primary_10_1002_adfm_202507376 crossref_primary_10_1007_s40820_021_00669_5 crossref_primary_10_1016_j_ccr_2023_215434 crossref_primary_10_1007_s40843_023_2447_4 crossref_primary_10_1016_j_nanoen_2018_07_033 crossref_primary_10_1002_anie_201610738 crossref_primary_10_1016_j_nanoen_2016_11_033 crossref_primary_10_1016_j_pnsc_2020_08_010 crossref_primary_10_1038_s42004_018_0071_6 crossref_primary_10_1016_j_ijhydene_2016_07_137 crossref_primary_10_1016_j_mattod_2021_02_006 crossref_primary_10_1002_celc_202400299 crossref_primary_10_1002_ange_202017288 crossref_primary_10_1002_aenm_202100514 crossref_primary_10_3390_catal9020144 crossref_primary_10_1002_adfm_201901531 crossref_primary_10_1021_jacs_6b09470 crossref_primary_10_1002_adma_201805623 crossref_primary_10_1002_ente_202101024 crossref_primary_10_1039_C9CY01303B crossref_primary_10_1007_s40042_023_00880_0 crossref_primary_10_3389_fchem_2020_00308 crossref_primary_10_1016_j_jallcom_2022_165118 crossref_primary_10_1002_fuce_201500122 crossref_primary_10_1016_j_checat_2022_12_001 crossref_primary_10_1007_s41918_018_0004_1 crossref_primary_10_1016_j_jelechem_2020_114170 crossref_primary_10_1146_annurev_chembioeng_080615_034526 crossref_primary_10_1002_adfm_202512498 crossref_primary_10_1002_cctc_202100132 crossref_primary_10_1016_j_electacta_2018_01_046 crossref_primary_10_26599_NR_2025_94907684 crossref_primary_10_1016_j_ces_2022_118077 crossref_primary_10_1002_ange_202208681 crossref_primary_10_1016_j_apcatb_2017_08_067 crossref_primary_10_1039_D2EY00055E crossref_primary_10_1016_j_jcat_2016_03_001 crossref_primary_10_1002_chem_201904233 crossref_primary_10_1002_celc_201701335 crossref_primary_10_1002_pola_28424 crossref_primary_10_1016_S1872_2067_23_64427_4 crossref_primary_10_3390_ma16083283 crossref_primary_10_1016_j_renene_2020_11_154 crossref_primary_10_1016_j_coelec_2020_08_009 crossref_primary_10_1002_celc_201801302 crossref_primary_10_1016_j_apcatb_2018_03_056 crossref_primary_10_1002_slct_202004709 crossref_primary_10_1007_s11244_018_0935_0 crossref_primary_10_1016_j_carbon_2018_12_008 crossref_primary_10_1002_celc_202000011 crossref_primary_10_1002_smll_201700238 crossref_primary_10_1016_j_scib_2017_10_020 crossref_primary_10_1002_adma_201604456 crossref_primary_10_1007_s11708_022_0849_1 crossref_primary_10_1016_j_cej_2021_128845 crossref_primary_10_1016_j_nanoms_2024_05_016 crossref_primary_10_1021_jacs_6b11248 crossref_primary_10_1002_cssc_201801583 crossref_primary_10_1080_10408436_2020_1805295 crossref_primary_10_1007_s12274_016_1400_7 crossref_primary_10_1016_j_chempr_2019_09_005 crossref_primary_10_1038_s41929_019_0237_3 crossref_primary_10_1039_D5RA04309C crossref_primary_10_1016_j_psep_2025_107240 crossref_primary_10_1002_anie_202017288 crossref_primary_10_1016_j_electacta_2025_146676 crossref_primary_10_1016_j_ijhydene_2020_07_237 crossref_primary_10_1016_j_apsusc_2020_147367 crossref_primary_10_1038_natrevmats_2017_75 crossref_primary_10_1002_adma_202008023 crossref_primary_10_1007_s10562_019_02694_x crossref_primary_10_1016_j_jechem_2018_12_019 crossref_primary_10_1021_jacs_2c00719 crossref_primary_10_1016_j_jallcom_2022_168210 crossref_primary_10_1002_celc_201600163 crossref_primary_10_1002_slct_202101624 crossref_primary_10_1039_C9SE00861F crossref_primary_10_1002_celc_201900332 crossref_primary_10_1016_j_enconman_2017_12_053 crossref_primary_10_1016_j_jpowsour_2018_08_096 crossref_primary_10_1002_smll_201704169 crossref_primary_10_1016_j_jallcom_2020_156994 crossref_primary_10_1002_EXP_20230052 crossref_primary_10_1016_j_nanoms_2022_01_003 crossref_primary_10_1021_jacs_6b09622 crossref_primary_10_1002_adma_201604556 crossref_primary_10_3390_nano14010014 crossref_primary_10_1002_cssc_201701038 crossref_primary_10_1002_fuce_201500164 crossref_primary_10_1002_adma_202208661 crossref_primary_10_1002_cssc_202002137 crossref_primary_10_1002_aenm_201700518 crossref_primary_10_1016_j_electacta_2023_143587 crossref_primary_10_1021_jacs_5b11015 crossref_primary_10_1002_sus2_84 crossref_primary_10_1039_D1QI00394A crossref_primary_10_1016_j_apsusc_2022_152529 crossref_primary_10_1007_s11426_024_2397_6 crossref_primary_10_1002_adma_201604437 crossref_primary_10_1038_srep23276 crossref_primary_10_1007_s12274_016_1374_5 crossref_primary_10_1002_aenm_201600423 crossref_primary_10_1002_celc_201800132 crossref_primary_10_1016_j_chemosphere_2022_135728 crossref_primary_10_1016_j_coelec_2018_04_010 crossref_primary_10_1016_j_apcatb_2019_118217 crossref_primary_10_1016_j_ijhydene_2016_11_118 crossref_primary_10_3390_chemengineering3010016 crossref_primary_10_1016_j_nanoms_2024_04_009 crossref_primary_10_1126_science_aan2255 crossref_primary_10_1007_s10008_015_3060_z crossref_primary_10_1021_jacs_2c04865 crossref_primary_10_1021_jacs_2c01594 crossref_primary_10_1002_aenm_201801257 crossref_primary_10_1016_j_apmt_2019_06_015 crossref_primary_10_1016_j_jechem_2020_11_014 crossref_primary_10_1016_j_jpowsour_2017_04_038 crossref_primary_10_1021_jacs_9b05576 crossref_primary_10_1016_j_electacta_2017_04_134 crossref_primary_10_1016_j_nanoen_2024_109413 crossref_primary_10_1002_adma_202006292 crossref_primary_10_1002_adma_202003577 crossref_primary_10_1039_C6CC06311J crossref_primary_10_1016_j_cej_2020_124323 crossref_primary_10_1016_j_materresbull_2021_111287 crossref_primary_10_1016_j_apcatb_2020_119400 crossref_primary_10_1007_s10853_018_2426_x crossref_primary_10_1016_j_chemosphere_2024_143040 crossref_primary_10_1016_j_fuel_2018_03_014 crossref_primary_10_1016_j_ijhydene_2019_07_022 crossref_primary_10_3390_en17143443 crossref_primary_10_1186_s40580_018_0144_3 crossref_primary_10_1002_smll_201601887 crossref_primary_10_1002_anie_202100897 crossref_primary_10_1007_s40242_020_0111_5 crossref_primary_10_1002_cplu_201600174 crossref_primary_10_1002_smll_201702109 crossref_primary_10_1007_s40042_023_00701_4 crossref_primary_10_1002_slct_201801419 crossref_primary_10_1016_j_jpowsour_2024_235101 crossref_primary_10_1002_adfm_201807624 crossref_primary_10_1002_anie_202208681 crossref_primary_10_1039_C9RA04862F crossref_primary_10_1016_j_nanoen_2016_04_008 crossref_primary_10_1016_j_apcatb_2016_12_016 crossref_primary_10_1002_admi_201700583 crossref_primary_10_1016_j_apcatb_2018_07_013 crossref_primary_10_1007_s12274_021_3827_8 crossref_primary_10_1038_ncomms13285 crossref_primary_10_1016_j_fuel_2025_136163 crossref_primary_10_1002_aenm_201803737 crossref_primary_10_1016_j_jelechem_2020_114696 crossref_primary_10_1007_s11426_020_9835_8 crossref_primary_10_1038_s41467_023_37529_2 crossref_primary_10_1039_D1EE00142F crossref_primary_10_1007_s10853_019_04327_5 crossref_primary_10_1002_adma_201804846 crossref_primary_10_1016_j_fuel_2023_129300 crossref_primary_10_1002_anie_202106661 crossref_primary_10_1002_nadc_20174055316 crossref_primary_10_1016_j_jwpe_2025_107444 crossref_primary_10_1557_jmr_2020_166 crossref_primary_10_1002_ange_201610738 crossref_primary_10_1007_s11581_019_03364_z crossref_primary_10_1002_smtd_201800059 crossref_primary_10_1016_j_snb_2020_128243 crossref_primary_10_1002_smll_202002203 crossref_primary_10_1007_s41918_018_0024_x crossref_primary_10_1016_j_carbon_2016_10_046 crossref_primary_10_1016_j_chempr_2019_07_020 crossref_primary_10_1007_s10562_023_04501_0 crossref_primary_10_1002_aenm_202102665 crossref_primary_10_1126_science_ade1499 crossref_primary_10_1002_ente_201900964 crossref_primary_10_1016_j_snb_2019_02_028 crossref_primary_10_1002_ejic_202300711 crossref_primary_10_1002_smll_201803500 crossref_primary_10_1016_j_jpowsour_2017_07_028 crossref_primary_10_1016_j_nanoen_2016_02_038 crossref_primary_10_1002_cctc_201800771 crossref_primary_10_1016_j_cej_2022_136586 crossref_primary_10_3389_fchem_2019_00747 crossref_primary_10_1002_celc_202300131 crossref_primary_10_1002_fuce_201700209 crossref_primary_10_1016_j_jiec_2021_03_004 crossref_primary_10_1016_j_jpowsour_2018_10_074 crossref_primary_10_1002_cctc_201901242 crossref_primary_10_1002_chem_201804312 crossref_primary_10_1016_j_nanoen_2018_10_029 crossref_primary_10_1007_s10853_018_2683_8 crossref_primary_10_1016_j_apcatb_2019_118507 crossref_primary_10_1038_ncomms15938 crossref_primary_10_1016_j_jpowsour_2020_228184 crossref_primary_10_1016_j_nanoen_2020_104791 crossref_primary_10_1016_j_electacta_2016_08_006 crossref_primary_10_1016_j_jpowsour_2021_230537 crossref_primary_10_1039_D3SE01275A crossref_primary_10_3390_ma14010045 crossref_primary_10_1002_smll_201704207 crossref_primary_10_1016_j_ijhydene_2024_10_270 crossref_primary_10_1002_advs_202002249 crossref_primary_10_3390_catal11060715 crossref_primary_10_1016_j_jpowsour_2016_05_035 crossref_primary_10_1002_smll_202001743 crossref_primary_10_1016_j_ijhydene_2021_07_123 crossref_primary_10_1002_aenm_201701345 crossref_primary_10_1016_j_ces_2021_117038 crossref_primary_10_1007_s41918_020_00080_5 crossref_primary_10_1016_j_jcat_2019_10_022 crossref_primary_10_1016_j_mtener_2021_100641 crossref_primary_10_1002_celc_202000351 crossref_primary_10_1002_celc_201800086 crossref_primary_10_1016_j_jechem_2021_10_014 crossref_primary_10_1016_j_jallcom_2019_07_298 crossref_primary_10_1016_j_checat_2023_100541 crossref_primary_10_1002_celc_201801050 crossref_primary_10_1016_j_rser_2025_115631 crossref_primary_10_1002_adfm_202006771 crossref_primary_10_1002_ange_201709597 crossref_primary_10_1016_j_trechm_2021_05_009 crossref_primary_10_1088_1361_6528_ac4fe3 crossref_primary_10_1016_j_ijhydene_2017_04_236 crossref_primary_10_1002_anie_201912275 crossref_primary_10_1002_smll_201701143 crossref_primary_10_1073_pnas_1813605115 crossref_primary_10_1002_adma_201806545 crossref_primary_10_1002_wene_466 crossref_primary_10_1007_s10853_022_07822_4 crossref_primary_10_1002_cctc_202000658 crossref_primary_10_1038_s41467_018_06279_x crossref_primary_10_1002_aenm_201903815 crossref_primary_10_1007_s40843_021_1700_5 crossref_primary_10_1016_j_coelec_2021_100724 crossref_primary_10_1016_j_jechem_2023_10_046 crossref_primary_10_1039_C8CY01140K crossref_primary_10_1002_celc_201800091 crossref_primary_10_1016_j_coelec_2021_100847 crossref_primary_10_1016_j_jpowsour_2023_232741 crossref_primary_10_1039_C9SC01154D crossref_primary_10_1016_j_cej_2022_135850 crossref_primary_10_1016_j_nanoen_2020_105734 crossref_primary_10_1002_anie_201709597 crossref_primary_10_1002_chem_201700439 crossref_primary_10_1002_ange_202100897 crossref_primary_10_1039_D0CY01600D crossref_primary_10_1002_aenm_202100219 crossref_primary_10_1007_s10800_019_01354_7 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1073/pnas.1507159112 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| EndPage | 10634 |
| ExternalDocumentID | 26261338 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 |
| ID | FETCH-LOGICAL-c495t-6e0e77162c5d4ba5cdfb0dc9552f4c2697b303e189bd6509afc6e326131e10942 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 362 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000360005600041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Fri Sep 05 10:07:33 EDT 2025 Thu Apr 03 07:07:03 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 34 |
| Keywords | metal–organic framework fuel cell nanofibrous nonprecious metal catalyst oxygen reduction |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c495t-6e0e77162c5d4ba5cdfb0dc9552f4c2697b303e189bd6509afc6e326131e10942 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://doi.org/10.1073/pnas.1507159112 |
| PMID | 26261338 |
| PQID | 1707556720 |
| PQPubID | 23479 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_1707556720 pubmed_primary_26261338 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-08-25 |
| PublicationDateYYYYMMDD | 2015-08-25 |
| PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-25 day: 25 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2015 |
| References | 21077080 - Angew Chem Int Ed Engl. 2010 Dec 10;49(50):9640-3 23720422 - Angew Chem Int Ed Engl. 2013 Jul 1;52(27):6867-70 24357431 - Adv Mater. 2014 Feb;26(7):1093-7 24056308 - Sci Rep. 2013;3:2715 21811245 - Nat Commun. 2011;2:416 19260644 - Nano Lett. 2009 Apr;9(4):1307-14 21512028 - Science. 2011 Apr 22;332(6028):443-7 21557411 - Angew Chem Int Ed Engl. 2011 May 27;50(23):5339-43 19197058 - Science. 2009 Feb 6;323(5915):760-4 17967030 - J Am Chem Soc. 2007 Nov 21;129(46):14176-7 21294177 - Chemistry. 2011 Feb 11;17(7):2063-7 23804418 - Angew Chem Int Ed Engl. 2013 Aug 5;52(32):8349-53 16539496 - J Phys Chem B. 2006 Mar 23;110(11):5553-8 16957726 - Nature. 2006 Sep 7;443(7107):63-6 20355776 - ACS Appl Mater Interfaces. 2009 Aug;1(8):1623-39 19342583 - Science. 2009 Apr 3;324(5923):71-4 |
| References_xml | – reference: 19197058 - Science. 2009 Feb 6;323(5915):760-4 – reference: 21294177 - Chemistry. 2011 Feb 11;17(7):2063-7 – reference: 21077080 - Angew Chem Int Ed Engl. 2010 Dec 10;49(50):9640-3 – reference: 20355776 - ACS Appl Mater Interfaces. 2009 Aug;1(8):1623-39 – reference: 23804418 - Angew Chem Int Ed Engl. 2013 Aug 5;52(32):8349-53 – reference: 19342583 - Science. 2009 Apr 3;324(5923):71-4 – reference: 19260644 - Nano Lett. 2009 Apr;9(4):1307-14 – reference: 24056308 - Sci Rep. 2013;3:2715 – reference: 24357431 - Adv Mater. 2014 Feb;26(7):1093-7 – reference: 21512028 - Science. 2011 Apr 22;332(6028):443-7 – reference: 17967030 - J Am Chem Soc. 2007 Nov 21;129(46):14176-7 – reference: 21811245 - Nat Commun. 2011;2:416 – reference: 23720422 - Angew Chem Int Ed Engl. 2013 Jul 1;52(27):6867-70 – reference: 16539496 - J Phys Chem B. 2006 Mar 23;110(11):5553-8 – reference: 21557411 - Angew Chem Int Ed Engl. 2011 May 27;50(23):5339-43 – reference: 16957726 - Nature. 2006 Sep 7;443(7107):63-6 |
| SSID | ssj0009580 |
| Score | 2.6235905 |
| Snippet | Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 10629 |
| Title | Highly efficient nonprecious metal catalyst prepared with metal-organic framework in a continuous carbon nanofibrous network |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26261338 https://www.proquest.com/docview/1707556720 |
| Volume | 112 |
| WOSCitedRecordID | wos000360005600041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_qPHhR5-f8IoIHPUSbtkmak4g4vDh2UNhtJGkKA83qugkD_3hf2hS9CIKH9pDS9iV9yfu9l9ffQ-gi1ZRpIyMiTJ6S1OqISA1eilS84OD4WBmKTYjBIBuN5DAE3KqQVtmuifVCnU-Nj5HfUAHGjXERR7flO_FVo_zuaiihsYo6CUAZr9VilP0g3c2ils5HJDelU9V1DYAYSBD_jilr29Lf-q9U22gzoEp816hBF61Yt4O6Yd5W-DKQS1_tok-f2PG6xLamjgCLg8H_Lz3FxXRR4TcLWBzXIZ1lNcfQXieoYx-tbS6SpgyUwUWb1YUnDivsU94nbuEfYtRMTx12yoHi6plvck2y-R566T883z-SUIGBGHCc5oTbyArPMWVYnmrFTF7oKDeSsbhITcyl0GACLc2kzj0VnyoMtwAIaUItBccx3kdr0At76P8Nt9ykVCe5KNLEGgmHNbBMy0QZLWkPnbcjPAYN99sWylkQcfw9xj100HymcdlQcYxj7l-WZEd_uPsYbQDaYT4gHLMT1ClgfttTtG4-5pNqdlarDpwHw6cvPIHTkw |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+efficient+nonprecious+metal+catalyst+prepared+with+metal-organic+framework+in+a+continuous+carbon+nanofibrous+network&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Shui%2C+Jianglan&rft.au=Chen%2C+Chen&rft.au=Grabstanowicz%2C+Lauren&rft.au=Zhao%2C+Dan&rft.date=2015-08-25&rft.eissn=1091-6490&rft.volume=112&rft.issue=34&rft.spage=10629&rft_id=info:doi/10.1073%2Fpnas.1507159112&rft_id=info%3Apmid%2F26261338&rft_id=info%3Apmid%2F26261338&rft.externalDocID=26261338 |