On Controllability of Neuronal Networks With Constraints on the Average of Control Gains

Control gains play an important role in the control of a natural or a technical system since they reflect how much resource is required to optimize a certain control objective. This paper is concerned with the controllability of neuronal networks with constraints on the average value of the control...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on cybernetics Ročník 44; číslo 12; s. 2670 - 2681
Hlavní autoři: Yang Tang, Zidong Wang, Huijun Gao, Hong Qiao, Kurths, Jurgen
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.12.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Control gains play an important role in the control of a natural or a technical system since they reflect how much resource is required to optimize a certain control objective. This paper is concerned with the controllability of neuronal networks with constraints on the average value of the control gains injected in driver nodes, which are in accordance with engineering and biological backgrounds. In order to deal with the constraints on control gains, the controllability problem is transformed into a constrained optimization problem (COP). The introduction of the constraints on the control gains unavoidably leads to substantial difficulty in finding feasible as well as refining solutions. As such, a modified dynamic hybrid framework (MDyHF) is developed to solve this COP, based on an adaptive differential evolution and the concept of Pareto dominance. By comparing with statistical methods and several recently reported constrained optimization evolutionary algorithms (COEAs), we show that our proposed MDyHF is competitive and promising in studying the controllability of neuronal networks. Based on the MDyHF, we proceed to show the controlling regions under different levels of constraints. It is revealed that we should allocate the control gains economically when strong constraints are considered. In addition, it is found that as the constraints become more restrictive, the driver nodes are more likely to be selected from the nodes with a large degree. The results and methods presented in this paper will provide useful insights into developing new techniques to control a realistic complex network efficiently.
AbstractList Control gains play an important role in the control of a natural or a technical system since they reflect how much resource is required to optimize a certain control objective. This paper is concerned with the controllability of neuronal networks with constraints on the average value of the control gains injected in driver nodes, which are in accordance with engineering and biological backgrounds. In order to deal with the constraints on control gains, the controllability problem is transformed into a constrained optimization problem (COP). The introduction of the constraints on the control gains unavoidably leads to substantial difficulty in finding feasible as well as refining solutions. As such, a modified dynamic hybrid framework (MDyHF) is developed to solve this COP, based on an adaptive differential evolution and the concept of Pareto dominance. By comparing with statistical methods and several recently reported constrained optimization evolutionary algorithms (COEAs), we show that our proposed MDyHF is competitive and promising in studying the controllability of neuronal networks. Based on the MDyHF, we proceed to show the controlling regions under different levels of constraints. It is revealed that we should allocate the control gains economically when strong constraints are considered. In addition, it is found that as the constraints become more restrictive, the driver nodes are more likely to be selected from the nodes with a large degree. The results and methods presented in this paper will provide useful insights into developing new techniques to control a realistic complex network efficiently.
Control gains play an important role in the control of a natural or a technical system since they reflect how much resource is required to optimize a certain control objective. This paper is concerned with the controllability of neuronal networks with constraints on the average value of the control gains injected in driver nodes, which are in accordance with engineering and biological backgrounds. In order to deal with the constraints on control gains, the controllability problem is transformed into a constrained optimization problem (COP). The introduction of the constraints on the control gains unavoidably leads to substantial difficulty in finding feasible as well as refining solutions. As such, a modified dynamic hybrid framework (MDyHF) is developed to solve this COP, based on an adaptive differential evolution and the concept of Pareto dominance. By comparing with statistical methods and several recently reported constrained optimization evolutionary algorithms (COEAs), we show that our proposed MDyHF is competitive and promising in studying the controllability of neuronal networks. Based on the MDyHF, we proceed to show the controlling regions under different levels of constraints. It is revealed that we should allocate the control gains economically when strong constraints are considered. In addition, it is found that as the constraints become more restrictive, the driver nodes are more likely to be selected from the nodes with a large degree. The results and methods presented in this paper will provide useful insights into developing new techniques to control a realistic complex network efficiently.Control gains play an important role in the control of a natural or a technical system since they reflect how much resource is required to optimize a certain control objective. This paper is concerned with the controllability of neuronal networks with constraints on the average value of the control gains injected in driver nodes, which are in accordance with engineering and biological backgrounds. In order to deal with the constraints on control gains, the controllability problem is transformed into a constrained optimization problem (COP). The introduction of the constraints on the control gains unavoidably leads to substantial difficulty in finding feasible as well as refining solutions. As such, a modified dynamic hybrid framework (MDyHF) is developed to solve this COP, based on an adaptive differential evolution and the concept of Pareto dominance. By comparing with statistical methods and several recently reported constrained optimization evolutionary algorithms (COEAs), we show that our proposed MDyHF is competitive and promising in studying the controllability of neuronal networks. Based on the MDyHF, we proceed to show the controlling regions under different levels of constraints. It is revealed that we should allocate the control gains economically when strong constraints are considered. In addition, it is found that as the constraints become more restrictive, the driver nodes are more likely to be selected from the nodes with a large degree. The results and methods presented in this paper will provide useful insights into developing new techniques to control a realistic complex network efficiently.
Author Zidong Wang
Kurths, Jurgen
Yang Tang
Hong Qiao
Huijun Gao
Author_xml – sequence: 1
  surname: Yang Tang
  fullname: Yang Tang
  email: tangtany@gmail.com
  organization: Potsdam Inst. for Climate Impact Res., Potsdam, Germany
– sequence: 2
  surname: Zidong Wang
  fullname: Zidong Wang
  email: zidong.wang@brunel.ac.uk
  organization: Dept. of Comput. Sci., Brunel Univ., Uxbridge, UK
– sequence: 3
  surname: Huijun Gao
  fullname: Huijun Gao
  email: hjgao@hit.edu.cn
  organization: Res. Inst. of Intell. Control & Syst., Harbin Inst. of Technol., Harbin, China
– sequence: 4
  surname: Hong Qiao
  fullname: Hong Qiao
  email: hong.qiao@ia.ac.cn
  organization: State Key Lab. of Manage. & Control for Complex Syst., Inst. of Autom., Beijing, China
– sequence: 5
  givenname: Jurgen
  surname: Kurths
  fullname: Kurths, Jurgen
  email: Kurths@pik-potsdam.de
  organization: Potsdam Inst. for Climate Impact Res., Potsdam, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24733036$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFv1DAQhS3UipbSH4CQUCQuXHbxeBI7PpYVlEpVeykCTpbjnVCXbFxsB9R_j8Nue-gB1RePrO89jd97wfbGMBJjr4AvAbh-f7X6_mEpONRLgYDQ1M_YoQDZLoRQzd7DLNUBO07phpfTlifdPmcHolaIHOUh-3Y5Vqsw5hiGwXZ-8PmuCn11QVMMox3KkP-E-DNVX32-nsmUo_VjTlUYq3xN1clvivYHzaKdT3VagPSS7fd2SHS8u4_Yl08fr1afF-eXp2erk_OFq3WTF9hJJ4WSrhYN71CvLRLIzjW9bTtHa41a9gAdCkE9IbZtp13jnJbcQd0SHrF3W9_bGH5NlLLZ-OSo_GakMCUDsoEaAUA-AS2LaAU4o28foTdhiiWQf5RUCpWeqTc7auo2tDa30W9svDP38RZAbQEXQ0qReuN8ttnPQVk_GOBm7tLMXZq5S7PrsijhkfLe_H-a11uNJ6IHXqpWcYH4FwdOp5o
CODEN ITCEB8
CitedBy_id crossref_primary_10_1016_j_jfranklin_2018_04_019
crossref_primary_10_1109_TCYB_2016_2571122
crossref_primary_10_1016_j_neunet_2015_12_008
crossref_primary_10_1016_j_jfranklin_2014_10_006
crossref_primary_10_1109_TNNLS_2017_2755697
crossref_primary_10_1007_s13369_015_1905_5
crossref_primary_10_1109_TAC_2024_3376302
crossref_primary_10_1109_TCYB_2015_2510746
crossref_primary_10_1109_TCYB_2021_3119199
crossref_primary_10_1109_TNNLS_2017_2678681
crossref_primary_10_1109_TNNLS_2022_3208449
crossref_primary_10_1109_TNNLS_2016_2598243
crossref_primary_10_1016_j_physa_2017_02_041
crossref_primary_10_1109_TCYB_2015_2453346
crossref_primary_10_3390_en9070557
crossref_primary_10_1016_j_neucom_2015_01_052
crossref_primary_10_1016_j_neunet_2017_06_014
crossref_primary_10_1016_j_neucom_2015_01_033
crossref_primary_10_1089_bioe_2020_0028
crossref_primary_10_1007_s10114_020_8167_1
crossref_primary_10_1109_TCYB_2015_2502619
crossref_primary_10_1016_j_neucom_2015_03_045
crossref_primary_10_1016_j_neunet_2020_05_012
crossref_primary_10_1016_j_neucom_2015_09_011
crossref_primary_10_1109_ACCESS_2024_3520735
crossref_primary_10_1016_j_neunet_2016_05_004
crossref_primary_10_1016_j_jfranklin_2014_09_006
crossref_primary_10_1016_j_neunet_2019_05_024
crossref_primary_10_1007_s12204_018_1933_x
crossref_primary_10_1016_j_neucom_2020_05_003
crossref_primary_10_1016_j_physa_2015_02_051
crossref_primary_10_1109_TCBB_2015_2485226
crossref_primary_10_1016_j_jfranklin_2015_08_016
crossref_primary_10_1016_j_neucom_2015_01_040
crossref_primary_10_1109_TCYB_2018_2868470
crossref_primary_10_1109_TNNLS_2017_2705109
crossref_primary_10_1016_j_automatica_2020_108900
crossref_primary_10_1016_j_neucom_2020_09_003
crossref_primary_10_1016_j_neucom_2014_12_076
crossref_primary_10_1016_j_neucom_2018_01_046
crossref_primary_10_1016_j_ins_2016_04_033
crossref_primary_10_1109_TIE_2015_2453412
crossref_primary_10_1016_j_arcontrol_2014_09_003
Cites_doi 10.1103/PhysRevE.75.046103
10.1109/TNN.2009.2030585
10.1103/PhysRevLett.97.238103
10.1109/TCBB.2013.72
10.1371/journal.pone.0001049
10.1103/PhysRevLett.103.228702
10.1109/TEVC.2009.2014613
10.1007/s11633-012-0612-x
10.1162/evco.1996.4.1.1
10.1109/TNNLS.2011.2178311
10.1523/JNEUROSCI.15-02-01463.1995
10.1109/TEVC.2006.872344
10.1073/pnas.0406343101
10.1080/21642583.2013.817959
10.1371/journal.pone.0041375
10.1016/S0005-1098(03)00072-4
10.1371/journal.pcbi.1000190
10.1016/j.physrep.2008.09.002
10.1109/TNNLS.2013.2295966
10.1088/1367-2630/9/6/178
10.1111/j.1532-5415.1994.tb06069.x
10.1371/journal.pone.0012313
10.1098/rstb.2000.0551
10.1016/j.neuron.2006.09.020
10.1016/S0045-7825(01)00323-1
10.1109/TNN.2010.2066989
10.1109/TEVC.2010.2093582
10.1109/TCBB.2012.124
10.1038/nature10011
10.1103/PhysRevLett.94.138701
10.1007/s11633-013-0708-y
10.1109/TCSI.2009.2028645
10.1109/TSMCB.2009.2024408
10.1080/21642583.2013.789991
10.1109/TNNLS.2013.2257842
10.1093/cercor/9.3.277
10.1016/j.neuroimage.2009.10.003
10.1109/TSMCB.2012.2207718
10.1016/0005-1098(96)00063-5
10.1080/21642583.2013.839966
10.1016/j.automatica.2007.04.020
10.1007/s11633-013-0705-1
10.1038/nrn2575
10.1109/72.265964
10.1109/TSMCB.2011.2161467
10.1016/j.jprocont.2012.06.009
10.1109/TCSI.2013.2285699
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2014.2313154
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Aerospace Database
PubMed

MEDLINE - Academic
Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 2681
ExternalDocumentID 3503475351
24733036
10_1109_TCYB_2014_2313154
6787023
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Key Laboratory of Integrated Automation for the Process Industry (Northeastern University)
– fundername: Alexander von Humboldt Foundation of Germany
– fundername: National Natural Science Foundation of China
  grantid: 61329301; 61333012; 61203235; 61273201
  funderid: 10.13039/501100001809
– fundername: IRTG 1740 (DFG)
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c495t-3b6c6276c4250b39da3e16bc5fa8bced9396f11b322efe3388b9c5cc960c148e3
IEDL.DBID RIE
ISICitedReferencesCount 49
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345629000035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Sun Sep 28 00:44:42 EDT 2025
Sun Sep 28 03:07:51 EDT 2025
Mon Jun 30 02:08:04 EDT 2025
Thu Jan 02 22:17:13 EST 2025
Sat Nov 29 06:48:28 EST 2025
Tue Nov 18 21:19:28 EST 2025
Tue Aug 26 16:49:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords synchronization/consensus
controllability
Complex networks
evolutionary algorithms
neural networks
multiagent systems
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-3b6c6276c4250b39da3e16bc5fa8bced9396f11b322efe3388b9c5cc960c148e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://bura.brunel.ac.uk/bitstream/2438/9772/1/Fulltext.pdf
PMID 24733036
PQID 1626773796
PQPubID 85422
PageCount 12
ParticipantIDs proquest_miscellaneous_1651431116
crossref_citationtrail_10_1109_TCYB_2014_2313154
crossref_primary_10_1109_TCYB_2014_2313154
pubmed_primary_24733036
proquest_miscellaneous_1627697136
proquest_journals_1626773796
ieee_primary_6787023
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref18
ref51
ref50
rumelhart (ref38) 1988
ref46
deb (ref45) 2002
ref42
ref41
rudolph (ref47) 1997
ref49
veldhuizen (ref48) 1998
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref24
ref23
ref25
ref20
ref22
ref21
harrison (ref26) 1998; 29
ref28
ref27
ren (ref19) 2008
ref29
scannell (ref34) 1995; 15
kluge (ref44) 2007; 9
mainland (ref43) 2005; 2
References_xml – ident: ref21
  doi: 10.1103/PhysRevE.75.046103
– ident: ref5
  doi: 10.1109/TNN.2009.2030585
– ident: ref7
  doi: 10.1103/PhysRevLett.97.238103
– volume: 9
  start-page: 57
  year: 2007
  ident: ref44
  article-title: Resource allocation in healthcare: Implications of models of medicine as a profession
  publication-title: MedGenMed
– ident: ref23
  doi: 10.1109/TCBB.2013.72
– ident: ref9
  doi: 10.1371/journal.pone.0001049
– ident: ref42
  doi: 10.1103/PhysRevLett.103.228702
– ident: ref33
  doi: 10.1109/TEVC.2009.2014613
– ident: ref50
  doi: 10.1007/s11633-012-0612-x
– ident: ref28
  doi: 10.1162/evco.1996.4.1.1
– year: 1997
  ident: ref47
  publication-title: Convergence Properties of Evolutionary Algorithms
– ident: ref6
  doi: 10.1109/TNNLS.2011.2178311
– volume: 15
  start-page: 1463
  year: 1995
  ident: ref34
  article-title: Analysis of connectivity in the cat cerebral cortex
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.15-02-01463.1995
– ident: ref30
  doi: 10.1109/TEVC.2006.872344
– ident: ref16
  doi: 10.1073/pnas.0406343101
– ident: ref49
  doi: 10.1080/21642583.2013.817959
– start-page: 221
  year: 1998
  ident: ref48
  article-title: Evolutionary computation and convergence to a Pareto front
  publication-title: Proc Late Breaking Papers Genet Program Conf
– ident: ref11
  doi: 10.1371/journal.pone.0041375
– volume: 29
  start-page: 223
  year: 1998
  ident: ref26
  article-title: The beginning of the end of the antibiotic era? Part II. Proposed solutions to antibiotic abuse
  publication-title: Quintessence Int
– ident: ref25
  doi: 10.1016/S0005-1098(03)00072-4
– ident: ref8
  doi: 10.1371/journal.pcbi.1000190
– ident: ref1
  doi: 10.1016/j.physrep.2008.09.002
– year: 2008
  ident: ref19
  publication-title: Distributed Consensus in Multi-vehicle Cooperative Control Communications and Control Engineering Series
– year: 2002
  ident: ref45
  publication-title: Multi-Objective Optimization Using Evolutionary Algorithms
– ident: ref22
  doi: 10.1109/TNNLS.2013.2295966
– ident: ref18
  doi: 10.1088/1367-2630/9/6/178
– ident: ref27
  doi: 10.1111/j.1532-5415.1994.tb06069.x
– ident: ref10
  doi: 10.1371/journal.pone.0012313
– ident: ref36
  doi: 10.1098/rstb.2000.0551
– ident: ref17
  doi: 10.1016/j.neuron.2006.09.020
– ident: ref29
  doi: 10.1016/S0045-7825(01)00323-1
– ident: ref4
  doi: 10.1109/TNN.2010.2066989
– ident: ref32
  doi: 10.1109/TEVC.2010.2093582
– ident: ref24
  doi: 10.1109/TCBB.2012.124
– ident: ref20
  doi: 10.1038/nature10011
– ident: ref37
  doi: 10.1103/PhysRevLett.94.138701
– year: 1988
  ident: ref38
  publication-title: Neurocomputing Foundations of Research Learning Internal Representations by Error Propagation
– ident: ref52
  doi: 10.1007/s11633-013-0708-y
– volume: 2
  start-page: 315
  year: 2005
  ident: ref43
  article-title: Decentralized, adaptive resource allocation for sensor networks
  publication-title: Proc 2nd USENIX NSDI
– ident: ref40
  doi: 10.1109/TCSI.2009.2028645
– ident: ref12
  doi: 10.1109/TSMCB.2009.2024408
– ident: ref54
  doi: 10.1080/21642583.2013.789991
– ident: ref14
  doi: 10.1109/TNNLS.2013.2257842
– ident: ref35
  doi: 10.1093/cercor/9.3.277
– ident: ref2
  doi: 10.1016/j.neuroimage.2009.10.003
– ident: ref15
  doi: 10.1109/TSMCB.2012.2207718
– ident: ref39
  doi: 10.1016/0005-1098(96)00063-5
– ident: ref55
  doi: 10.1080/21642583.2013.839966
– ident: ref41
  doi: 10.1016/j.automatica.2007.04.020
– ident: ref51
  doi: 10.1007/s11633-013-0705-1
– ident: ref3
  doi: 10.1038/nrn2575
– ident: ref46
  doi: 10.1109/72.265964
– ident: ref31
  doi: 10.1109/TSMCB.2011.2161467
– ident: ref53
  doi: 10.1016/j.jprocont.2012.06.009
– ident: ref13
  doi: 10.1109/TCSI.2013.2285699
SSID ssj0000816898
Score 2.2579432
Snippet Control gains play an important role in the control of a natural or a technical system since they reflect how much resource is required to optimize a certain...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2670
SubjectTerms Biological neural networks
Collision avoidance systems
Complex networks
Constraints
Control systems
Controllability
Dominance
Educational institutions
Evolution
evolutionary algorithms
Gain
multiagent systems
Networks
neural networks
Optimization
Real time
Statistical methods
synchronization/consensus
Title On Controllability of Neuronal Networks With Constraints on the Average of Control Gains
URI https://ieeexplore.ieee.org/document/6787023
https://www.ncbi.nlm.nih.gov/pubmed/24733036
https://www.proquest.com/docview/1626773796
https://www.proquest.com/docview/1627697136
https://www.proquest.com/docview/1651431116
Volume 44
WOSCitedRecordID wos000345629000035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEL
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9wwDLcA8bCX8TXGsQNl0h7YRLn2ck2aRzhx8HTbA2i3pypNU4GEWkR7SPz3s5NcJaQNibdIddIotuOfE8cG-JbwtCrREkWqMFTCrCqjQicqEmh9tKwQ4pe-2IScz7PFQv1ag9P-LYy11gWf2TNqurv8sjFLOiobCZKuMV-HdSmFf6vVn6e4AhKu9O0YGxGiChkuMZNYjW6mfy4ojmtyhniGI2ygJMATyWkDf2WRXImV_6NNZ3VmW--b7zZ8DOiSnXtx2IE1W-_CTtDflp2EJNPf92Dxs2ZTH6b-4FN1v7CmYi5XBw0x9-HhLft9390RZeuKSXQta2qGoJGdow7gXkSdwjjsCgnaT3A7u7yZXkehykJk0DnqIl4II8ZSGNTeuOCq1NwmojBppbPC2FJxJaokKVDzbWXRo80KZVJj0PUx6EtZvg8bdVPbA2DYXyKjY6NlOsHV0DrLTKl1JQlK6nQA8WqlcxNSkNPkH3LnisQqJz7lxKc88GkAP_oujz7_xlvEe8SEnjCs_wCGK3bmQUPbPEFPTkoulRjA1_4z6hZdmOjaNktHI4VCN_5NGoKcaDGQ5rMXlf7_Kwk7_Pe8vsAHmr0PjhnCRve0tEewaZ67-_bpGIV8kR07If8L4nz09A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9wwDLf4mAQvDAYbx_jIJB42tB7t5Zo0j-zEl2DHHm7a7alK01QgoRbR3iT-e-w0V2nShsRbpTppGtvxz4ljAxxGPC5ytESBygyVMCvyINORCgRaHy0LhPh5W2xCjsfJdKp-LMDX7i6MtdYFn9k-Pbqz_LwyM9oqOxYkXQO-CMtUOcvf1up2VFwJCVf8doAPAeIK6Y8xo1AdT0a_v1Ek17CPiIYjcKA0wEPJaQn_yya5Iiv_x5vO7py9fd2I12HN40t20grEBizY8h1seA2u2WefZvrLJkxvSjZqA9Xv22TdT6wqmMvWQV2M2wDxmv26a26JsnblJJqaVSVD2MhOUAtwNaJGvh92jgT1Fvw8O52MLgJfZyEw6B41Ac-EEQMpDOpvmHGVa24jkZm40ElmbK64EkUUZaj7trDo0yaZMrEx6PwY9KYsfw9LZVXabWDYXiKrQ6NlPMTZ0DpJTK51IQlM6rgH4XymU-OTkNPg71PnjIQqJT6lxKfU86kHR12ThzYDx0vEm8SEjtDPfw925-xMvY7WaYS-nJRcKtGDT91r1C46MtGlrWaORgqFjvyLNAQ60WYgzYdWVLrvzyVs59_jOoCVi8n36_T6cnz1EVbpT9pQmV1Yah5ndg_emD_NXf2470T9GQST91U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+controllability+of+neuronal+networks+with+constraints+on+the+average+of+control+gains&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Tang%2C+Yang&rft.au=Wang%2C+Zidong&rft.au=Gao%2C+Huijun&rft.au=Qiao%2C+Hong&rft.date=2014-12-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=44&rft.issue=12&rft.spage=2670&rft_id=info:doi/10.1109%2FTCYB.2014.2313154&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon