Highly efficient nonprecious metal catalyst prepared with metal-organic framework in a continuous carbon nanofibrous network

Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NP...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the National Academy of Sciences - PNAS Ročník 112; číslo 34; s. 10629 - 10634
Hlavní autori: Shui, Jianglan, Chen, Chen, Grabstanowicz, Lauren, Zhao, Dan, Liu, Di-Jia
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 25.08.2015
Predmet:
ISSN:1091-6490
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NPMCs) represent attractive low-cost alternatives. However, a significantly lower turnover frequency at the individual catalytic site renders the traditional carbon-supported NPMCs inadequate in reaching the desired performance afforded by Pt. Unconventional catalyst design aiming at maximizing the active site density at much improved mass and charge transports is essential for the next-generation NPMC. We report here a method of preparing highly efficient, nanofibrous NPMC for cathodic oxygen reduction reaction by electrospinning a polymer solution containing ferrous organometallics and zeolitic imidazolate framework followed by thermal activation. The catalyst offers a carbon nanonetwork architecture made of microporous nanofibers decorated by uniformly distributed high-density active sites. In a single-cell test, the membrane electrode containing such a catalyst delivered unprecedented volumetric activities of 3.3 A ⋅ cm(-3) at 0.9 V or 450 A ⋅ cm(-3) extrapolated at 0.8 V, representing the highest reported value in the literature. Improved fuel cell durability was also observed.
AbstractList Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NPMCs) represent attractive low-cost alternatives. However, a significantly lower turnover frequency at the individual catalytic site renders the traditional carbon-supported NPMCs inadequate in reaching the desired performance afforded by Pt. Unconventional catalyst design aiming at maximizing the active site density at much improved mass and charge transports is essential for the next-generation NPMC. We report here a method of preparing highly efficient, nanofibrous NPMC for cathodic oxygen reduction reaction by electrospinning a polymer solution containing ferrous organometallics and zeolitic imidazolate framework followed by thermal activation. The catalyst offers a carbon nanonetwork architecture made of microporous nanofibers decorated by uniformly distributed high-density active sites. In a single-cell test, the membrane electrode containing such a catalyst delivered unprecedented volumetric activities of 3.3 A ⋅ cm(-3) at 0.9 V or 450 A ⋅ cm(-3) extrapolated at 0.8 V, representing the highest reported value in the literature. Improved fuel cell durability was also observed.
Author Chen, Chen
Zhao, Dan
Shui, Jianglan
Liu, Di-Jia
Grabstanowicz, Lauren
Author_xml – sequence: 1
  givenname: Jianglan
  surname: Shui
  fullname: Shui, Jianglan
  organization: Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439; School of Materials Science and Engineering, Beihang University, Beijing 100191, People's Republic of China
– sequence: 2
  givenname: Chen
  surname: Chen
  fullname: Chen, Chen
  organization: Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439
– sequence: 3
  givenname: Lauren
  surname: Grabstanowicz
  fullname: Grabstanowicz, Lauren
  organization: Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439; Alcoa Technical Center, New Kensington, PA 15068
– sequence: 4
  givenname: Dan
  surname: Zhao
  fullname: Zhao, Dan
  organization: Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576
– sequence: 5
  givenname: Di-Jia
  surname: Liu
  fullname: Liu, Di-Jia
  email: djliu@anl.gov
  organization: Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439; djliu@anl.gov
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26261338$$D View this record in MEDLINE/PubMed
BookMark eNo1kL1PwzAQxS0Eoh8wsyGPLCm2E9v1iCqgSJVYYK4c59waEifYjqpK_PEkalnupHc_Pd17M3TpWw8I3VGyoETmj53XcUE5kZQrStkFmlKiaCYKRSZoFuMXIUTxJblGEyaYoHm-nKLftdvt6yMGa51x4BMeXLsAxrV9xA0kXWOjh3mMCQ96pwNU-ODS_nTM2rDT3hlsg27g0IZv7DzW2LQ-Od-PJkaHsvXYa99aV4ZR8pBG9AZdWV1HuD3vOfp8ef5YrbPN--vb6mmTmULxlAkgICUVzPCqKDU3lS1JZRTnzBaGCSXLnORAl6qsBCdKWyMgHxNSGCoo2Bw9nHy70P70ENO2cdFAXWsPwztbKonkXEhGBvT-jPZlA9W2C67R4bj9b4z9AU40cMw
CitedBy_id crossref_primary_10_1016_j_jechem_2019_03_025
crossref_primary_10_1002_ange_201912275
crossref_primary_10_1007_s12274_020_2702_3
crossref_primary_10_1016_j_jechem_2018_01_019
crossref_primary_10_1002_aic_16140
crossref_primary_10_1002_celc_201800420
crossref_primary_10_1016_j_ijhydene_2022_08_003
crossref_primary_10_1039_C8CY01973H
crossref_primary_10_1126_science_aau0630
crossref_primary_10_1039_C5CC08439C
crossref_primary_10_1002_celc_201700939
crossref_primary_10_1016_j_apcatb_2019_117849
crossref_primary_10_1016_j_apcatb_2016_02_028
crossref_primary_10_1155_2023_9148994
crossref_primary_10_1016_j_ijhydene_2016_08_193
crossref_primary_10_1002_ange_202106661
crossref_primary_10_1002_adma_201600979
crossref_primary_10_1002_adfm_202507376
crossref_primary_10_1007_s40820_021_00669_5
crossref_primary_10_1016_j_ccr_2023_215434
crossref_primary_10_1007_s40843_023_2447_4
crossref_primary_10_1016_j_nanoen_2018_07_033
crossref_primary_10_1002_anie_201610738
crossref_primary_10_1016_j_nanoen_2016_11_033
crossref_primary_10_1016_j_pnsc_2020_08_010
crossref_primary_10_1038_s42004_018_0071_6
crossref_primary_10_1016_j_ijhydene_2016_07_137
crossref_primary_10_1016_j_mattod_2021_02_006
crossref_primary_10_1002_celc_202400299
crossref_primary_10_1002_ange_202017288
crossref_primary_10_1002_aenm_202100514
crossref_primary_10_3390_catal9020144
crossref_primary_10_1002_adfm_201901531
crossref_primary_10_1021_jacs_6b09470
crossref_primary_10_1002_adma_201805623
crossref_primary_10_1002_ente_202101024
crossref_primary_10_1039_C9CY01303B
crossref_primary_10_1007_s40042_023_00880_0
crossref_primary_10_3389_fchem_2020_00308
crossref_primary_10_1016_j_jallcom_2022_165118
crossref_primary_10_1002_fuce_201500122
crossref_primary_10_1016_j_checat_2022_12_001
crossref_primary_10_1007_s41918_018_0004_1
crossref_primary_10_1016_j_jelechem_2020_114170
crossref_primary_10_1146_annurev_chembioeng_080615_034526
crossref_primary_10_1002_adfm_202512498
crossref_primary_10_1002_cctc_202100132
crossref_primary_10_1016_j_electacta_2018_01_046
crossref_primary_10_26599_NR_2025_94907684
crossref_primary_10_1016_j_ces_2022_118077
crossref_primary_10_1002_ange_202208681
crossref_primary_10_1016_j_apcatb_2017_08_067
crossref_primary_10_1039_D2EY00055E
crossref_primary_10_1016_j_jcat_2016_03_001
crossref_primary_10_1002_chem_201904233
crossref_primary_10_1002_celc_201701335
crossref_primary_10_1002_pola_28424
crossref_primary_10_1016_S1872_2067_23_64427_4
crossref_primary_10_3390_ma16083283
crossref_primary_10_1016_j_renene_2020_11_154
crossref_primary_10_1016_j_coelec_2020_08_009
crossref_primary_10_1002_celc_201801302
crossref_primary_10_1016_j_apcatb_2018_03_056
crossref_primary_10_1002_slct_202004709
crossref_primary_10_1007_s11244_018_0935_0
crossref_primary_10_1016_j_carbon_2018_12_008
crossref_primary_10_1002_celc_202000011
crossref_primary_10_1002_smll_201700238
crossref_primary_10_1016_j_scib_2017_10_020
crossref_primary_10_1002_adma_201604456
crossref_primary_10_1007_s11708_022_0849_1
crossref_primary_10_1016_j_cej_2021_128845
crossref_primary_10_1016_j_nanoms_2024_05_016
crossref_primary_10_1021_jacs_6b11248
crossref_primary_10_1002_cssc_201801583
crossref_primary_10_1080_10408436_2020_1805295
crossref_primary_10_1007_s12274_016_1400_7
crossref_primary_10_1016_j_chempr_2019_09_005
crossref_primary_10_1038_s41929_019_0237_3
crossref_primary_10_1039_D5RA04309C
crossref_primary_10_1016_j_psep_2025_107240
crossref_primary_10_1002_anie_202017288
crossref_primary_10_1016_j_electacta_2025_146676
crossref_primary_10_1016_j_ijhydene_2020_07_237
crossref_primary_10_1016_j_apsusc_2020_147367
crossref_primary_10_1038_natrevmats_2017_75
crossref_primary_10_1002_adma_202008023
crossref_primary_10_1007_s10562_019_02694_x
crossref_primary_10_1016_j_jechem_2018_12_019
crossref_primary_10_1021_jacs_2c00719
crossref_primary_10_1016_j_jallcom_2022_168210
crossref_primary_10_1002_celc_201600163
crossref_primary_10_1002_slct_202101624
crossref_primary_10_1039_C9SE00861F
crossref_primary_10_1002_celc_201900332
crossref_primary_10_1016_j_enconman_2017_12_053
crossref_primary_10_1016_j_jpowsour_2018_08_096
crossref_primary_10_1002_smll_201704169
crossref_primary_10_1016_j_jallcom_2020_156994
crossref_primary_10_1002_EXP_20230052
crossref_primary_10_1016_j_nanoms_2022_01_003
crossref_primary_10_1021_jacs_6b09622
crossref_primary_10_1002_adma_201604556
crossref_primary_10_3390_nano14010014
crossref_primary_10_1002_cssc_201701038
crossref_primary_10_1002_fuce_201500164
crossref_primary_10_1002_adma_202208661
crossref_primary_10_1002_cssc_202002137
crossref_primary_10_1002_aenm_201700518
crossref_primary_10_1016_j_electacta_2023_143587
crossref_primary_10_1021_jacs_5b11015
crossref_primary_10_1002_sus2_84
crossref_primary_10_1039_D1QI00394A
crossref_primary_10_1016_j_apsusc_2022_152529
crossref_primary_10_1007_s11426_024_2397_6
crossref_primary_10_1002_adma_201604437
crossref_primary_10_1038_srep23276
crossref_primary_10_1007_s12274_016_1374_5
crossref_primary_10_1002_aenm_201600423
crossref_primary_10_1002_celc_201800132
crossref_primary_10_1016_j_chemosphere_2022_135728
crossref_primary_10_1016_j_coelec_2018_04_010
crossref_primary_10_1016_j_apcatb_2019_118217
crossref_primary_10_1016_j_ijhydene_2016_11_118
crossref_primary_10_3390_chemengineering3010016
crossref_primary_10_1016_j_nanoms_2024_04_009
crossref_primary_10_1126_science_aan2255
crossref_primary_10_1007_s10008_015_3060_z
crossref_primary_10_1021_jacs_2c04865
crossref_primary_10_1021_jacs_2c01594
crossref_primary_10_1002_aenm_201801257
crossref_primary_10_1016_j_apmt_2019_06_015
crossref_primary_10_1016_j_jechem_2020_11_014
crossref_primary_10_1016_j_jpowsour_2017_04_038
crossref_primary_10_1021_jacs_9b05576
crossref_primary_10_1016_j_electacta_2017_04_134
crossref_primary_10_1016_j_nanoen_2024_109413
crossref_primary_10_1002_adma_202006292
crossref_primary_10_1002_adma_202003577
crossref_primary_10_1039_C6CC06311J
crossref_primary_10_1016_j_cej_2020_124323
crossref_primary_10_1016_j_materresbull_2021_111287
crossref_primary_10_1016_j_apcatb_2020_119400
crossref_primary_10_1007_s10853_018_2426_x
crossref_primary_10_1016_j_chemosphere_2024_143040
crossref_primary_10_1016_j_fuel_2018_03_014
crossref_primary_10_1016_j_ijhydene_2019_07_022
crossref_primary_10_3390_en17143443
crossref_primary_10_1186_s40580_018_0144_3
crossref_primary_10_1002_smll_201601887
crossref_primary_10_1002_anie_202100897
crossref_primary_10_1007_s40242_020_0111_5
crossref_primary_10_1002_cplu_201600174
crossref_primary_10_1002_smll_201702109
crossref_primary_10_1007_s40042_023_00701_4
crossref_primary_10_1002_slct_201801419
crossref_primary_10_1016_j_jpowsour_2024_235101
crossref_primary_10_1002_adfm_201807624
crossref_primary_10_1002_anie_202208681
crossref_primary_10_1039_C9RA04862F
crossref_primary_10_1016_j_nanoen_2016_04_008
crossref_primary_10_1016_j_apcatb_2016_12_016
crossref_primary_10_1002_admi_201700583
crossref_primary_10_1016_j_apcatb_2018_07_013
crossref_primary_10_1007_s12274_021_3827_8
crossref_primary_10_1038_ncomms13285
crossref_primary_10_1016_j_fuel_2025_136163
crossref_primary_10_1002_aenm_201803737
crossref_primary_10_1016_j_jelechem_2020_114696
crossref_primary_10_1007_s11426_020_9835_8
crossref_primary_10_1038_s41467_023_37529_2
crossref_primary_10_1039_D1EE00142F
crossref_primary_10_1007_s10853_019_04327_5
crossref_primary_10_1002_adma_201804846
crossref_primary_10_1016_j_fuel_2023_129300
crossref_primary_10_1002_anie_202106661
crossref_primary_10_1002_nadc_20174055316
crossref_primary_10_1016_j_jwpe_2025_107444
crossref_primary_10_1557_jmr_2020_166
crossref_primary_10_1002_ange_201610738
crossref_primary_10_1007_s11581_019_03364_z
crossref_primary_10_1002_smtd_201800059
crossref_primary_10_1016_j_snb_2020_128243
crossref_primary_10_1002_smll_202002203
crossref_primary_10_1007_s41918_018_0024_x
crossref_primary_10_1016_j_carbon_2016_10_046
crossref_primary_10_1016_j_chempr_2019_07_020
crossref_primary_10_1007_s10562_023_04501_0
crossref_primary_10_1002_aenm_202102665
crossref_primary_10_1126_science_ade1499
crossref_primary_10_1002_ente_201900964
crossref_primary_10_1016_j_snb_2019_02_028
crossref_primary_10_1002_ejic_202300711
crossref_primary_10_1002_smll_201803500
crossref_primary_10_1016_j_jpowsour_2017_07_028
crossref_primary_10_1016_j_nanoen_2016_02_038
crossref_primary_10_1002_cctc_201800771
crossref_primary_10_1016_j_cej_2022_136586
crossref_primary_10_3389_fchem_2019_00747
crossref_primary_10_1002_celc_202300131
crossref_primary_10_1002_fuce_201700209
crossref_primary_10_1016_j_jiec_2021_03_004
crossref_primary_10_1016_j_jpowsour_2018_10_074
crossref_primary_10_1002_cctc_201901242
crossref_primary_10_1002_chem_201804312
crossref_primary_10_1016_j_nanoen_2018_10_029
crossref_primary_10_1007_s10853_018_2683_8
crossref_primary_10_1016_j_apcatb_2019_118507
crossref_primary_10_1038_ncomms15938
crossref_primary_10_1016_j_jpowsour_2020_228184
crossref_primary_10_1016_j_nanoen_2020_104791
crossref_primary_10_1016_j_electacta_2016_08_006
crossref_primary_10_1016_j_jpowsour_2021_230537
crossref_primary_10_1039_D3SE01275A
crossref_primary_10_3390_ma14010045
crossref_primary_10_1002_smll_201704207
crossref_primary_10_1016_j_ijhydene_2024_10_270
crossref_primary_10_1002_advs_202002249
crossref_primary_10_3390_catal11060715
crossref_primary_10_1016_j_jpowsour_2016_05_035
crossref_primary_10_1002_smll_202001743
crossref_primary_10_1016_j_ijhydene_2021_07_123
crossref_primary_10_1002_aenm_201701345
crossref_primary_10_1016_j_ces_2021_117038
crossref_primary_10_1007_s41918_020_00080_5
crossref_primary_10_1016_j_jcat_2019_10_022
crossref_primary_10_1016_j_mtener_2021_100641
crossref_primary_10_1002_celc_202000351
crossref_primary_10_1002_celc_201800086
crossref_primary_10_1016_j_jechem_2021_10_014
crossref_primary_10_1016_j_jallcom_2019_07_298
crossref_primary_10_1016_j_checat_2023_100541
crossref_primary_10_1002_celc_201801050
crossref_primary_10_1016_j_rser_2025_115631
crossref_primary_10_1002_adfm_202006771
crossref_primary_10_1002_ange_201709597
crossref_primary_10_1016_j_trechm_2021_05_009
crossref_primary_10_1088_1361_6528_ac4fe3
crossref_primary_10_1016_j_ijhydene_2017_04_236
crossref_primary_10_1002_anie_201912275
crossref_primary_10_1002_smll_201701143
crossref_primary_10_1073_pnas_1813605115
crossref_primary_10_1002_adma_201806545
crossref_primary_10_1002_wene_466
crossref_primary_10_1007_s10853_022_07822_4
crossref_primary_10_1002_cctc_202000658
crossref_primary_10_1038_s41467_018_06279_x
crossref_primary_10_1002_aenm_201903815
crossref_primary_10_1007_s40843_021_1700_5
crossref_primary_10_1016_j_coelec_2021_100724
crossref_primary_10_1016_j_jechem_2023_10_046
crossref_primary_10_1039_C8CY01140K
crossref_primary_10_1002_celc_201800091
crossref_primary_10_1016_j_coelec_2021_100847
crossref_primary_10_1016_j_jpowsour_2023_232741
crossref_primary_10_1039_C9SC01154D
crossref_primary_10_1016_j_cej_2022_135850
crossref_primary_10_1016_j_nanoen_2020_105734
crossref_primary_10_1002_anie_201709597
crossref_primary_10_1002_chem_201700439
crossref_primary_10_1002_ange_202100897
crossref_primary_10_1039_D0CY01600D
crossref_primary_10_1002_aenm_202100219
crossref_primary_10_1007_s10800_019_01354_7
ContentType Journal Article
DBID NPM
7X8
DOI 10.1073/pnas.1507159112
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 10634
ExternalDocumentID 26261338
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ID FETCH-LOGICAL-c495t-6e0e77162c5d4ba5cdfb0dc9552f4c2697b303e189bd6509afc6e326131e10942
IEDL.DBID 7X8
ISICitedReferencesCount 362
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000360005600041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Fri Sep 05 10:07:33 EDT 2025
Thu Apr 03 07:07:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 34
Keywords metal–organic framework
fuel cell
nanofibrous
nonprecious metal catalyst
oxygen reduction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-6e0e77162c5d4ba5cdfb0dc9552f4c2697b303e189bd6509afc6e326131e10942
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1073/pnas.1507159112
PMID 26261338
PQID 1707556720
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1707556720
pubmed_primary_26261338
PublicationCentury 2000
PublicationDate 2015-08-25
PublicationDateYYYYMMDD 2015-08-25
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2015
References 21077080 - Angew Chem Int Ed Engl. 2010 Dec 10;49(50):9640-3
23720422 - Angew Chem Int Ed Engl. 2013 Jul 1;52(27):6867-70
24357431 - Adv Mater. 2014 Feb;26(7):1093-7
24056308 - Sci Rep. 2013;3:2715
21811245 - Nat Commun. 2011;2:416
19260644 - Nano Lett. 2009 Apr;9(4):1307-14
21512028 - Science. 2011 Apr 22;332(6028):443-7
21557411 - Angew Chem Int Ed Engl. 2011 May 27;50(23):5339-43
19197058 - Science. 2009 Feb 6;323(5915):760-4
17967030 - J Am Chem Soc. 2007 Nov 21;129(46):14176-7
21294177 - Chemistry. 2011 Feb 11;17(7):2063-7
23804418 - Angew Chem Int Ed Engl. 2013 Aug 5;52(32):8349-53
16539496 - J Phys Chem B. 2006 Mar 23;110(11):5553-8
16957726 - Nature. 2006 Sep 7;443(7107):63-6
20355776 - ACS Appl Mater Interfaces. 2009 Aug;1(8):1623-39
19342583 - Science. 2009 Apr 3;324(5923):71-4
References_xml – reference: 19197058 - Science. 2009 Feb 6;323(5915):760-4
– reference: 21294177 - Chemistry. 2011 Feb 11;17(7):2063-7
– reference: 21077080 - Angew Chem Int Ed Engl. 2010 Dec 10;49(50):9640-3
– reference: 20355776 - ACS Appl Mater Interfaces. 2009 Aug;1(8):1623-39
– reference: 23804418 - Angew Chem Int Ed Engl. 2013 Aug 5;52(32):8349-53
– reference: 19342583 - Science. 2009 Apr 3;324(5923):71-4
– reference: 19260644 - Nano Lett. 2009 Apr;9(4):1307-14
– reference: 24056308 - Sci Rep. 2013;3:2715
– reference: 24357431 - Adv Mater. 2014 Feb;26(7):1093-7
– reference: 21512028 - Science. 2011 Apr 22;332(6028):443-7
– reference: 17967030 - J Am Chem Soc. 2007 Nov 21;129(46):14176-7
– reference: 21811245 - Nat Commun. 2011;2:416
– reference: 23720422 - Angew Chem Int Ed Engl. 2013 Jul 1;52(27):6867-70
– reference: 16539496 - J Phys Chem B. 2006 Mar 23;110(11):5553-8
– reference: 21557411 - Angew Chem Int Ed Engl. 2011 May 27;50(23):5339-43
– reference: 16957726 - Nature. 2006 Sep 7;443(7107):63-6
SSID ssj0009580
Score 2.6235905
Snippet Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 10629
Title Highly efficient nonprecious metal catalyst prepared with metal-organic framework in a continuous carbon nanofibrous network
URI https://www.ncbi.nlm.nih.gov/pubmed/26261338
https://www.proquest.com/docview/1707556720
Volume 112
WOSCitedRecordID wos000360005600041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_qPHhR5-f8IoIHPUSbtkmak4g4vDh2UNhtJGkKA83qugkD_3hf2hS9CIKH9pDS9iV9yfu9l9ffQ-gi1ZRpIyMiTJ6S1OqISA1eilS84OD4WBmKTYjBIBuN5DAE3KqQVtmuifVCnU-Nj5HfUAHGjXERR7flO_FVo_zuaiihsYo6CUAZr9VilP0g3c2ils5HJDelU9V1DYAYSBD_jilr29Lf-q9U22gzoEp816hBF61Yt4O6Yd5W-DKQS1_tok-f2PG6xLamjgCLg8H_Lz3FxXRR4TcLWBzXIZ1lNcfQXieoYx-tbS6SpgyUwUWb1YUnDivsU94nbuEfYtRMTx12yoHi6plvck2y-R566T883z-SUIGBGHCc5oTbyArPMWVYnmrFTF7oKDeSsbhITcyl0GACLc2kzj0VnyoMtwAIaUItBccx3kdr0At76P8Nt9ykVCe5KNLEGgmHNbBMy0QZLWkPnbcjPAYN99sWylkQcfw9xj100HymcdlQcYxj7l-WZEd_uPsYbQDaYT4gHLMT1ClgfttTtG4-5pNqdlarDpwHw6cvPIHTkw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+efficient+nonprecious+metal+catalyst+prepared+with+metal-organic+framework+in+a+continuous+carbon+nanofibrous+network&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Shui%2C+Jianglan&rft.au=Chen%2C+Chen&rft.au=Grabstanowicz%2C+Lauren&rft.au=Zhao%2C+Dan&rft.date=2015-08-25&rft.eissn=1091-6490&rft.volume=112&rft.issue=34&rft.spage=10629&rft_id=info:doi/10.1073%2Fpnas.1507159112&rft_id=info%3Apmid%2F26261338&rft_id=info%3Apmid%2F26261338&rft.externalDocID=26261338