On Controllability of Neuronal Networks With Constraints on the Average of Control Gains
Control gains play an important role in the control of a natural or a technical system since they reflect how much resource is required to optimize a certain control objective. This paper is concerned with the controllability of neuronal networks with constraints on the average value of the control...
Uloženo v:
| Vydáno v: | IEEE transactions on cybernetics Ročník 44; číslo 12; s. 2670 - 2681 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.12.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Control gains play an important role in the control of a natural or a technical system since they reflect how much resource is required to optimize a certain control objective. This paper is concerned with the controllability of neuronal networks with constraints on the average value of the control gains injected in driver nodes, which are in accordance with engineering and biological backgrounds. In order to deal with the constraints on control gains, the controllability problem is transformed into a constrained optimization problem (COP). The introduction of the constraints on the control gains unavoidably leads to substantial difficulty in finding feasible as well as refining solutions. As such, a modified dynamic hybrid framework (MDyHF) is developed to solve this COP, based on an adaptive differential evolution and the concept of Pareto dominance. By comparing with statistical methods and several recently reported constrained optimization evolutionary algorithms (COEAs), we show that our proposed MDyHF is competitive and promising in studying the controllability of neuronal networks. Based on the MDyHF, we proceed to show the controlling regions under different levels of constraints. It is revealed that we should allocate the control gains economically when strong constraints are considered. In addition, it is found that as the constraints become more restrictive, the driver nodes are more likely to be selected from the nodes with a large degree. The results and methods presented in this paper will provide useful insights into developing new techniques to control a realistic complex network efficiently. |
|---|---|
| AbstractList | Control gains play an important role in the control of a natural or a technical system since they reflect how much resource is required to optimize a certain control objective. This paper is concerned with the controllability of neuronal networks with constraints on the average value of the control gains injected in driver nodes, which are in accordance with engineering and biological backgrounds. In order to deal with the constraints on control gains, the controllability problem is transformed into a constrained optimization problem (COP). The introduction of the constraints on the control gains unavoidably leads to substantial difficulty in finding feasible as well as refining solutions. As such, a modified dynamic hybrid framework (MDyHF) is developed to solve this COP, based on an adaptive differential evolution and the concept of Pareto dominance. By comparing with statistical methods and several recently reported constrained optimization evolutionary algorithms (COEAs), we show that our proposed MDyHF is competitive and promising in studying the controllability of neuronal networks. Based on the MDyHF, we proceed to show the controlling regions under different levels of constraints. It is revealed that we should allocate the control gains economically when strong constraints are considered. In addition, it is found that as the constraints become more restrictive, the driver nodes are more likely to be selected from the nodes with a large degree. The results and methods presented in this paper will provide useful insights into developing new techniques to control a realistic complex network efficiently. Control gains play an important role in the control of a natural or a technical system since they reflect how much resource is required to optimize a certain control objective. This paper is concerned with the controllability of neuronal networks with constraints on the average value of the control gains injected in driver nodes, which are in accordance with engineering and biological backgrounds. In order to deal with the constraints on control gains, the controllability problem is transformed into a constrained optimization problem (COP). The introduction of the constraints on the control gains unavoidably leads to substantial difficulty in finding feasible as well as refining solutions. As such, a modified dynamic hybrid framework (MDyHF) is developed to solve this COP, based on an adaptive differential evolution and the concept of Pareto dominance. By comparing with statistical methods and several recently reported constrained optimization evolutionary algorithms (COEAs), we show that our proposed MDyHF is competitive and promising in studying the controllability of neuronal networks. Based on the MDyHF, we proceed to show the controlling regions under different levels of constraints. It is revealed that we should allocate the control gains economically when strong constraints are considered. In addition, it is found that as the constraints become more restrictive, the driver nodes are more likely to be selected from the nodes with a large degree. The results and methods presented in this paper will provide useful insights into developing new techniques to control a realistic complex network efficiently.Control gains play an important role in the control of a natural or a technical system since they reflect how much resource is required to optimize a certain control objective. This paper is concerned with the controllability of neuronal networks with constraints on the average value of the control gains injected in driver nodes, which are in accordance with engineering and biological backgrounds. In order to deal with the constraints on control gains, the controllability problem is transformed into a constrained optimization problem (COP). The introduction of the constraints on the control gains unavoidably leads to substantial difficulty in finding feasible as well as refining solutions. As such, a modified dynamic hybrid framework (MDyHF) is developed to solve this COP, based on an adaptive differential evolution and the concept of Pareto dominance. By comparing with statistical methods and several recently reported constrained optimization evolutionary algorithms (COEAs), we show that our proposed MDyHF is competitive and promising in studying the controllability of neuronal networks. Based on the MDyHF, we proceed to show the controlling regions under different levels of constraints. It is revealed that we should allocate the control gains economically when strong constraints are considered. In addition, it is found that as the constraints become more restrictive, the driver nodes are more likely to be selected from the nodes with a large degree. The results and methods presented in this paper will provide useful insights into developing new techniques to control a realistic complex network efficiently. |
| Author | Zidong Wang Kurths, Jurgen Yang Tang Hong Qiao Huijun Gao |
| Author_xml | – sequence: 1 surname: Yang Tang fullname: Yang Tang email: tangtany@gmail.com organization: Potsdam Inst. for Climate Impact Res., Potsdam, Germany – sequence: 2 surname: Zidong Wang fullname: Zidong Wang email: zidong.wang@brunel.ac.uk organization: Dept. of Comput. Sci., Brunel Univ., Uxbridge, UK – sequence: 3 surname: Huijun Gao fullname: Huijun Gao email: hjgao@hit.edu.cn organization: Res. Inst. of Intell. Control & Syst., Harbin Inst. of Technol., Harbin, China – sequence: 4 surname: Hong Qiao fullname: Hong Qiao email: hong.qiao@ia.ac.cn organization: State Key Lab. of Manage. & Control for Complex Syst., Inst. of Autom., Beijing, China – sequence: 5 givenname: Jurgen surname: Kurths fullname: Kurths, Jurgen email: Kurths@pik-potsdam.de organization: Potsdam Inst. for Climate Impact Res., Potsdam, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24733036$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUFv1DAQhS3UipbSH4CQUCQuXHbxeBI7PpYVlEpVeykCTpbjnVCXbFxsB9R_j8Nue-gB1RePrO89jd97wfbGMBJjr4AvAbh-f7X6_mEpONRLgYDQ1M_YoQDZLoRQzd7DLNUBO07phpfTlifdPmcHolaIHOUh-3Y5Vqsw5hiGwXZ-8PmuCn11QVMMox3KkP-E-DNVX32-nsmUo_VjTlUYq3xN1clvivYHzaKdT3VagPSS7fd2SHS8u4_Yl08fr1afF-eXp2erk_OFq3WTF9hJJ4WSrhYN71CvLRLIzjW9bTtHa41a9gAdCkE9IbZtp13jnJbcQd0SHrF3W9_bGH5NlLLZ-OSo_GakMCUDsoEaAUA-AS2LaAU4o28foTdhiiWQf5RUCpWeqTc7auo2tDa30W9svDP38RZAbQEXQ0qReuN8ttnPQVk_GOBm7tLMXZq5S7PrsijhkfLe_H-a11uNJ6IHXqpWcYH4FwdOp5o |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1016_j_jfranklin_2018_04_019 crossref_primary_10_1109_TCYB_2016_2571122 crossref_primary_10_1016_j_neunet_2015_12_008 crossref_primary_10_1016_j_jfranklin_2014_10_006 crossref_primary_10_1109_TNNLS_2017_2755697 crossref_primary_10_1007_s13369_015_1905_5 crossref_primary_10_1109_TAC_2024_3376302 crossref_primary_10_1109_TCYB_2015_2510746 crossref_primary_10_1109_TCYB_2021_3119199 crossref_primary_10_1109_TNNLS_2017_2678681 crossref_primary_10_1109_TNNLS_2022_3208449 crossref_primary_10_1109_TNNLS_2016_2598243 crossref_primary_10_1016_j_physa_2017_02_041 crossref_primary_10_1109_TCYB_2015_2453346 crossref_primary_10_3390_en9070557 crossref_primary_10_1016_j_neucom_2015_01_052 crossref_primary_10_1016_j_neunet_2017_06_014 crossref_primary_10_1016_j_neucom_2015_01_033 crossref_primary_10_1089_bioe_2020_0028 crossref_primary_10_1007_s10114_020_8167_1 crossref_primary_10_1109_TCYB_2015_2502619 crossref_primary_10_1016_j_neucom_2015_03_045 crossref_primary_10_1016_j_neunet_2020_05_012 crossref_primary_10_1016_j_neucom_2015_09_011 crossref_primary_10_1109_ACCESS_2024_3520735 crossref_primary_10_1016_j_neunet_2016_05_004 crossref_primary_10_1016_j_jfranklin_2014_09_006 crossref_primary_10_1016_j_neunet_2019_05_024 crossref_primary_10_1007_s12204_018_1933_x crossref_primary_10_1016_j_neucom_2020_05_003 crossref_primary_10_1016_j_physa_2015_02_051 crossref_primary_10_1109_TCBB_2015_2485226 crossref_primary_10_1016_j_jfranklin_2015_08_016 crossref_primary_10_1016_j_neucom_2015_01_040 crossref_primary_10_1109_TCYB_2018_2868470 crossref_primary_10_1109_TNNLS_2017_2705109 crossref_primary_10_1016_j_automatica_2020_108900 crossref_primary_10_1016_j_neucom_2020_09_003 crossref_primary_10_1016_j_neucom_2014_12_076 crossref_primary_10_1016_j_neucom_2018_01_046 crossref_primary_10_1016_j_ins_2016_04_033 crossref_primary_10_1109_TIE_2015_2453412 crossref_primary_10_1016_j_arcontrol_2014_09_003 |
| Cites_doi | 10.1103/PhysRevE.75.046103 10.1109/TNN.2009.2030585 10.1103/PhysRevLett.97.238103 10.1109/TCBB.2013.72 10.1371/journal.pone.0001049 10.1103/PhysRevLett.103.228702 10.1109/TEVC.2009.2014613 10.1007/s11633-012-0612-x 10.1162/evco.1996.4.1.1 10.1109/TNNLS.2011.2178311 10.1523/JNEUROSCI.15-02-01463.1995 10.1109/TEVC.2006.872344 10.1073/pnas.0406343101 10.1080/21642583.2013.817959 10.1371/journal.pone.0041375 10.1016/S0005-1098(03)00072-4 10.1371/journal.pcbi.1000190 10.1016/j.physrep.2008.09.002 10.1109/TNNLS.2013.2295966 10.1088/1367-2630/9/6/178 10.1111/j.1532-5415.1994.tb06069.x 10.1371/journal.pone.0012313 10.1098/rstb.2000.0551 10.1016/j.neuron.2006.09.020 10.1016/S0045-7825(01)00323-1 10.1109/TNN.2010.2066989 10.1109/TEVC.2010.2093582 10.1109/TCBB.2012.124 10.1038/nature10011 10.1103/PhysRevLett.94.138701 10.1007/s11633-013-0708-y 10.1109/TCSI.2009.2028645 10.1109/TSMCB.2009.2024408 10.1080/21642583.2013.789991 10.1109/TNNLS.2013.2257842 10.1093/cercor/9.3.277 10.1016/j.neuroimage.2009.10.003 10.1109/TSMCB.2012.2207718 10.1016/0005-1098(96)00063-5 10.1080/21642583.2013.839966 10.1016/j.automatica.2007.04.020 10.1007/s11633-013-0705-1 10.1038/nrn2575 10.1109/72.265964 10.1109/TSMCB.2011.2161467 10.1016/j.jprocont.2012.06.009 10.1109/TCSI.2013.2285699 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2014.2313154 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Aerospace Database PubMed MEDLINE - Academic Aerospace Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 2681 |
| ExternalDocumentID | 3503475351 24733036 10_1109_TCYB_2014_2313154 6787023 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Key Laboratory of Integrated Automation for the Process Industry (Northeastern University) – fundername: Alexander von Humboldt Foundation of Germany – fundername: National Natural Science Foundation of China grantid: 61329301; 61333012; 61203235; 61273201 funderid: 10.13039/501100001809 – fundername: IRTG 1740 (DFG) |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c495t-3b6c6276c4250b39da3e16bc5fa8bced9396f11b322efe3388b9c5cc960c148e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 49 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345629000035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Sun Sep 28 00:44:42 EDT 2025 Sun Sep 28 03:07:51 EDT 2025 Mon Jun 30 02:08:04 EDT 2025 Thu Jan 02 22:17:13 EST 2025 Sat Nov 29 06:48:28 EST 2025 Tue Nov 18 21:19:28 EST 2025 Tue Aug 26 16:49:28 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | synchronization/consensus controllability Complex networks evolutionary algorithms neural networks multiagent systems |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c495t-3b6c6276c4250b39da3e16bc5fa8bced9396f11b322efe3388b9c5cc960c148e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://bura.brunel.ac.uk/bitstream/2438/9772/1/Fulltext.pdf |
| PMID | 24733036 |
| PQID | 1626773796 |
| PQPubID | 85422 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1651431116 crossref_citationtrail_10_1109_TCYB_2014_2313154 crossref_primary_10_1109_TCYB_2014_2313154 pubmed_primary_24733036 proquest_miscellaneous_1627697136 proquest_journals_1626773796 ieee_primary_6787023 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-12-01 |
| PublicationDateYYYYMMDD | 2014-12-01 |
| PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2014 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref18 ref51 ref50 rumelhart (ref38) 1988 ref46 deb (ref45) 2002 ref42 ref41 rudolph (ref47) 1997 ref49 veldhuizen (ref48) 1998 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref24 ref23 ref25 ref20 ref22 ref21 harrison (ref26) 1998; 29 ref28 ref27 ren (ref19) 2008 ref29 scannell (ref34) 1995; 15 kluge (ref44) 2007; 9 mainland (ref43) 2005; 2 |
| References_xml | – ident: ref21 doi: 10.1103/PhysRevE.75.046103 – ident: ref5 doi: 10.1109/TNN.2009.2030585 – ident: ref7 doi: 10.1103/PhysRevLett.97.238103 – volume: 9 start-page: 57 year: 2007 ident: ref44 article-title: Resource allocation in healthcare: Implications of models of medicine as a profession publication-title: MedGenMed – ident: ref23 doi: 10.1109/TCBB.2013.72 – ident: ref9 doi: 10.1371/journal.pone.0001049 – ident: ref42 doi: 10.1103/PhysRevLett.103.228702 – ident: ref33 doi: 10.1109/TEVC.2009.2014613 – ident: ref50 doi: 10.1007/s11633-012-0612-x – ident: ref28 doi: 10.1162/evco.1996.4.1.1 – year: 1997 ident: ref47 publication-title: Convergence Properties of Evolutionary Algorithms – ident: ref6 doi: 10.1109/TNNLS.2011.2178311 – volume: 15 start-page: 1463 year: 1995 ident: ref34 article-title: Analysis of connectivity in the cat cerebral cortex publication-title: J Neurosci doi: 10.1523/JNEUROSCI.15-02-01463.1995 – ident: ref30 doi: 10.1109/TEVC.2006.872344 – ident: ref16 doi: 10.1073/pnas.0406343101 – ident: ref49 doi: 10.1080/21642583.2013.817959 – start-page: 221 year: 1998 ident: ref48 article-title: Evolutionary computation and convergence to a Pareto front publication-title: Proc Late Breaking Papers Genet Program Conf – ident: ref11 doi: 10.1371/journal.pone.0041375 – volume: 29 start-page: 223 year: 1998 ident: ref26 article-title: The beginning of the end of the antibiotic era? Part II. Proposed solutions to antibiotic abuse publication-title: Quintessence Int – ident: ref25 doi: 10.1016/S0005-1098(03)00072-4 – ident: ref8 doi: 10.1371/journal.pcbi.1000190 – ident: ref1 doi: 10.1016/j.physrep.2008.09.002 – year: 2008 ident: ref19 publication-title: Distributed Consensus in Multi-vehicle Cooperative Control Communications and Control Engineering Series – year: 2002 ident: ref45 publication-title: Multi-Objective Optimization Using Evolutionary Algorithms – ident: ref22 doi: 10.1109/TNNLS.2013.2295966 – ident: ref18 doi: 10.1088/1367-2630/9/6/178 – ident: ref27 doi: 10.1111/j.1532-5415.1994.tb06069.x – ident: ref10 doi: 10.1371/journal.pone.0012313 – ident: ref36 doi: 10.1098/rstb.2000.0551 – ident: ref17 doi: 10.1016/j.neuron.2006.09.020 – ident: ref29 doi: 10.1016/S0045-7825(01)00323-1 – ident: ref4 doi: 10.1109/TNN.2010.2066989 – ident: ref32 doi: 10.1109/TEVC.2010.2093582 – ident: ref24 doi: 10.1109/TCBB.2012.124 – ident: ref20 doi: 10.1038/nature10011 – ident: ref37 doi: 10.1103/PhysRevLett.94.138701 – year: 1988 ident: ref38 publication-title: Neurocomputing Foundations of Research Learning Internal Representations by Error Propagation – ident: ref52 doi: 10.1007/s11633-013-0708-y – volume: 2 start-page: 315 year: 2005 ident: ref43 article-title: Decentralized, adaptive resource allocation for sensor networks publication-title: Proc 2nd USENIX NSDI – ident: ref40 doi: 10.1109/TCSI.2009.2028645 – ident: ref12 doi: 10.1109/TSMCB.2009.2024408 – ident: ref54 doi: 10.1080/21642583.2013.789991 – ident: ref14 doi: 10.1109/TNNLS.2013.2257842 – ident: ref35 doi: 10.1093/cercor/9.3.277 – ident: ref2 doi: 10.1016/j.neuroimage.2009.10.003 – ident: ref15 doi: 10.1109/TSMCB.2012.2207718 – ident: ref39 doi: 10.1016/0005-1098(96)00063-5 – ident: ref55 doi: 10.1080/21642583.2013.839966 – ident: ref41 doi: 10.1016/j.automatica.2007.04.020 – ident: ref51 doi: 10.1007/s11633-013-0705-1 – ident: ref3 doi: 10.1038/nrn2575 – ident: ref46 doi: 10.1109/72.265964 – ident: ref31 doi: 10.1109/TSMCB.2011.2161467 – ident: ref53 doi: 10.1016/j.jprocont.2012.06.009 – ident: ref13 doi: 10.1109/TCSI.2013.2285699 |
| SSID | ssj0000816898 |
| Score | 2.2579432 |
| Snippet | Control gains play an important role in the control of a natural or a technical system since they reflect how much resource is required to optimize a certain... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2670 |
| SubjectTerms | Biological neural networks Collision avoidance systems Complex networks Constraints Control systems Controllability Dominance Educational institutions Evolution evolutionary algorithms Gain multiagent systems Networks neural networks Optimization Real time Statistical methods synchronization/consensus |
| Title | On Controllability of Neuronal Networks With Constraints on the Average of Control Gains |
| URI | https://ieeexplore.ieee.org/document/6787023 https://www.ncbi.nlm.nih.gov/pubmed/24733036 https://www.proquest.com/docview/1626773796 https://www.proquest.com/docview/1627697136 https://www.proquest.com/docview/1651431116 |
| Volume | 44 |
| WOSCitedRecordID | wos000345629000035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEL customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9wwDLcA8bCX8TXGsQNl0h7YRLn2ck2aRzhx8HTbA2i3pypNU4GEWkR7SPz3s5NcJaQNibdIddIotuOfE8cG-JbwtCrREkWqMFTCrCqjQicqEmh9tKwQ4pe-2IScz7PFQv1ag9P-LYy11gWf2TNqurv8sjFLOiobCZKuMV-HdSmFf6vVn6e4AhKu9O0YGxGiChkuMZNYjW6mfy4ojmtyhniGI2ygJMATyWkDf2WRXImV_6NNZ3VmW--b7zZ8DOiSnXtx2IE1W-_CTtDflp2EJNPf92Dxs2ZTH6b-4FN1v7CmYi5XBw0x9-HhLft9390RZeuKSXQta2qGoJGdow7gXkSdwjjsCgnaT3A7u7yZXkehykJk0DnqIl4II8ZSGNTeuOCq1NwmojBppbPC2FJxJaokKVDzbWXRo80KZVJj0PUx6EtZvg8bdVPbA2DYXyKjY6NlOsHV0DrLTKl1JQlK6nQA8WqlcxNSkNPkH3LnisQqJz7lxKc88GkAP_oujz7_xlvEe8SEnjCs_wCGK3bmQUPbPEFPTkoulRjA1_4z6hZdmOjaNktHI4VCN_5NGoKcaDGQ5rMXlf7_Kwk7_Pe8vsAHmr0PjhnCRve0tEewaZ67-_bpGIV8kR07If8L4nz09A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9wwDLf4mAQvDAYbx_jIJB42tB7t5Zo0j-zEl2DHHm7a7alK01QgoRbR3iT-e-w0V2nShsRbpTppGtvxz4ljAxxGPC5ytESBygyVMCvyINORCgRaHy0LhPh5W2xCjsfJdKp-LMDX7i6MtdYFn9k-Pbqz_LwyM9oqOxYkXQO-CMtUOcvf1up2VFwJCVf8doAPAeIK6Y8xo1AdT0a_v1Ek17CPiIYjcKA0wEPJaQn_yya5Iiv_x5vO7py9fd2I12HN40t20grEBizY8h1seA2u2WefZvrLJkxvSjZqA9Xv22TdT6wqmMvWQV2M2wDxmv26a26JsnblJJqaVSVD2MhOUAtwNaJGvh92jgT1Fvw8O52MLgJfZyEw6B41Ac-EEQMpDOpvmHGVa24jkZm40ElmbK64EkUUZaj7trDo0yaZMrEx6PwY9KYsfw9LZVXabWDYXiKrQ6NlPMTZ0DpJTK51IQlM6rgH4XymU-OTkNPg71PnjIQqJT6lxKfU86kHR12ThzYDx0vEm8SEjtDPfw925-xMvY7WaYS-nJRcKtGDT91r1C46MtGlrWaORgqFjvyLNAQ60WYgzYdWVLrvzyVs59_jOoCVi8n36_T6cnz1EVbpT9pQmV1Yah5ndg_emD_NXf2470T9GQST91U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+controllability+of+neuronal+networks+with+constraints+on+the+average+of+control+gains&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Tang%2C+Yang&rft.au=Wang%2C+Zidong&rft.au=Gao%2C+Huijun&rft.au=Qiao%2C+Hong&rft.date=2014-12-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=44&rft.issue=12&rft.spage=2670&rft_id=info:doi/10.1109%2FTCYB.2014.2313154&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |